Fitting boundary-value problems to data

Geoff Nicholls (Statistics, Oxford, UK)

Coauthors

Kevin Speer (Oceanography, FSU, USA)
Ian McKeague (Biostatistics, Columbia, USA)

Ville Kolehmainen (Applied Physics, Kuopio, Finland)
Jari Kaipio (Applied Physics, Kuopio, Finland)

Colin Fox (Math/Acoustics Research Centre, Auckland, NZ)
Jeong Eun Lee (Mathematics, Auckland, NZ)

Mike O’Sullivan (Engineering, Auckland, NZ)
Tiangang Cui (Engineering, Auckland, NZ)
Data from following physical inverse problems:

- Acoustic imaging. Helmholtz Eqn. in plane.
- Electrical imaging. Diffusion Eqn. in disk.
- Detect abyssal ocean currents. Advection-diffusion Eqn. in rectangular window.
- Geothermal reservoir. Two phase flow in half-space.

- What kind of information does the data contain?
- Estimate physical parameters.

Sample-based Bayesian inference with expensive likelihood calculations:

- Approximate likelihood, use coupling-separation to control approx.
- Get serial depth via parallel implementation.
\[
U(x, t) = u(x)e^{-i\omega t} \quad \text{with} \quad u(x) = u_i(x) + u_s(x)
\]

\[
\nabla^2 u + k^2 u = 0 \quad \text{in} \quad \Omega \subseteq \mathbb{R}^2
\]

\[
\frac{\partial u}{\partial n} = 0 \quad \text{in} \quad \partial\Omega \quad \text{and} \quad \lim_{r \to \infty} r \left(\frac{\partial u_s}{\partial r} - ik u_s \right) = 0
\]

Estimate polygonal inclusion - i.e. $\partial\Omega$ - given u_i and noisy measurements of $u_s(x_k)$ at $x_k \in \Omega, k = 1, 2\ldots K$

Boundary element method for $u_s(\partial\Omega)$
Apparatus; σ_{MAP} Gauss-Newton optimization; σ_{PM} and variance.

$$\nabla \cdot (\sigma \nabla) u = 0 \quad \text{in } \Omega \subseteq \mathbb{R}^2, \quad \sigma : \Omega \rightarrow \mathbb{R}^+$$

$$\frac{\partial u}{\partial n} = J_{\partial \Omega} \quad \text{in } \partial \Omega$$

Estimate $\sigma(x)$, $x \in \Omega$ given measurements of $(v, J_{\partial \Omega})$

$v = u(\sigma; J_{\partial \Omega}) + \text{agn.}$

$$\pi(\sigma \mid V) \sim \exp \left\{ - \left(\frac{1}{2} (V - U(\sigma))^T C^{-1}_n (V - U(\sigma)) \right) \right\} \pi_{pr}(\sigma)$$

Complete-electrode model/FEM for $U(\sigma)$
Observation model (2D) Data: $C_D^{(t)}$, Parameters: Ψ

$t = \text{salinity, oxygen, Si, potential temperature}$

2D advection diffusion on an isopycnal $\Gamma(x, y, z) = \Gamma_0$

$$uC_x^{(t)} + vC_y^{(t)} - (k_x^{(x)}C_x^{(t)})_x - (k_y^{(y)}C_y^{(t)})_y = -\lambda^{(t)}C^{(t)}$$

Dynamics:

$$\beta v = fw_z \quad u = \int_x^{x_E} (-v_y - \beta v/f)dx'$$

using 3D mass conservation $\nabla \cdot u = 0$ with boundary condition $u(x_{East}) = 0$.

$$\Psi = (v, k_x^{(x)}, k_y^{(y)}, C_{\partial\Omega})$$

Measurement:

$$C_D^{(t)}(x, y, z) \sim N(C^{(t)}(x, y, z), \sigma_t^2)$$

Posterior:

$$P(\Psi|C_D) \propto P(C_D|\Psi)P(\Psi)$$

Multigrid method for each $C_t^{(t)}$
Radial symmetric model, homogeneous constant thickness layer (200m) infinite extent. One rock type, estimate

Parameters: $\Psi = (\phi, k, S_{lr}, S_{vr}, p_0, S_{v0})$

ϕ porosity, k permeability in radial direction S_{lr}, S_{vr} liquid and vapour residual saturations, p_0 initial pressure and S_{v0} initial vapour saturation fields

Data: $D = (h_{D,f}^{(t_j)}, p_D^{(t_j)}, q_{D,m}^{(t_i)}, t_i), i = 1, 2..I, j = 1, 2..J$

Drive: $q_{D,m}^{(t_i)}$ production rate, $t(.)$ time, days.

