$sPlot$: a statistical tool to unfold data distributions

physics/0402083, to be published in Nucl. Inst. Meth.

Muriel Pivk, François R. Le Diberder
CERN, LAL Orsay

14th September 2005
PHYSTAT 2005, Oxford

1 Motivation
2 $sPlot$: the tool, its properties
3 Implementation
4 $sPlot$ at work
5 Conclusion
Problem to solve when performing an analysis
Data sample ≡ black box

Few signal events and lots of background

⇒ How - distinguish them ?
- extract the physics of the signal ?
- probe the validity of analysis ?
⇒ check the distributions of events !

“Golden mode” decay analysis

\begin{itemize}
 \item \(B^0 \rightarrow J/\psi K_S^0\)
 \item Low background
\end{itemize}

⇒ No need for a particular tool

\textit{Plot:} a statistical tool to unfold data distributions (page 2)
Motivation (2)

Very rare decay analysis \(\sin 2\alpha \) possible thanks to luminosity

\[B^0 \rightarrow h^+ h^- \ (h = \pi, K) \]

Event selection:

- \(m_{ES} \) : reconstructed mass of the \(B \) candidate
- \(\Delta E \) : difference of energy between \(B \) candidate and \(\sqrt{s}/2 \)

Signal/background discrimination:

- Huge \(e^+ e^- \rightarrow q\bar{q} \) background
- \(F \) : Fisher discriminant, uses topology difference of the events

Among 88 million of \(B \bar{B} \) pairs

\[\rightarrow 156 \ \pi^+\pi^- \ \text{and} \ 588 \ K^+\pi^- \ \text{among 26k events} \]
1 Motivation (3)

The question is: how to check the distributions of events?

Solution? “Projection plots”
Cut applied on the \mathcal{L} ratio to reduce background

1. subset of sample only
2. signal and background events mixed
3. hard (impossible) if distributions not really different (Fisher?)

Solution! sPlot
New tool: firstly meant as projection plots optimization
1. keep all data
2. separate signal and background
3. possible for ANY variable
2.1 Likelihood analyses

Extended log-likelihood

\[\mathcal{L} = \sum_{e=1}^{N} \ln \left\{ \sum_{i=1}^{N_s} N_i f_i(y_e) \right\} - \sum_{i=1}^{N_s} N_i \]

- \(N \): number of events in the data sample
- \(e \): event number
- \(N_s \): number of species in the data sample
- \(i \): species number (signals, backgrounds)
- \(y \): discriminating variables
- \(f_i(y_e) \): distribution of variables \(y \) of species \(i \) for event \(e \), normalized to unity

Analysis \(B^0 \rightarrow h^+h^- \)

- \(N_s \): three species
- \(i \): signal \(\pi^+\pi^- \) \((N_{\pi\pi})\), signal \(K^+\pi^- \) \((N_{K\pi})\), background \(q\overline{q} \) \((N_{q\overline{q}})\)
- \(y \): \(m_{ES}, \Delta E, \mathcal{F}, \Delta t, \ldots \)
2.2 At the beginning where the plot

Distribution of x for species n, $x \in y$, using the (naive) weight

$$P_n(y_e) = \frac{N_n f_n(y_e)}{\sum_{k=1}^{N_s} N_k f_k(y_e)}$$

(2)

The reconstructed distribution \tilde{M}_n of variable x is defined by:

$$N_n \tilde{M}_n(x) \delta x \equiv \sum_{e \subset \delta x} P_n(y_e)$$

(3)

Replacing $\sum_{e \subset \delta x}$ by $\int dy$ (total pdf) $\delta(x(y) - x)\delta x$:

$$N_n \tilde{M}_n(x) = \int dy \sum_{i=1}^{N_s} N_i f_i(y) \delta(x(y) - x) \frac{N_n f_n(y)}{\sum_{k=1}^{N_s} N_k f_k(y)}$$

(4)

$$= N_n \int dy \delta(x(y) - x) f_n(y)$$

(5)

$$\equiv N_n M_n(x)$$

(6)

where $M_n(x)$ is the TRUE distribution of variable x for species n

\Rightarrow Biased if $x \in y$... can we avoid it?
2.3 The \textit{sPlot} tool

Distribution of $x, x \notin y$

\[N_n \tilde{M}_n(x) = \int dy \sum_{i=1}^{N_s} N_i M_i(x) f_i(y) \frac{N_n f_n(y)}{\sum_{k=1}^{N_s} N_k f_k(y)} \]

\[= N_n \sum_{i=1}^{N_s} M_i(x) \left(N_i \int dy \frac{f_n(y) f_i(y)}{\sum_{k=1}^{N_s} N_k f_k(y)} \right) \]

\[\neq N_n M_n(x) \]

But but but ... !

Variance matrix:

\[v_{ni}^{-1} = \frac{\partial^2 (-L)}{\partial N_n \partial N_i} = \sum_{e=1}^{N} \frac{f_n(y_e) f_i(y_e)}{(\sum_{k=1}^{N_s} N_k f_k(y_e))^2} \]

\[= \int dy \frac{f_n(y) f_i(y)}{\sum_{k=1}^{N_s} N_k f_k(y)} \]

Eq. (8) becomes $\tilde{M}_n(x) = \sum_{i=1}^{N_s} M_i(x) N_i v_{ni}^{-1}$

$ \implies $ By inversion:

\[N_n M_n(x) = \sum_{i=1}^{N_s} v_{ni} \tilde{M}_i(x) \]
New tool $\mathcal{S}P\text{lot}$: weight computed for each event and each species
N_s species in the sample, discriminating variables y, $f_i(y)$ their pdfs.

