String Phenomenology

Andre Lukas
Oxford, Theoretical Physics

$E_8 \times E_8$

$d=11$ SUGRA

IIA

I

IIB

$\text{E}_8 \times \text{E}_8$

$\text{SO}(32)$

???
Outline

- A (very) basic introduction to string theory
- String theory and the “real world”?
- Recent work
- Conclusion
String theory
String theory

Warm-up: world-line of a relativistic particle
String theory

Warm-up: world-line of a relativistic particle

$X^\mu = X^\mu(\tau)$
String theory

Warm-up: world-line of a relativistic particle

\[X^\mu = X^\mu(\tau) \]

World-line action:

\[S = -m \int d\tau \sqrt{- \frac{dX^\mu}{d\tau} \frac{dX^\nu}{d\tau} \eta_{\mu\nu}} \rightarrow \frac{d^2 X^\mu}{d\tau^2} = 0 \]
World-sheet of free relativistic string
World-sheet of free relativistic string

\[X^\mu = X^\mu(\tau, \sigma) \]

open string closed string
World-sheet of free relativistic string

\[X^\mu = X^\mu(\tau, \sigma) \]

open string \hspace{1cm} closed string

World-sheet action:

\[S = -\frac{1}{2\pi l_s^2} \int d^2\sigma \sqrt{-\det \left(\frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta} \eta_{\mu\nu} \right)} \]
World-sheet of free relativistic string

\[X^\mu = X^\mu (\tau, \sigma) \]

open string closed string

World-sheet action:

\[S = \frac{1}{2\pi l_S^2} \int d^2\sigma \sqrt{-\det \left(\frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta} \eta_{\mu\nu} \right)} \]

string tension, \(l_S \) string length
World-sheet of free relativistic string

\[X^\mu = X^\mu(\tau, \sigma) \]

World-sheet action:
\[S = -\frac{1}{2\pi l_S^2} \int d^2\sigma \sqrt{-\det \left(\frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta} \eta_{\mu\nu} \right)} \]

Spectrum:
\[l_S^2 M = \sum_n N_n (+\bar{N}_n) \]
World-sheet of free relativistic string

\[X^\mu = X^\mu(\tau, \sigma) \]

open string \hspace{2cm} closed string

World-sheet action:

\[S = -\frac{1}{2\pi l_S^2} \int d^2\sigma \sqrt{-\det \left(\frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta} \eta_{\mu\nu} \right)} \]

string tension, \(l_S \) string length

Spectrum:

\[l_S^2 M = \sum_n N_n (+\bar{N}_n) \in \mathbb{Z} \text{ where } N_n = \alpha^\mu_{-n} \alpha^\mu_n \]
World-sheet of free relativistic string

\[X^\mu = X^\mu(\tau, \sigma) \]

open string closed string

World-sheet action:

\[S = \frac{1}{2\pi l_S^2} \int d^2\sigma \sqrt{-\det \left(\frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta} \eta_{\mu\nu} \right)} \]

string tension, \(l_S \) string length

open string

Spectrum:

\[l_S^2 M = \sum_n N_n (+\bar{N}_n) \in \mathbb{Z} \text{ where } N_n = \alpha^\mu_n \alpha^\mu_{-n} \]
World-sheet of free relativistic string

\[X^\mu = X^\mu(\tau, \sigma) \]

open string \hspace{2cm} closed string

World-sheet action:

\[S = -\frac{1}{2\pi l_s^2} \int d^2\sigma \sqrt{-\det \left(\frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta} \eta_{\mu\nu} \right)} \]

open string

Spectrum:

\[l_s^2 M = \sum_n N_n (+\bar{N}_n) \in \mathbb{Z} \text{ where } N_n = \alpha_{-n}^\mu \alpha_n^\mu \]

closed string
World-sheet of free relativistic string

\[X^\mu = X^\mu(\tau, \sigma) \]

open string \hspace{2cm} closed string

World-sheet action:

\[S = -\frac{1}{2\pi l_S^2} \int d^2\sigma \sqrt{-\det \left(\frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta} \eta_{\mu\nu} \right)} \]

string tension, \(l_S \) string length

Spectrum:

\[l_S^2 M = \sum_n N_n (+\bar{N}_n) \]
World-sheet of free relativistic string

\[X^\mu = X^\mu(\tau, \sigma) \]

open string

closed string

World-sheet action:

\[
S = -\frac{1}{2\pi l_S^2} \int d^2\sigma \sqrt{-\det \left(\frac{\partial X^\mu}{\partial \sigma^\alpha} \frac{\partial X^\nu}{\partial \sigma^\beta} \eta_{\mu \nu} \right)}
\]

open string

string tension, \(l_S \) string length

closed string

Spectrum:

\[
l_S^2 M = \sum_n N_n (+\bar{N}_n) = \begin{cases}
0 & \rightarrow \text{observed} \\
\geq 1 & \rightarrow \text{massive}
\end{cases}
\]
Lowest string states
Lowest string states

Open string: \(\alpha_{-1}^{\mu} |0 \rangle \rightarrow A^{\mu} \)
Lowest string states

open string: \(\alpha_{-1}^\mu |0 \rangle \rightarrow A^\mu \rightarrow \int d^D x \sqrt{-g} \text{tr} (F_{\mu \nu} F^{\mu \nu}) \)
Lowest string states

open string: \(\alpha^\mu_{-1} |0> \rightarrow A^\mu \rightarrow \int d^Dx \sqrt{-g} \text{tr} (F_{\mu \nu} F^{\mu \nu}) \)

open strings lead to gauge fields (and matter)
Lowest string states

open string: $\alpha_{-1}^\mu |0 > \rightarrow A^\mu \rightarrow \int d^n x \sqrt{-g} \text{tr} (F_{\mu \nu} F^{\mu \nu})$

open strings lead to gauge fields (and matter)

closed string: level matching $\sum_n N_n = \sum \bar{N}_n$
Lowest string states

- open string: \(\alpha^\mu_{-1} |0 \rangle \rightarrow A^\mu \rightarrow \int d^D x \sqrt{-g} \text{tr} \left(F_{\mu\nu} F^{\mu\nu} \right) \)

 open strings lead to gauge fields (and matter)

