Nuclear Physics and Technology of Tokamak Reactors

Raul Pampin
CCFE Neutronics and Nuclear Data Group

4 May 2010
Particle Physics Seminar, Oxford University
overview

• The tokamak plasma
 - fuels and power
 - viability

• The neutrons
 - neutron transport
 - activated material
 - tritium breeding
 - blanket technology

• Summary

Work funded by the UK EPSRC and by the European Communities under the contract of association between EURATOM and CCFE. Views and opinions expressed herein do not necessarily reflect those of the European Commission.
Fusion reactions exothermic up to 56Fe due to positive binding energy change.

Accurate binding energy (B) formulation from liquid-drop nuclear model:

$$-\frac{B}{A} = a - b\frac{1}{A^{1/3}} - c\frac{Z^2}{A^{4/3}} - d\frac{(N-Z)^2}{A^2} + \Delta$$

- 1. volume term,
- 2. surface term,
- 3. coulomb term,
- 4. asymmetry term,
- 5. paring term ($a, b, c, d > 0$).

Larger changes in lighter nuclides.

Excess (Q) released as kinetic energy of products.

Fuels and power production

Fusion reaction rates (1/3)

<table>
<thead>
<tr>
<th>reactants</th>
<th>products</th>
<th>Q MeV</th>
<th>σ_{max} barn</th>
<th>E_{max} keV</th>
<th>branch ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p + p$ (*)</td>
<td>$D + e^+ + \gamma$</td>
<td>1.4</td>
<td>-10^{-24}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$p + D$ (*)</td>
<td>$^4\text{He} + \gamma$</td>
<td>5.5</td>
<td>-10^{-28}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D + D$ (*)</td>
<td>$^4\text{He} + 2\gamma$</td>
<td>23.9</td>
<td>-10^{-28}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D + T$</td>
<td>$^3\text{He} + n$</td>
<td>3.3</td>
<td></td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>$T + T$</td>
<td>$^3\text{He} + n + n$</td>
<td>11.3</td>
<td>0.2</td>
<td>1,000</td>
<td>100%</td>
</tr>
<tr>
<td>$D + ^3\text{He}$</td>
<td>$^3\text{He} + p$</td>
<td>18.5</td>
<td>0.9</td>
<td>250</td>
<td>100%</td>
</tr>
<tr>
<td>$T + ^3\text{He}$</td>
<td>$^3\text{He} + n + p$</td>
<td>12.1</td>
<td>0.5</td>
<td>5,000</td>
<td>59%</td>
</tr>
<tr>
<td>$^4\text{He} + ^3\text{He}$</td>
<td>$^3\text{He} + p + p$</td>
<td>12.9</td>
<td></td>
<td>$-10,000$</td>
<td>100%</td>
</tr>
</tbody>
</table>

(*) electromagnetic, as opposed to strong, interactions.
Fusion power product of reaction rate and energy release: \(P = RQ \)

- \(R \) depends on: \(R = N_jN_o \sigma \nu \)
 - reaction likelyhood (i.e. cross section \(\sigma \)),
 - reactant density,
 - reactant temperature (i.e. energy, i.e. \(\nu \)).

- \(Q \) similar, but \(R \) (i.e. \(\sigma \)) can vary orders of magnitude depending on reaction and reactant temperature and density...

- ... hence importance of heating and confinement (i.e. plasma physics).

- For a given density, DT yields higher rate and at lower temperatures.

Cross section energy dependence reflects quantum and nuclear physics phenomena:

\[
\sigma(E) = \frac{S(E)}{E} \exp\left(-\left(\frac{E}{E_g} \right)^{1/2} \right)
\]

\(E_g \sim Z_i^2 Z_j^2 A_p \)

- \(S(E) \) very weak function of energy except for "resonant" reactions.
- Excited intermediate nuclear state implies \(S(E) \) very peaked function at the resonance energy:
 \[
 D + T \rightarrow ^4He \rightarrow ^4He + n
 \]
 \[
 D + ^3He \rightarrow ^5Li \rightarrow ^4He + p
 \]
• In reality $N = N(v)$, i.e. distribution function of particle velocities (energies) and so:

$$R = \int_0^\infty N_i(v) N_e(v) \sigma(v) v dv$$

$$N_i(v) = N_i \rho(v)$$

• In magnetically confined plasmas, can assume maxwellian distribution functions:

$$p(E) \sim v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$

<\sigma v> parameter (a.k.a. reactivity)

$$R = \frac{N_i N_e \sigma(v)}{\langle \sigma v \rangle}$$

$$\langle \sigma v \rangle = \int_0^\infty p(v) \sigma(v) v dv$$

$$R = N_i N_e \sigma(v)$$

$\sigma(v) v$
• Even more realistically, in a magnetically confined plasma \(N = N(v,x,y,z) \).