For species n:

$$\mathcal{S}P_n(y_e) = \frac{\sum_{i=1}^{N_s} V_{ni} f_i(y_e)}{\sum_{k=1}^{N_s} N_k f_k(y_e)}$$ (13)

with V_{ni} the covariance matrix of the fit (number of events)

The TRUE distribution of x ($x \notin y$) is:

$$N_n M_n(x) \equiv \sum_{e \in \delta x} \mathcal{S}P_n(y_e)$$ (14)

NB
The most discriminating the variables are, the most powerful $\mathcal{S}P\text{lot}$ is.
2.5 Cute properties

Normalization
1. Each x-distribution is properly normalized:

$$\sum_{e=1}^{N} sP_n(y_e) = N_n \quad (15)$$

2. The contributions $sP_n(y_e)$ add up to the number of events actually observed in each x-bin. For any event:

$$\sum_{n=1}^{N_s} sP_n(y_e) = 1 \quad (16)$$

Uncertainties
3. In each bin, for each species:

$$\sum_{e=1}^{N} (sP_n(y_e))^2 = \sigma^2(N_n) \quad (17)$$

as given by the fit
The way to follow

1. Perform the fit to obtain the N_n of each n species present in the data sample without the variable one wants to get the distribution of

2. Compute the sWeights sP following Eq. 13, using the covariance matrix given by Minuit or computed directly

3. Fill histograms with the value of the variable x weighted with the sWeights sP for each species present in the data sample

Tool $sPlot$ in ROOT

Class TSplot: implemented by Anna Kreshuk, to be released soon
4.1 Illustration with simulated $B^0 \rightarrow \pi^+\pi^-$

Distributions of variables m_{ES}, ΔE et \mathcal{F}

Two species: signal $\pi^+\pi^-$, background $q\bar{q}$

Plots of m_{ES}, ΔE et \mathcal{F}

- ΔE and \mathcal{F} only
- m_{ES} not in the fit
- m_{ES} and \mathcal{F} only
- ΔE not in the fit
- m_{ES} and ΔE only
- \mathcal{F} not in the fit
4.2 $sPlot$ at work: real data (1)

Data: $sPlots$ of m_{ES} and F

Distributions used in the fit are superimposed

- ΔE and F only
- m_{ES} not in the fit

\Rightarrow Very good agreement

\Rightarrow Optimal tool to validate an analysis ! Still for Fisher !
Comparison with “projection plots”

Projection plot:
- Cut on the \mathcal{L} ratio: signal loss and remaining background
- Uncertainties related to signal + background

\Rightarrow Excess of events: signal ? background ?
4.3 sPlot at work: real data (2)

Comparison with “projection plots”

Projection plot:
- Cut on the \mathcal{L} ratio: signal loss and remaining background
- Uncertainties related to signal + background

\Rightarrow Excess of events: signal ? background ?

sPlot: Can reveal subtle effects
- No cut applied: keep all the signal events and get rid of all the background ones (statistically)
- Uncertainties related to the signal only

\Rightarrow Signal! radiative events ($B^0 \rightarrow \pi^+ \pi^- \gamma$) ignored in the analysis

$\Rightarrow B(B^0 \rightarrow h^+ h^-)$ under-estimated by about 10% (!!!)

Confirmed later for different charmless \textit{BaBar} analyses
4.4 Publications

Only BaBar so far ...

1. Branching fractions and CP asymmetries in $B^0 \rightarrow K^+K^-K^0_S$ and $B^+ \rightarrow K^+K^0_SK^0_S$, Phys. Rev. Lett.93:181805, 2004
2. Measurement of neutral B decay branching fractions to $K^0_S\pi^+\pi^-$ final states, Phys. Rev. D70:091103, 2004
3. BF and CP asymmetries in $B^0 \rightarrow \pi^0\pi^0$, $B^+ \rightarrow \pi^+\pi^0$ and $B^+ \rightarrow K^+\pi^0$ decays and isospin analysis of the $B \rightarrow \pi\pi$ system, Phys. Rev. Lett.94:181802, 2005
4. Measurement of CP asymmetries in $B^0 \rightarrow \phi K^0_S$ and $B^0 \rightarrow K^+K^-K^0_S$ decays, Phys. Rev. D71:091102, 2005
5. ...

Observation of direct CP violation in $B^0 \rightarrow K^+\pi^-$

- $N_{K^+\pi^-} + N_{K^-\pi^+} = 1606 \pm 51$
 - $N_{K^+\pi^-} = 910$
 - $N_{K^-\pi^+} = 696$

- $A_{K\pi} = -0.133 \pm 0.030 \pm 0.009$
New tool $sPlot$: optimal for information!

1. Only data involved
2. No bias ($sPlotted$ variable not in the fit)
3. Shows signal and background separately
4. Statistical uncertainties
5. Easy to use!

\implies Excellent tool to validate an analysis
Reveal subtle effects: $B^0 \rightarrow h^+ h^- (\gamma)$

\implies Excellent tool to perform an analysis in Dalitz

More in the reference

• Case where species fixed in the fit

Shall be useful beyond B physics
Higgs searches, SUperSYmetry, …