- closed string: level matching \(\sum_n N_n = \sum_n \bar{N}_n \)

 \(\alpha^\mu_{-1} \bar{\alpha}^\nu_{-1} |0 \rangle \rightarrow g^{\mu\nu}, \ldots \)
Lowest string states

open string: \(\alpha_{-1}^\mu |0 > \rightarrow A^\mu \rightarrow \int d^D x \sqrt{-g} \text{tr} (F_{\mu \nu} F^{\mu \nu}) \)

open strings lead to gauge fields (and matter)

closed string: level matching \(\sum_n N_n = \sum_n \bar{N}_n \)

\(\alpha_{-1}^\mu \bar{\alpha}_{-1}^\nu |0 > \rightarrow g^{\mu \nu}, \ldots \rightarrow \int d^D x \sqrt{-g} R + \ldots \)
Lowest string states

open string: $\alpha_{\mu-1}^\mu |0 > \rightarrow A^\mu \rightarrow \int d^D x \sqrt{-g} \text{tr} (F_{\mu\nu} F^{\mu\nu})$

open strings lead to gauge fields (and matter)

closed string: level matching $\sum_n N_n = \sum_n \bar{N}_n$

$\alpha_{\mu-1}^\mu \bar{\alpha}^{\nu}_{-1} |0 > \rightarrow g^{\mu\nu}, \ldots \rightarrow \int d^D x \sqrt{-g} R + \ldots$

closed strings leads to gravity (and gravity-like physics)
On closer examination:
On closer examination:

There are five types of string theory (IIA, IIB, I, two heterotic).
On closer examination:

- There are five types of string theory (IIA, IIB, I, two heterotic).
- All five string theories are only consistent in 10 space-time dimensions.
On closer examination:

- There are **five types of string theory** (IIA, IIB, I, two heterotic).

- All five string theories are only consistent in **10 space-time dimensions**.

- All five string theories have **world sheet supersymmetry** and lead to **space-time supersymmetry** in ten dimensions.
On closer examination:

- There are five types of string theory (IIA, IIB, I, two heterotic).

- All five string theories are only consistent in 10 space-time dimensions.

- All five string theories have world sheet supersymmetry and lead to space-time supersymmetry in ten dimensions.

And there are more surprises...
T-duality
T-duality

Modes of a string on a circle with radius R:
T-duality

Modes of a string on a circle with radius R:

momentum states:

$$M^2 = \frac{m^2}{R^2} \quad m \in \mathbb{Z}$$

winding states:

$$M^2 = \frac{w^2 R^2}{l_s^4} \quad w \in \mathbb{Z}$$

full spectrum:

$$M^2 = \frac{m^2}{R^2} + \frac{w^2 R^2}{l_s^4}$$
T-duality

Modes of a string on a circle with radius R:

momentum states: \[M^2 = \frac{m^2}{R^2} \quad m \in \mathbb{Z} \]

winding states: \[M^2 = \frac{w^2 R^2}{l_s^4} \quad w \in \mathbb{Z} \]

full spectrum: \[M^2 = \frac{m^2}{R^2} + \frac{w^2 R^2}{l_s^4} \]
T-duality

Modes of a string on a circle with radius R:

- **Momentum states:** $M^2 = \frac{m^2}{R^2} \quad m \in \mathbb{Z}$

- **Winding states:** $M^2 = \frac{w^2 R^2}{l_s^4} \quad w \in \mathbb{Z}$

- **Full spectrum:** $M^2 = \frac{m^2}{R^2} + \frac{w^2 R^2}{l_s^4}$
T-duality

Modes of a string on a circle with radius R:

momentum states: $M^2 = \frac{m^2}{R^2}$, $m \in \mathbb{Z}$

winding states: $M^2 = \frac{w^2 R^2}{l_s^4}$, $w \in \mathbb{Z}$

full spectrum: $M^2 = \frac{m^2}{R^2} + \frac{w^2 R^2}{l_s^4}$
T-duality

Modes of a string on a circle with radius R:

- **momentum states**: $M^2 = \frac{m^2}{R^2}, \quad m \in \mathbb{Z}$

- **winding states**: $M^2 = \frac{w^2 R^2}{l_s^4}, \quad w \in \mathbb{Z}$

- **full spectrum**: $M^2 = \frac{m^2}{R^2} + \frac{w^2 R^2}{l_s^4}$

T-duality: spectrum invariant under $m \leftrightarrow w$, $R \rightarrow \frac{l_s^2}{R}$.
T-duality

Modes of a string on a circle with radius R:

- **momentum states**: $M^2 = \frac{m^2}{R^2}$, $m \in \mathbb{Z}$
- **winding states**: $M^2 = \frac{w^2 R^2}{l_s^4}$, $w \in \mathbb{Z}$
- **full spectrum**: $M^2 = \frac{m^2}{R^2} + \frac{w^2 R^2}{l_s^4}$

T-duality: spectrum invariant under $m \leftrightarrow w$; $R \rightarrow \frac{l_s^2}{R}$

String theory has minimal length $l_s = \sqrt{\alpha'}$
Branes

String theory contains not just strings but extended objects (p-branes) of all dimensions!
Branes

String theory contains not just strings but extended objects (p-branes) of all dimensions!

$N \,(D)p$-brane(s) : U(N) gauge theory

d=10/11 bulk gravity
String theory contains not just strings but extended objects (p-branes) of all dimensions!

N (D)p-brane(s) : U(N) gauge theory

\[d=10/11 \text{ bulk gravity} \]

p-branes are charged under (p+1) forms \(A_{\mu_1...\mu_{p+1}} \) with field strength \(F = dA \).
Branes

String theory contains not just strings but extended objects (p-branes) of all dimensions!