Response: $h_{D,f}^{(t_j)}$ flowing enthalpy, $p_D^{(t_j)}$ wellhead pressure

Observation model:
Forward model: $\Psi, q_{D,m} \rightarrow h_f, p$.
Measurement model: $h_{D,f}, p_D = h_f, p + \text{agn}$.

Solve via finite element analysis:

Sample based inference
Summarize $P(\Psi|D) \propto P_D(D|\Psi)P_\Psi(\Psi)$ using samples $\psi_i \sim P, \quad i = 1...N$:
Correlated $\psi_i \sim P, \quad i = 1...N$ from MCMC

MCMC
Fix an operator $\psi' = \Psi(\psi, u)$ and for $i = 0, 1, 2..., v_i \sim U(0, 1)$ and $u_i \sim a(u_i)$.
function $\psi_{i+1} = \text{Next}(\psi_i, v_i, u_i, P)$
 1. set $\psi' = \Psi(\psi, u_i)$
 2. compute

\[
\alpha(\psi'|\psi; P) = \min \left(1, \frac{P(\psi'|D)a(u'_i)}{P(\psi|D)a(u_i)} \left| \frac{\partial(\psi', u'_i)}{\partial(\psi, u_i)} \right| \right)
\]

 3. if $v_i < \alpha(\psi'|\psi; P)$ set $\psi_{i+1} = \psi'$ else $\psi_{i+1} = \psi$.

[eg] Fix $s \in (0, 1)$, set $u_i \sim U(1/s, s)$ and $\phi' = (\phi, k, S_{lr}, u_i S_{vr}, p_0, u_i S_{v0})$.
Then $u'_i = 1/u_i$, Jacobian is 1 and

\[
\alpha(\psi'|\psi; P) = \min \left(1, \frac{P(C_D|\psi')P(\psi')}{P(C_D|\psi)P(\psi)} \right)
\]
Approximation-choice strategy: coupling-separation $\tilde{\psi}_0 = \psi_0$

$\psi_{i+1} = \text{Next}(\psi_i, v_i, u_i, P)$ \quad $\tilde{\psi}_{i+1} = \text{Next}(\tilde{\psi}_i, v_i, u_i, \tilde{P})$

Chains start together, separate $\psi_{i+1} \neq \tilde{\psi}_{i+1}$

$$\min(\alpha_i, \tilde{\alpha}_i) < v_i < \max(\alpha_i, \tilde{\alpha}_i)$$

where $\alpha_i = \alpha(\psi'|\psi; P)$ and $\tilde{\alpha}_i = \alpha(\psi'|\psi; \tilde{P})$.

Samples from $\tilde{\Psi}$-chain identical to “exact” chain up to separation time. $\tilde{\Psi}$-chain need not be Markov. Equilibrium need not exist.

Separation times

$$\tau(\psi_0) = \min\{i > 0; \psi_{i+1} \neq \tilde{\psi}_{i+1} | \Psi_0 = \psi_0\}$$

$$\tau_r = \text{interval between events } \min(\alpha_i, \tilde{\alpha}_i) < v_i < \max(\alpha_i, \tilde{\alpha}_i)$$

$$\tau_r = 1/E(|\alpha_i - \tilde{\alpha}_i|)$$

Estimate τ_r using short runs of “exact” chain. Choose approximation so that τ_r exceeds MCMC simulation length.

Acoustic imaging: Likelihood via $O(n^3)$ n-boundary element approx. to BVP.

Ψ-chain $n = 1024$ - reproduce* experimental data, mixing time 40 updates.

$\tilde{\Psi}$-chain # boundary elements 512 obtain $\tau_r = 1400$ updates.
Parallel implementation:

Biasing correlation between Φ_0 and Ψ_i (burn-in). Serial-depth important.

Strategy. $\Psi_i = \psi$ and fix $n > 0$.

Compute $X_1 = \text{Next}(\psi, \ldots), \ldots, X_n = \text{Next}(\psi, \ldots)$ in parallel.

Let $m = \min\{i = 1, 2, \ldots, n; X_i \neq \psi\}$ (first acceptance).

Set $\Psi_{i+1} = X_1, \ldots, \Psi_{i+m} = X_m$ and throw out X_{m+1}, \ldots, X_n.