• Hence, in a tokamak, power (and DT neutron) emission intensity follows \(T \) and \(N \) profiles (i.e. magnetic contours):

\[
I = I_0 \left[1 - \left(\frac{a}{a_p} \right)^{2\Phi} \right]
\]

\[
\begin{array}{c}
PF=0.5 \\
PF=1.5 \\
PF=5
\end{array}
\]

viability

• Energy systems viability requires output larger than input.

• For physicists: fusion output > power required to maintain plasma:
 - breakeven: \(Pf > \) power required to maintain plasma temperature;
 - ignition: \(Pf > \) radiated power (self-sustained plasma).

• For engineers (and investors!), need to account for:
 - systems efficiency,
 - blanket energy multiplication,
 - balance-of-plant,
 - etc…
 - e.g. Lawson’s criterion (the 1957’s original, not the physicists version!),
 - more recently: systems analysis.

• Viability measured in terms of triple product \(NkT \).

Slide 12 of 40
4 May 2010
Particle Physics Seminar, Oxford University
Nuclear Physics and Technology of Tokamak Reactors
viability

Lawson’s criterion

• power from fusion:
 \[P_f = N_a N_b \langle \sigma v \rangle_{ab} Q_{ab} \]

• plasma power loss:
 \[P_p = \frac{1}{r} \left(\frac{3}{2} N_a k T_a + \frac{3}{2} N_b k T_b \right) \]

• radiation power loss:
 \[P_r = \alpha N^2 (kT)^{1/2} \]

• assume \(N_a = N_b = N/2 \) and \(T_a = T_b = T \), and impose that
 \[\eta P_{in} = \eta (P_f + P_p + P_r) > P_f + P_r \]
 where \(\eta \) is efficiency of the power conversion:

\[\frac{\langle N k T \rangle_{Lawson}}{\langle N k T \rangle} \geq \frac{3 (kT)^2}{\eta (\sigma v)_{ab} Q_{ab} - \alpha kT} \]

viability

breakeven (a.k.a. “the physicist’s Lawson’s”)

• power from fusion:
 \[P_f = N_a N_b \langle \sigma v \rangle_{ab} Q_{ab} \]

• plasma power loss:
 \[P_p = \frac{1}{r} \left(\frac{3}{2} N_a k T_a + \frac{3}{2} N_b k T_b \right) \]

• assume \(N_a = N_b = N/2 \) and \(T_a = T_b = T \) and impose that \(P_f > P_p \):

\[\frac{\langle N k T \rangle_{breakeven}}{\langle N k T \rangle} \geq \frac{12 (kT)^2}{\langle \sigma v \rangle_{ab} Q_{ab}} \]
viability

ignition

- alpha power from fusion:
 \[P_a = \frac{1}{5} N_a N_e < \alpha \nu >_{ab} Q_{ab} \]
- plasma power loss:
 \[P_p = \frac{1}{\tau} \left(\frac{3}{2} N_a k T_a + \frac{3}{2} N_e k T_e + \frac{3}{2} N_e k T_\beta \right) \]
- radiation power loss:
 \[P_r = \alpha N^2 (kT)^{3/2} \]
- assume \(N_2 = N_e = N_2/2 \) and \(T_a = T_\beta = T_e \), but this time \(P_a > P_p + P_r \):

\[(NkT_\tau)_{\text{ignition}} \geq \frac{60(kT)^{3/2} + 20\alpha N(kT)^{3/2} \tau}{< \alpha \nu >_{ab} Q_{ab}} \]
neutron transport

- Boltzmann transport equation:
 \[
 \frac{d}{dt} n(r, \vec{v}, t) = S^+ (r, \vec{v}, t) - S^- (r, \vec{v}, t)
 \]

- or:
 \[
 \vec{v} \cdot \nabla n(r, \vec{v}, t) + \frac{\partial}{\partial t} n(r, \vec{v}, t) = S^+ - S^-
 \]

- change co-ordinates:
 \[
 (r, \vec{v}, t) \rightarrow (r_\text{E}, \vec{\Omega}, t)
 \]

- define flux:
 \[
 \Phi(r, E, \vec{\Omega}, t) = \nu (r, E, \vec{\Omega}, t)
 \]

- assume neutrons and photons (no charge, i.e. no force, i.e. \(\vec{a} = 0 \)) and steady
 state:
 \[
 \sum_{\alpha} (r, E, \vec{\Omega}, t) \Phi(r, E, \vec{\Omega}, t) = \int \int \int_{E', \vec{\Omega}'} \int \int_{E, \vec{\Omega}} S(r, E, \vec{\Omega}, t) dE'd\vec{\Omega}'
 \]

 streaming
 interaction sink
 scattering source
 other sources (i.e. the plasma)
neutron transport

scattering

14.1 MeV
neutron transport

absorption (and transmutation): n, γ

neutron transport

absorption (and transmutation): n, α
neutron transport

absorption (and transmutation): n,t

neutron transport

absorption (and transmutation): n,p
absorption (and transmutation): n,2n

interactions

- Interaction probabilities ~ cross sections.

\[\sum = N \sigma \]

\[\sigma_a = \sigma_{sc} + \sigma_{res} + \sigma_{th} \]

1. scattering
2. resonant reaction (keV-MeV)
3. threshold reaction (> MeV)
Neutron damage:

High energy collisions and build-up of transmutation products have important repercussions on systems performance and lifetime.