- N (D)p-brane(s): U(N) gauge theory
- d=10/11 bulk gravity

p-branes are charged under (p+1) forms $A_{\mu_1...\mu_{p+1}}$ with field strength $F = dA$.

bulk \rightarrow gravity (closed strings)
brane \rightarrow gauge theories (open strings)
M-theory and branes
M-theory and branes

All five string theories are related and part of a single “theory”: M-theory
M-theory and branes

All five string theories are related and part of a single “theory” : M-theory
M-theory and branes

All five string theories are related and part of a single "theory": M-theory
M-theory and branes

All five string theories are related and part of a single “theory”: M-theory

M-theory is a patchwork of the constituent theories plus many “rules”. It seems unclear, at present, what its fundamental degrees of freedom are.
String theory and the “real world” (?)
String theory and the “real world” (?)

Need to compactify six or seven dimensions to obtain $d=4$ theory:
String theory and the "real world" (?)

Need to compactify six or seven dimensions to obtain d=4 theory:

- **d=10/11 string/M-theory**
 - on d=6/7 dimensional space X

- **d=4 theory**
String theory and the “real world” (?)

Need to compactify six or seven dimensions to obtain d=4 theory:

- d=10/11 string/M-theory
- on d=6/7 dimensional space X
- d=4 theory

Two-fold degeneracy in space X: continuous one in size and shape (moduli), discrete one topology
String theory and the “real world” (?)

Need to compactify six or seven dimensions to obtain $d=4$ theory:

- $d=10/11$ string/M-theory
- on $d=6/7$ dimensional space X
- $d=4$ theory

Two-fold degeneracy in space X: continuous one in size and shape (moduli), discrete one topology

But $d=4$ theory depends on space X ...
The enemy
The enemy

different moduli:
The enemy
different moduli:
different topology:
The enemy
different moduli:

different topology:

topology: determines structure of d=4 theory
The enemy

different moduli:

different topology:

- topology: determines structure of d=4 theory
- moduli: determine values of coupling constants in d=4
The enemy

different moduli:

different topology:

topology: determines structure of d=4 theory

moduli: determine values of coupling constants in d=4

-> string theory does impose constraint on compactifications, however, there are still many choices -> many four-dimensional theories with moduli appearing as scalar fields.
The enemy

different moduli:

- different topology:

- topology: determines structure of $d=4$ theory
- moduli: determine values of coupling constants in $d=4$

\rightarrow string theory does impose constraint on compactifications, however, there are still many choices \rightarrow many four-dimensional theories with moduli appearing as scalar fields.

in simplest model and perturbatively: no $D=4$ potential for moduli
The world according to string/M-theory
The world according to string/M-theory

d=6/7 internal space X
The world according to string/M-theory

\[d = 6/7 \text{ internal space } X \]

3 external dimensions

6-brane
The world according to string/M-theory

\[d = 6/7 \] internal space \(X \)

3 external dimensions

6-brane

The world according to string/M-theory

d=6/7 internal space X

3 external dimensions

6-brane 6-brane 8-brane
The world according to string/M-theory

\[d = 6/7 \text{ internal space } X \]

3 external dimensions

6-brane 6-brane 8-brane 3-brane
The world according to string/M-theory

3 external dimensions

$\text{d}=6/7$ internal space X

matter

6-brane 6-brane 8-brane 3-brane
The world according to string/M-theory

3 external dimensions

6-brane 6-brane 8-brane 3-brane

d=6/7 internal space X

matter

matter
The world according to string/M-theory

- d=6/7 internal space X
- 3 external dimensions
- 6-brane
- 8-brane
- 3-brane
- (S)SM
- Matter
The world according to string/M-theory

$\text{d}=6/7$ internal space X

3 external dimensions

6-brane 6-brane 8-brane 3-brane

(S)SM ???
The world according to string/M-theory

$d=6/7$ internal space X

3 external dimensions

6-brane 6-brane 8-brane 3-brane

matter
The world according to string/M-theory

3 external dimensions

$\text{d=6/7 internal space } X$

matter

6-brane 6-brane 8-brane 3-brane
The world according to string/M-theory

\[\text{d}=6/7 \text{ internal space } X \]

3 external dimensions

6-brane 6-brane 8-brane 3-brane

\((S)\text{SM}\)

matter
The world according to string/M-theory

3 external dimensions

6-brane 6-brane 8-brane 3-brane

(d=6/7 internal space X)

matter

(S)SM
The world according to string/M-theory

And this is not just pictures...
Let us consider in $D=10/11$.
Let us consider in $D=10/11$:

$$ S_D = \frac{1}{l_S^{D-2}} \int d^D x \sqrt{-g} R + \ldots $$

gravity...
Let us consider in D=10/11:

\[S_D = \frac{1}{l_s^{D-2}} \int d^D x \sqrt{-g} \, R + \ldots + \frac{1}{l_s^{p-3}} \int d^{p+1} x \sqrt{-\gamma} \, tr (F_{\alpha\beta} F^{\alpha\beta}) + \ldots \]

...and a p-brane

...gravity...
Let us consider in $D=10/11$:

$$S_D = \frac{1}{l_S^{D-2}} \int d^D x \sqrt{-g} R + \ldots + \frac{1}{l_S^{p-3}} \int d^{p+1} x \sqrt{-\gamma} \text{tr} (F_{\alpha\beta} F^{\alpha\beta}) + \ldots$$

...and a p-brane compactification on:

$d=6,7$ space X, volume V
Let us consider in $D=10/11$:

\[S_D = \frac{1}{l_s^{D-2}} \int d^D x \sqrt{-g} R + \ldots + \frac{1}{l_s^{p-3}} \int d^{p+1} x \sqrt{-\gamma} \text{tr} \left(F_{\alpha\beta} F^{\alpha\beta} \right) + \ldots \]

...and a p-brane

...compactification on:

\(D=6,7 \) space X, volume V.