OpenMosix cluster (about 15 CPUs) for Fushime geothermal data.

Each $P_D(D|\Psi)$—evaluation about 5 seconds. Remote processes via ssh.

Very straightforward implementation.
Further information for geothermal two-phase flow model
\[
\frac{\partial M_m}{\partial t} + \nabla \cdot Q_m = q_m \quad \frac{\partial M_e}{\partial t} + \nabla \cdot Q_e = q_e
\]

\(M_m, M_e\) mass and energy per unit volume, \(Q_m, Q_e\) mass and energy flux per unit area, \(q_m, q_e\) mass and energy injected or withdrawn at wells. Underground geothermal flows:

\[
M_m = \phi(\rho_l S_l + \rho_v S_v) \quad M_e = (1 - \phi) \rho_r c_r T + \phi(\rho_l u_l S_l + \rho_v u_v S_v)
\]

\(S_l + S_v = 1\)

\(\phi\) porosity \(\rho_l, \rho_v\) and \(\rho_r\) liquid, vapour and rock densities \(S_l, S_v\) liquid and vapour saturations. \(u_l, u_v\) and \(c_r\) specific internal energies for liquid and vapour and specific heat of rock respectively. \(T\) temperature.

Two phase Darcy’s Law:

\[
Q_{ml} = -\frac{k k_{rl}}{\mu_l} (\nabla p - \rho_l g) \quad Q_{mv} = -\frac{k k_{rv}}{\mu_v} (\nabla p - \rho_v g)
\]

\[
\begin{pmatrix} k_{rl} \\ k_{rv} \end{pmatrix} = f(S_{lr}, S_{vr}, S_l) \quad Q_m = Q_{ml} + Q_{mv}
\]

\(k\) 3-component permeability \(g\) gravitational acceleration, \(\nabla p\) pressure gradient, \(\mu_l\) and \(\mu_v\) dynamic viscosity of liquid and vapour.

\(k_{rl}\) and \(k_{rv}\) relative permeabilities - interference between phases \(S_{lr}, S_{vr}\) liquid and vapor residual saturation \(S_l\) liquid (vapour) saturation.
\[
\begin{aligned}
&k_{rl} = \tilde{S}^4 \\
&k_{rv} = (1 - \tilde{S}^2)(1 - \tilde{S}^2) \quad \text{(Corey's curve)} \\
&k_{rv} = 1 - k_{rl} \quad \text{(Grant's curve)}
\end{aligned}
\]

where \(\tilde{S} = (S_l - S_r)/(1 - S_{lr} - S_{vr}) \).

Energy flux

\[
Q_e = Q_{ml}h_l + Q_{mv}h_v - K \nabla T
\]

\(h_l, h_v \) liquid and vapour enthalpies \(K \) thermal conductivity in saturated medium.

Thermodynamic relations

\[
\begin{aligned}
&h_l = u_l + \frac{p}{\rho_l}, \quad h_v = u_v + \frac{p}{\rho_v}, \quad h_f = Q_e/Q_m \\
&K = (1 - \phi)K_r + \phi(S_lK_l + S_vK_v)
\end{aligned}
\]

\(K_r, K_l \) and \(K_v \) thermal conductivity of rock, liquid and vapour \(h_f \) is the flowing enthalpy for multiphase flow.

\[
\begin{aligned}
&\frac{\partial}{\partial t}[\phi(\rho_l S_l + \rho_v S_v)] - \nabla \cdot \left[k_{rl} \left(\nabla p - \rho_l g \right) + \frac{k_{rv}}{v_l} \left(\nabla p - \rho_v g \right) \right] = q_m \\
&\frac{\partial}{\partial t}[\phi(\rho_l c_r T + \phi(\rho_l u_l S_l + \rho_v u_v S_v)] - \nabla \cdot \left[\frac{h_l k_{rl}}{v_l} \left(\nabla p - \rho_l g \right) + \frac{h_v k_{rv}}{v_v} \left(\nabla p - \rho_v g \right) \right] + \nabla \cdot (K \nabla T) = q_m \\
&\left(\begin{array}{c}
\tilde{k}_{rl} \\
\tilde{k}_{rv}
\end{array} \right) = f(S_{lr}, S_{vr}, S_l)
\end{aligned}
\]
$\rho_l, \rho_v, \mu_l, \mu_v, u_l, u_v, h_l, h_v$ and h_f vary with system temperature (T) and pressure (p), functions from steam table lookup.