Activated material:

Needs to be disposed of, and the magnitude and implications of the activation radiation field need to be assessed during design and operation of a reactor.

Both damage and activation issues arise mainly from the high neutron energy (14.1 MeV) triggering threshold reactions such as \((n,p)\) and \((n,\alpha)\).

Tritium breeding:

Some transmutation reactions generate tritium, and this can be “encouraged” to produce the necessary fuel.
activated material

half-life

Slide 31 of 40
4 May 2010

Particle Physics Seminar, Oxford University
Nuclear Physics and Technology of Tokamak Reactors

beta decay

- Nuclei pursue stability by means of radioactive decay.
- Stability is achieved when mass is minimum, i.e. B is maximum \rightarrow beta decay achieves this.

$$\beta^- \rightarrow n + \beta^- + \nu \quad \beta^+ \rightarrow p + \beta^+ + \nu$$

$$-B/A = a + bA^{1/3} + c\frac{Z^2}{A^{1/2}} + d\left(N-Z\right)^2 + \Delta$$

Activated material

- B/A
- $-B/A$
- A odd
- A even
- $\Delta S = 1 - \frac{1}{T_{1/2}}$

Slide 32 of 40
4 May 2010

Particle Physics Seminar, Oxford University
Nuclear Physics and Technology of Tokamak Reactors
Tritium self-sufficiency is a requirement:
- atmospheric: ~50 kg (from cosmic-ray);
- civil nuclear: ~25 kg (from CANDU);
- power plant consumption of: ~1 kg per day.

Can produce it by fitting the blanket with a breeder, i.e. a material prone to undergo (n,t) or (n,n') reactions – e.g. Li.

\[^6\text{Li} + n \rightarrow ^4\text{He} + 4.78 \text{ MeV} \]
\[^7\text{Li} + n \rightarrow ^4\text{n} + ^4\text{He} - 2.47 \text{ MeV} \]

Can improve efficiency by also introducing a multiplier, i.e. a material prone to undergo (n,2n) reactions – e.g. Be, Pb.

Can also improve efficiency by enriching natural Li (7.5\% \(^6\text{Li}, 92.5\% \(^7\text{Li}\)) in \(^6\text{Li}\).
tritium breeding

- Need tritium breeding ratio (TBR) > 1.
- Extra result is additional energy (energy multiplication, a.k.a. blanket gain).
- TBR > 1 challenged by engineering, rather than physics:
 - structural material;
 - coolant;
 - FW coverage area (gaps, ports);
 - space limitations (particularly inboard).
- Current limitations in nuclear data uncertainties imply it is not possible to determine TBR with error < 5-10%.

blanket technology

- The blanket (and associated systems) is one of the major differences between ITER and a fusion power plant:
 - in ITER it only serves as a shield and heat sink (500 MW!);
 - in a power plant it must:
 - shield,
 - recover and transport high-grade heat for power production,
 - breed and recover tritium online.
- Test blanket module (TBM) programme in ITER: parties (not UK!) testing different blanket concepts for tritium generation and feasibility.
blanket technology

HCPB – helium cooled pebble bed

- Breeding zone: ~50cm thick, 70% vol Be PB, 10% vol Li$_2$SiO$_4$ (30% at 6Li)
- Achievable TBR: ~1.23 (90% coverage factor)
- Achievable gain: ~1.20
- Coolant $T_{\text{in}} / T_{\text{out}}$: 450 / 550°C

HCLL – helium cooled lithium-lead

- Breeding zone: ~70cm thick, 80% vol LiPb (90% 6Li)
- Achievable TBR: ~1.15 (90% coverage factor)
- Achievable gain: ~1.16
- Coolant $T_{\text{in}} / T_{\text{out}}$: 450 / 550°C
blanket technology

European HCLL and HCPB TBMs in ITER

summary

- DT is the only choice for fusion power this century (thanks to a \(^3\)He resonance).
- Tokamaks are on the verge of achieving DT physics breakeven (JET, TFTR): engineering feasibility still to come (ITER).
- DT neutrons damage and activate materials but also generate tritium.
- Damage and activation differ from fission due to high energy of neutrons (14.1 MeV) triggering threshold reactions: \((n,p), (n,\alpha)\).
- Tritium self-sufficiency physically possible with a combination of enriched lithium and neutron multiplier.
- Tritium self-sufficiency engineering, however, is challenging: calculations show current blanket concepts only marginally achieve TBR > 1.
- Experimental evidence crucially needed: all but one ITER parties (not UK) to test this key technology, nuclear data uncertainties need to be resolved.