(p-3) cycle with volume v.

p-brane on (p-3) cycle.
Let us consider in $D=10/11$:

$$S_D = \frac{1}{l_S^{D-2}} \int d^D x \sqrt{-g} \, R + \ldots + \frac{1}{l_S^{p-3}} \int d^{p+1} x \sqrt{-\gamma} \, \text{tr} \left(F_{\alpha\beta} F^{\alpha\beta} \right) + \ldots$$

...and a p-brane

compactly on:

$D=6,7$ space X, volume V

...and a p-brane on $(p-3)$ cycle

in $D=4$:

$$S_4 = \int d^4 x \frac{V}{l_S^{D-2}} \sqrt{-g_4} \, R_4 + \ldots$$

$(p-3)$ cycle with volume v
Let us consider

in $D=10/11$:

$$S_D = \frac{1}{l_s^{D-2}} \int d^D x \sqrt{-g} R + \ldots + \frac{1}{l_s^{p-3}} \int d^{p+1} x \sqrt{-\gamma} \text{tr} \left(F_{\alpha\beta} F^{\alpha\beta} \right) + \ldots$$

...and a p-brane
compactification on :

$D=6,7$ space X, volume V

(p-3) cycle with volume v

in $D=4$:

$$S_4 = \int d^4 x \frac{V}{l_s^{D-2}} \sqrt{-g_4} R_4 + \ldots + \int d^4 x \frac{v}{l_s^{p-3}} \sqrt{-g_4} \text{tr} \left(F_{\mu\nu} F^{\mu\nu} \right) + \ldots$$
Let us consider

in D=10/11:

\[S_D = \frac{1}{l_D^{D-2}} \int d^Dx \sqrt{-g} \, R + \ldots + \frac{1}{l_S^{p-3}} \int d^{p+1}x \sqrt{-\gamma} \, \text{tr} \left(F_{\alpha \beta} F^{\alpha \beta} \right) + \ldots \]

...and a p-brane

compactification on:

(p-3) cycle with volume v

D=6,7 space X; volume V

p-brane on (p-3) cycle

in D=4:

\[S_4 = \int d^4x \left(\frac{V}{l_D^{D-2}} \right) \sqrt{-g_4} \, R_4 + \ldots + \int d^4x \, \frac{v}{l_S^{p-3}} \sqrt{-g_4} \, \text{tr} \left(F_{\mu \nu} F^{\mu \nu} \right) + \ldots \]

\[\frac{1}{16 \pi G_N} = \frac{V}{l_D^{D-2}} \]
Let us consider

in $D=10/11$:

$$S_D = \frac{1}{l_S^{D-2}} \int d^D x \sqrt{-g} \, R + \ldots + \frac{1}{l_S^{p-3}} \int d^{p+1} x \sqrt{-\gamma} \, \text{tr} \left(F_{\alpha\beta} F^{\alpha\beta} \right) + \ldots$$

...and a p-brane

compactification on:

$d=6,7$ space X, volume V

(p-3) cycle with volume v

p-brane on (p-3) cycle

in $D=4$:

$$S_4 = \int d^4 x \sqrt{-g_4} \, R_4 + \ldots + \int d^4 x \sqrt{-g_4} \, \text{tr} \left(F_{\mu\nu} F^{\mu\nu} \right) + \ldots$$

$$\frac{1}{16\pi G_N} = \frac{V}{l_S^{D-2}}$$

$$\frac{1}{16\pi g_{YM}^2} = \frac{v}{l_S^{p-3}}$$
For large volume, the string scale can be smaller than the Planck scale (but one has to find a stabilising potential for \(V \)).
it follows:

- For large volume, the string scale can be smaller than the Planck scale (but one has to find a stabilising potential for V).

- On a single stack of branes, the gauge coupling is universal and depends on the volume of the cycle wrapped.
One stack versus several stacks

Two phenomenological facts:
One stack versus several stacks

Two phenomenological facts:

- Gauge couplings unify in MSSM
One stack versus several stacks

Two phenomenological facts:

- Gauge couplings unify in MSSM
- One SM family fits into 16 representation of SO(10)
One stack versus several stacks

Two phenomenological facts:

- Gauge couplings unify in MSSM
- One SM family fits into 16 representation of SO(10)

This hints at single stack models, since
One stack versus several stacks

Two phenomenological facts:

- Gauge couplings unify in MSSM
- One SM family fits into 16 representation of SO(10)

This hints at single stack models, since they lead to a universal gauge coupling
One stack versus several stacks

Two phenomenological facts:

- Gauge couplings unify in MSSM
- One SM family fits into 16 representation of SO(10)

This hints at single stack models, since

- they lead to a universal gauge coupling
- matter fields descend from higher-dim. gauge theory with large gauge group
One stack versus several stacks

Two phenomenological facts:

- Gauge couplings unify in MSSM
- One SM family fits into 16 representation of SO(10)

This hints at single stack models, since

- they lead to a universal gauge coupling
- matter fields descend from higher-dim. gauge theory with large gauge group

For example:

$$248_{E_8} \rightarrow [(45, 1) + (1, 15) + (16, 4) + (1\bar{6}, \bar{4}) + (10, 6)]_{SO(10) \times SU(4)}$$
One stack versus several stacks

Two phenomenological facts:

- Gauge couplings unify in MSSM
- One SM family fits into 16 representation of SO(10)

This hints at single stack models, since they lead to a universal gauge coupling

Matter fields descend from higher-dim. gauge theory with large gauge group

For example:

$$248_{E_8} \rightarrow [(45, 1) + (1, 15) + (16, 4) + (\bar{16}, \bar{4}) + (10, 6)]_{SO(10) \times SU(4)}$$

One standard model family
Moduli stabilisation and flux

What is flux?
Moduli stabilisation and flux

What is flux? A: Non-zero form field strengths, $F \neq 0$, on the internal space.
Moduli stabilisation and flux

What is flux? A: Non-zero form field strengths, $F \neq 0$, on the internal space.

Moduli types: T (size of X), Z (shape of X),...
Moduli stabilisation and flux

What is flux? A: Non-zero form field strengths, $F \neq 0$, on the internal space.

Moduli types: T (size of X), Z (shape of X),...

Without flux, perturbatively: $W_{\text{moduli}} = 0 \rightarrow V_{\text{moduli}} = 0$
Moduli stabilisation and flux

What is flux? A: Non-zero form field strengths, \(F \neq 0 \), on the internal space.

Moduli types: \(T \) (size of \(X \)), \(Z \) (shape of \(X \)),...

