The stellar initial mass function of early type galaxies from low to high stellar velocity dispersion: homogeneous analysis of ATLAS3D and Sloan Lenses ACS galaxies

Silvia Posacki1

Collaborators: Michele Cappellari2, Tommaso Treu3, Silvia Pellegrini1, Luca Ciotti1

1. University of Bologna, 2. Oxford University, 3. University of California

Oxford, 23rd July 2014
Our work

Sample: 55 Sloan Lens ACS galaxies (Bolton et al. 2006)

Data: SDSS spectra (3800 – 9000Å) and HST F814W galaxy images

Aim: study the integrated mass normalization of the IMF

\[\text{IMF} \rightarrow \frac{M_*}{L} \rightarrow M_* \]

Methods:
- stellar dynamics + gravitational lensing \(\rightarrow (M_*/L)_{\text{dyn}}\)
- stellar population synthesis models \(\rightarrow (M_*/L)_{\text{pop}}\)
\((M_*/L)_{\text{dyn}}\) from dynamical models

Treu et al., 2010, ApJ, 709, 1195:
- spherical symmetry
- isotropic velocity dispersion tensor
- light follows Hernquist profile
- NFW dark matter halo

Constraints: \(\sigma_*\) and \(M_{\text{EIN}}\)
(M*/L)_{dyn} from dynamical models

Silvia Posacki

The IMF of ETGs from low to high σ: homogeneous analysis of ATLAS3D and SLACS galaxies
$\left(\frac{M_*}{L} \right)_{\text{dyn}}$ from dynamical models

Treu et al., 2010, ApJ, 709, 1195:
- spherical symmetry
- isotropic velocity dispersion tensor
- light follows Hernquist profile
- NFW dark matter halo

Constraints: σ_* and M_{Ein}

Posacki et al., submitted:
- axisymmetry
- vertical anisotropy β_z (Cappellari 2008)
- light profile parametrized with a multi gaussian expansion
 (Emsellem et al. 1994)
- NFW dark matter halo

Constraints: σ_*, M_{Ein} and HST images
MGE models

Silvia Posacki

The IMF of ETGs from low to high σ: homogeneous analysis of ATLAS3D and SLACS galaxies
\[(M_*/L)_{\text{pop}} \] from stellar population synthesis models

- assume Salpeter IMF
- SSP models of Vazdekis et al. 2010
- 3540 – 7410 Å at 2.50 Å (FWHM) spectral resolution
- \(1 \text{ Gyr} \leq t \leq t_{\text{Univ}}(z) \)
- \(-1.71 \leq [M/H] \leq 0.22\)

Constraint: SDSS spectra
The IMF of ETGs from low to high σ: homogeneous analysis of ATLAS3D and SLACS galaxies

$$\alpha = \frac{(M_*/L)_{\text{dyn}}}{(M_*/L)_{\text{pop}}}$$

- galaxies require different IMF normalizations
- confirmed trend: $\alpha \propto \sigma_*^{1.3\pm0.23}$
- lower correlation due to a more detailed parametrization
\[\alpha = \frac{(M_*/L)_{\text{dyn}}}{(M_*/L)_{\text{pop}}} \]

- galaxies require different IMF normalizations
- confirmed trend: \(\alpha \propto \sigma_*^{1.3 \pm 0.23} \)
- lower correlation due to a more detailed parametrization
Results

SLACS: \(\sigma \) selected sample, \(z \sim 0.2 \) (Bolton et al. 2006)

ATLAS\(^{3D}\): volume limited and nearly mass selected sample, \(M_K < -21.5 \) mag, \(z \sim 0 \) (Cappellari et al. 2011)

![Graph showing complementary samples follow the same relation consistent with a systematic variation of the IMF with \(\sigma \): not a simple power law?](image-url)
SLACS: σ selected sample, $z \sim 0.2$ (Bolton et al. 2006)

ATLAS3D: volume limited and nearly mass selected sample, $M_K < -21.5$ mag, $z \sim 0$ (Cappellari et al. 2011)

complementary samples follow the same relation
consistent with a systematic variation of the IMF with σ
$\alpha - \sigma$: not a simple power law?
The end