Without flux, perturbatively: \(W_{\text{moduli}} = 0 \rightarrow V_{\text{moduli}} = 0 \)

Non-perturbative effects: \(W_{\text{moduli}} \sim e^{-T} \rightarrow \)
Moduli stabilisation and flux

What is flux? A: Non-zero form field strengths, \(F \neq 0 \), on the internal space.

Moduli types: T (size of X), Z (shape of X),...

Without flux, perturbatively: \(W_{\text{moduli}} = 0 \rightarrow V_{\text{moduli}} = 0 \)

Non-perturbative effects: \(W_{\text{moduli}} \sim e^{-T} \rightarrow \)

Flux: For example \(W_{\text{moduli}} = P(Z) \), non-exponential, fixes Z.
Moduli stabilisation and flux

What is flux? A: Non-zero form field strengths, \(F \neq 0 \), on the internal space.

Moduli types: \(T \) (size of \(X \)), \(Z \) (shape of \(X \)), ...

Without flux, perturbatively: \(W_{\text{moduli}} = 0 \rightarrow V_{\text{moduli}} = 0 \)

Non-perturbative effects: \(W_{\text{moduli}} \sim e^{-T} \rightarrow \)

Flux: For example \(W_{\text{moduli}} = P(Z) \), non-exponential, fixes \(Z \).

Flux and non-pert.: \(W_{\text{moduli}} = P(Z) + e^{-T} \)
Moduli stabilisation and flux

What is flux? A: Non-zero form field strengths, \(F \neq 0 \), on the internal space.

Moduli types: T (size of X), Z (shape of X), ...

Without flux, perturbatively: \(W_{\text{moduli}} = 0 \rightarrow V_{\text{moduli}} = 0 \)

Non-perturbative effects: \(W_{\text{moduli}} \sim e^{-T} \rightarrow \)

Flux: For example \(W_{\text{moduli}} = P(Z) \), non-exponential, fixes Z.

Flux and non-pert.: \(W_{\text{moduli}} = P(Z) + e^{-T} \)

Fixes all moduli, cosmological constant needs tuning.
There appears to be a huge number of such stable models \(10^{500}\) and it seems string theory does not discriminate between them. Is this a problem?
There appears to be a huge number of such stable models (10^{500}?) and it seems string theory does not discriminate between them. Is this a problem?

It may be a problem in principle, but how can we be sure before the fundamental formulation of the theory is known?
There appears to be a huge number of such stable models and it seems string theory does not discriminate between them. Is this a problem?

It may be a problem in principle, but how can we be sure before the fundamental formulation of the theory is known?

It is certainly a problem in practice, so what can string phenomenology do?
There appears to be a huge number of such stable models and it seems string theory does not discriminate between them. Is this a problem?

It may be a problem in principle, but how can we be sure before the fundamental formulation of the theory is known?

It is certainly a problem in practice, so what can string phenomenology do?

One can construct (supersymmetric) standard-like models with the right generic properties (gauge group has SU(3) x SU(2) x U(1) factor, 3 generations, Higgs multiplets).
There appears to be a huge number of such stable models \(10^{500}\) and it seems string theory does not discriminate between them. Is this a problem?

It may be a problem in principle, but how can we be sure before the fundamental formulation of the theory is known?

It is certainly a problem in practice, so what can string phenomenology do?

One can construct (supersymmetric) standard-like models with the right generic properties (gauge group has SU(3)xSU(2)xU(1) factor, 3 generations, Higgs multiplets).

A fully viable SSM from string theory has yet to be constructed (no additional light particles, right Yukawa couplings,...). Additional physics constraints tend to reduce number of viable models dramatically. In this sense, we have too few models!
There appears to be a huge number of such stable models and it seems string theory does not discriminate between them. Is this a problem?

It may be a problem in principle, but how can we be sure before the fundamental formulation of the theory is known?

It is certainly a problem in practice, so what can string phenomenology do?

One can construct (supersymmetric) standard-like models with the right generic properties (gauge group has $SU(3) \times SU(2) \times U(1)$ factor, 3 generations, Higgs multiplets).

A fully viable SSM from string theory has yet to be constructed (no additional light particles, right Yukawa couplings, ...). Additional physics constraints tend to reduce number of viable models dramatically. In this sense, we have too few models!

What needs to be done to find a SSM from string theory?
- Need to construct large numbers of models.
- Need to combine this with moduli stabilisation.
Recent Work
Model building for $E_8 \times E_8$ heterotic string/M-theory
Recent Work

Model building for $E_8 \times E_8$ heterotic string/M-theory

(Lara Anderson, Yang-Hui He, A.L.)
Recent Work

Model building for $E_8 \times E_8$ heterotic string/M-theory

(Lara Anderson, Yang-Hui He, A.L.)
Recent Work

Model building for $E_8 \times E_8$ heterotic string/M-theory

Calabi-Yau manifold X

holomorphic vector bundle V_1

MSSM?

hidden sector

hidden sector

9-brane

5-brane

9-brane

(Lara Anderson, Yang-Hui He, A.L.)
Recent Work

Model building for $E_8 \times E_8$ heterotic string/M-theory
Recent Work

Model building for $E_8 \times E_8$ heterotic string/M-theory

holomorphic vector bundle V_1

MSSM? hidden sector hidden sector

holomorphic curve W

holomorphic vector bundle V_2

9-brane 5-brane 9-brane
Recent Work
Model building for $E_8 \times E_8$ heterotic string/M-theory

Calabi-Yau manifold X

holomorphic vector bundle V_1

holomorphic vector bundle V_2

holomorphic curve W

MSSM?

hidden sector

hidden sector

SUSY at M_S

$m_{3/2} \sim \frac{M_S^2}{M_{Pl}}$

9-brane

5-brane

9-brane

(Lara Anderson, Yang-Hui He, A.L.)
Recent Work

Model building for $E_8 \times E_8$ heterotic string/M-theory

Calabi-Yau manifold X

holomorphic vector bundle V_1

holomorphic vector bundle V_2

holomorphic curve W

Data describing model: CY X, bundles V_1, V_2 and curve W.

MSSM?

hidden sector

hidden sector

SUSY at M_S
Consistency condition: \(c_2(TX) - c_2(V_1) - c_2(V_2) = [W] \)
Consistency condition: $c_2(TX) - c_2(V_1) - c_2(V_2) = [W]$

For SUSY: $[W] \geq 0$ and V_1, V_2 stable bundles (hard to prove).
Consistency condition: $c_2(TX) - c_2(V_1) - c_2(V_2) = [W]$

For SUSY: $[W] \geq 0$ and V_1, V_2 stable bundles (hard to prove).

How do we construct bundles V on X?
Consistency condition: $c_2(TX) - c_2(V_1) - c_2(V_2) = [W]$

For SUSY: $[W] \geq 0$ and V_1, V_2 stable bundles (hard to prove).

How do we construct bundles V on X?

Monads

$$0 \to V \to \bigoplus_{i=1}^{r_B} O_X(b_i) \to \bigoplus_{j=1}^{r_C} O_X(c_j) \to 0$$
Consistency condition: \(c_2(TX) - c_2(V_1) - c_2(V_2) = [W] \)

For SUSY: \([W] \geq 0\) and \(V_1, V_2\) stable bundles (hard to prove).

How do we construct bundles \(V\) on \(X\)?

Monads

\[
0 \to V \to \bigoplus_{i=1}^{r_B} O_X(b_i) \to \bigoplus_{j=1}^{r_C} O_X(c_j) \to 0
\]

For a start we produced a list of \(\sim 5000\) CY manifolds and computed their properties, such as \(c_2(TX)\).
Consistency condition: \(c_2(TX) - c_2(V_1) - c_2(V_2) = [W] \)

For SUSY: \([W] \geq 0\) and \(V_1, V_2\) stable bundles (hard to prove).

How do we construct bundles \(V\) on \(X\)?

Monads:

\[
0 \rightarrow V \rightarrow \bigoplus_{i=1}^{r_B} O_X(b_i) \rightarrow \bigoplus_{j=1}^{r_C} O_X(c_j) \rightarrow 0
\]

For a start we produced a list of \(\sim 5000\) CY manifolds and computed their properties, such as \(c_2(TX)\).

Goal: Construct all stable (SU(3),SU(4),SU(5)) monad bundles \(V\) on these CYs, such that \(c_2(TX) - c_2(V) \geq 0\) and the number of generations is a multiple of three. Compute the complete spectrum.
Consistency condition: \[c_2(TX) - c_2(V_1) - c_2(V_2) = [W] \]

For SUSY: \([W] \geq 0\) and \(V_1, V_2\) stable bundles (hard to prove).

How do we construct bundles \(V\) on \(X\)?

monads \[0 \to V \to \bigoplus_{i=1}^{r_B} O_X(b_i) \to \bigoplus_{j=1}^{r_C} O_X(c_j) \to 0 \]

For a start we produced a list of \(~5000\) CY manifolds and computed their properties, such as \(c_2(TX)\).

Goal: Construct all stable \((SU(3), SU(4), SU(5))\) monad bundles \(V\) on these CYs, such that \(c_2(TX) - c_2(V) \geq 0\) and the number of generations is a multiple of three.

Compute the complete spectrum.

leading to E6, SO(10), SU(5) GUTs
We decided to start with the 5 simplest of the 5000 CYs.
We decided to start with the 5 simplest of the 5000 CYs. Results: 37 models, no anti-generations...
We decided to start with the 5 simplest of the 5000 CYs. Results: 37 models, no anti-generations...

20 E_6 models

<table>
<thead>
<tr>
<th>X</th>
<th>{b_i}</th>
<th>{c_i}</th>
<th>n_{27}</th>
<th>n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4</td>
<td>5]</td>
<td>(2, 2, 1, 1, 1)</td>
<td>(4, 3)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1)</td>
<td>(5, 3)</td>
<td>105</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>(3, 2, 1, 1, 1)</td>
<td>(4, 4)</td>
<td>75</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1)</td>
<td>(2, 2)</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1)</td>
<td>(3, 3)</td>
<td>45</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>(3, 3, 3, 1, 1)</td>
<td>(4, 4)</td>
<td>90</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 2, 2)</td>
<td>(4, 3, 3, 3, 3)</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 2, 2, 2)</td>
<td>(3, 3, 3, 3, 3)</td>
<td>75</td>
<td>154</td>
</tr>
<tr>
<td>[5</td>
<td>2 4]</td>
<td>(2, 2, 1, 1, 1)</td>
<td>(4, 3)</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>24</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1, 1)</td>
<td>(3, 3, 3)</td>
<td>72</td>
<td>154</td>
</tr>
<tr>
<td>[5</td>
<td>3 3]</td>
<td>(1, 1, 1, 1)</td>
<td>(4)</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1)</td>
<td>(3, 2)</td>
<td>45</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>(2, 1, 1, 1, 1)</td>
<td>(3, 3)</td>
<td>63</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1, 1)</td>
<td>(3, 3, 3)</td>
<td>81</td>
<td>163</td>
</tr>
<tr>
<td>[6</td>
<td>2 2 3]</td>
<td>(1, 1, 1, 1, 1)</td>
<td>(3, 2)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(2, 1, 1, 1, 1)</td>
<td>(3, 3)</td>
<td>84</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>36</td>
<td>82</td>
</tr>
<tr>
<td>[7</td>
<td>2 2 2]</td>
<td>(1, 1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>48</td>
</tr>
</tbody>
</table>

Table 9: The particle content for the E_6-GUT theories arising from our classification of stable, positive SU(3) monad bundles V on the Calabi-Yau threefold X. The number n_{27} of anti-generations vanishes.
We decided to start with the 5 simplest of the 5000 CYs. Results: 37 models, no anti-generations...

20 E_6 models

<table>
<thead>
<tr>
<th>X</th>
<th>${b_i}$</th>
<th>${c_i}$</th>
<th>n_{27}</th>
<th>n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[45]</td>
<td>(2, 2, 1, 1, 1)</td>
<td>(4, 3)</td>
<td>60</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1)</td>
<td>(5, 3)</td>
<td>105</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>(3, 2, 1, 1, 1)</td>
<td>(4, 4)</td>
<td>75</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1, 1)</td>
<td>(3, 3, 3)</td>
<td>45</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>(3, 3, 3, 1, 1, 1)</td>
<td>(4, 4, 4)</td>
<td>90</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 2, 2, 2)</td>
<td>(4, 3, 3, 3)</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 2, 2, 2)</td>
<td>(3, 3, 3, 3)</td>
<td>75</td>
<td>154</td>
</tr>
</tbody>
</table>

[52 4]	(2, 2, 1, 1, 1)	(4, 3)	96	206
	(1, 1, 1, 1, 1)	(2, 2, 2)	24	64
	(2, 2, 2, 1, 1, 1)	(3, 3, 3)	72	154

[53 4]	(1, 1, 1, 1)	(4)	90	200
	(1, 1, 1, 1, 1)	(3, 2)	45	103
	(2, 1, 1, 1, 1)	(3, 3)	63	136
	(1, 1, 1, 1, 1)	(2, 2, 2)	27	64
	(2, 2, 2, 1, 1, 1)	(3, 3, 3)	81	163

[62 3]	(1, 1, 1, 1, 1)	(3, 2)	60	132
	(2, 1, 1, 1, 1)	(3, 3)	84	174
	(1, 1, 1, 1, 1, 1)	(2, 2, 2)	36	82

| [72 2 2 2]| (1, 1, 1, 1, 1) | (2, 2, 2) | 48 | 100 |

Table 10: The particle content for the SO(10)-GUT theories arising from our classification of stable, positive, SU(4) monad bundles V on the Calabi-Yau threefold X. The number n_{27} of anti-generations vanishes. The number n_1 vanishes for generic choices of the map g in the monad sequence (18), but can be made non-vanishing with particular choices of g.

Table 9: The particle content for the E_6-GUT theories arising from our classification of stable, positive $SU(3)$ monad bundles V on the Calabi-Yau threefold X. The number n_{27} of anti-generations vanishes.
We decided to start with the 5 simplest of the 5000 CYs.

Results: 37 models, no anti-generations...

20 E_6 models

<table>
<thead>
<tr>
<th>X</th>
<th>${b_i}$</th>
<th>${c_i}$</th>
<th>n_{27}</th>
<th>n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4</td>
<td>5]</td>
<td>(2, 2, 1, 1, 1)</td>
<td>(4, 3)</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1)</td>
<td>(5, 3)</td>
<td>105</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>(3, 2, 1, 1, 1)</td>
<td>(4, 4)</td>
<td>75</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1)</td>
<td>(3, 3, 3)</td>
<td>45</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>(3, 3, 3, 1, 1, 1)</td>
<td>(4, 4, 4)</td>
<td>90</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 2, 2, 2, 2)</td>
<td>(4, 3, 3, 3, 3)</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 2, 2, 2, 2, 2)</td>
<td>(3, 3, 3, 3, 3)</td>
<td>75</td>
<td>154</td>
</tr>
</tbody>
</table>

[5	2	4]	(2, 2, 1, 1, 1)	(4, 3)	96	206
	(1, 1, 1, 1, 1)	(2, 2, 2)	24	64		
	(2, 2, 2, 1, 1, 1)	(3, 3, 3)	72	154		

[5	3	3]	(1, 1, 1, 1)	(4)	90	200
	(1, 1, 1, 1)	(3, 2)	45	103		
	(2, 1, 1, 1)	(3, 3)	63	136		
	(1, 1, 1, 1, 1)	(2, 2, 2)	27	64		
	(2, 2, 2, 1, 1, 1)	(3, 3, 3)	81	163		

[6	2	3]	(1, 1, 1, 1, 1)	(3, 2)	60	132
	(2, 1, 1, 1, 1)	(3, 3)	84	174		
	(1, 1, 1, 1, 1)	(2, 2, 2)	36	82		
	(1, 1, 1, 1, 1)	(2, 2, 2)	48	100		

| [7|2|2|2] | (1, 1, 1, 1, 1) | (2, 2, 2) | 48 | 100 |

Table 9: The particle content for the E_6-GUT theories arising from our classification of stable, positive $SU(3)$ monad bundles V on the Calabi-Yau threefold X. The number n_{27} of anti-generations vanishes.

10 $SO(10)$ models

<table>
<thead>
<tr>
<th>X</th>
<th>${b_i}$</th>
<th>${c_i}$</th>
<th>n_{16}</th>
<th>n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4</td>
<td>5]</td>
<td>(2, 2, 1, 1, 1, 1)</td>
<td>(4, 4)</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
<td>30</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1, 1, 1)</td>
<td>(4, 3, 3)</td>
<td>75</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 1, 1, 1, 1)</td>
<td>(3, 3, 3, 3)</td>
<td>60</td>
<td>193</td>
</tr>
<tr>
<td>[5</td>
<td>2</td>
<td>4]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
</tr>
<tr>
<td>[5</td>
<td>3</td>
<td>3]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 3)</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
<td>54</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(2, 2, 2, 2)</td>
<td>36</td>
<td>113</td>
</tr>
<tr>
<td>[6</td>
<td>2</td>
<td>2</td>
<td>3]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(2, 2, 2, 2)</td>
<td>48</td>
<td>145</td>
</tr>
</tbody>
</table>

Table 10: The particle content for the $SO(10)$-GUT theories arising from our classification of stable, positive, $SU(4)$ monad bundles V on the Calabi-Yau threefold X. The number n_{16} of anti-generations vanishes. The number n_1 vanishes for generic choices of the map g in the monad sequence (18), but can be made non-vanishing with particular choices of g.

7 $SU(5)$ models

<table>
<thead>
<tr>
<th>X</th>
<th>${b_i}$</th>
<th>${c_i}$</th>
<th>n_{10}</th>
<th>n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4</td>
<td>5]</td>
<td>(1, 1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 3, 2)</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1, 1)</td>
<td>(4, 4, 2)</td>
<td>40</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1, 1, 1, 1)</td>
<td>(3, 3, 3, 3)</td>
<td>75</td>
<td>301</td>
</tr>
<tr>
<td>[5</td>
<td>2</td>
<td>4]</td>
<td>(1, 1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 3, 3)</td>
</tr>
<tr>
<td>[5</td>
<td>3</td>
<td>3]</td>
<td>(1, 1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1, 1)</td>
<td>(2, 2, 2, 2)</td>
<td>45</td>
<td>176</td>
</tr>
<tr>
<td>[6</td>
<td>2</td>
<td>2</td>
<td>3]</td>
<td>(1, 1, 1, 1, 1, 1, 1, 1)</td>
</tr>
</tbody>
</table>

Table 11: The particle content for the $SU(5)$-GUT theories arising from our classification of stable, positive, $SU(5)$ monad bundles V on the Calabi-Yau threefold X. The number of anti-generations, n_{10}, vanishes. Further, $n_2 = n_{10}$. Moreover, $n_5 = 0$ for generic choices of the map g in Eq. (18), and can be made non-vanishing in special regions of moduli space.
We decided to start with the 5 simplest of the 5000 CYs. Results: 37 models, no anti-generations...

20 E_6 models

<table>
<thead>
<tr>
<th>X</th>
<th>${b_i}$</th>
<th>${c_i}$</th>
<th>n_{27}</th>
<th>n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4][5]</td>
<td>(2, 2, 1, 1, 1)</td>
<td>(4, 3)</td>
<td>60</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1)</td>
<td>(5, 3)</td>
<td>105</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>(3, 2, 1, 1, 1)</td>
<td>(4, 4)</td>
<td>75</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1, 1)</td>
<td>(3, 3, 3)</td>
<td>45</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>(3, 3, 3, 1, 1, 1)</td>
<td>(4, 4, 4)</td>
<td>90</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 2, 2, 2)</td>
<td>(4, 3, 3, 3)</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 2, 2, 2)</td>
<td>(3, 3, 3, 3)</td>
<td>75</td>
<td>154</td>
</tr>
</tbody>
</table>

[5][2][4]	(2, 2, 1, 1, 1)	(4, 3)	96	206
	(1, 1, 1, 1, 1)	(2, 2, 2)	24	64
	(2, 2, 2, 1, 1, 1)	(3, 3, 3)	72	154

[5][3][3]	(1, 1, 1, 1)	(4)	90	200
	(1, 1, 1, 1, 1)	(3, 2)	45	103
	(2, 1, 1, 1, 1)	(3, 3)	63	136
	(1, 1, 1, 1, 1)	(2, 2, 2)	27	64
	(2, 2, 2, 1, 1, 1)	(3, 3, 3)	81	163

[6][2][3]	(1, 1, 1, 1, 1)	(3, 2)	60	132
	(2, 1, 1, 1, 1)	(3, 3)	84	174
	(1, 1, 1, 1, 1)	(2, 2, 2)	36	82
[7][2][2][2]	(1, 1, 1, 1, 1, 1)	(2, 2, 2)	48	100

Table 9: The particle content for the E_6-GUT theories arising from our classification of stable, positive $SU(3)$ monad bundles V on the Calabi-Yau threefold X. The number n_{27} of anti-generations vanishes.

10 SO(10) models

<table>
<thead>
<tr>
<th>X</th>
<th>${b_i}$</th>
<th>${c_i}$</th>
<th>n_{16}</th>
<th>n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4][5]</td>
<td>(2, 2, 1, 1, 1, 1)</td>
<td>(4, 4)</td>
<td>90</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
<td>30</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1, 1, 1)</td>
<td>(4, 4, 3)</td>
<td>75</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 2, 1, 1, 1)</td>
<td>(3, 3, 3)</td>
<td>60</td>
<td>193</td>
</tr>
<tr>
<td>[5][2][4]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
<td>48</td>
<td>159</td>
</tr>
<tr>
<td>[5][3][3]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 3)</td>
<td>72</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
<td>54</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>36</td>
<td>113</td>
</tr>
<tr>
<td>[6][2][2][3]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
<td>72</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(2, 2, 2)</td>
<td>48</td>
<td>145</td>
</tr>
</tbody>
</table>

Table 10: The particle content for the SO(10)-GUT theories arising from our classification of stable, positive $SU(4)$ monad bundles V on the Calabi-Yau threefold X. The number n_{16} of anti-generations vanishes. The number n_{16} vanishes for generic choices of the map g in the monad sequence (18), but can be made non-vanishing with particular choices of g.

7 SU(5) models

<table>
<thead>
<tr>
<th>X</th>
<th>${b_i}$</th>
<th>${c_i}$</th>
<th>n_{10}</th>
<th>n_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4][5]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 3, 2)</td>
<td>45</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(4, 2, 2)</td>
<td>60</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>(2, 2, 2, 1, 1, 1, 1)</td>
<td>(3, 3, 3, 3)</td>
<td>75</td>
<td>301</td>
</tr>
<tr>
<td>[5][2][4]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 3, 2)</td>
<td>72</td>
<td>288</td>
</tr>
<tr>
<td>[5][3][3]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(3, 2, 2)</td>
<td>63</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(2, 2, 2, 2)</td>
<td>45</td>
<td>176</td>
</tr>
<tr>
<td>[6][2][2][3]</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
<td>(2, 2, 2, 2)</td>
<td>60</td>
<td>226</td>
</tr>
</tbody>
</table>

Table 11: The particle content for the SU(5)-GUT theories arising from our classification of stable, positive $SU(5)$ monad bundles V on the Calabi-Yau threefold X. The number of anti-generations, n_{10}, vanishes. Further, $n_5 = n_{10}$. Moreover, $n_5 = 0$ for generic choices of the map g in Eq. (18), and can be made non-vanishing in special regions of moduli space.

We are currently extending this to all 5000 CYs
Conclusion

String theory realises gravity and gauge theories through closed and open strings (bulk and brane) and has all the right generic ingredients to make contact with particle physics.
Conclusion

String theory realises gravity and gauge theories through closed and open strings (bulk and brane) and has all the right generic ingredients to make contact with particle physics.

Most ideas for BSM physics are either motivated by string theory or contained in string theory.
Conclusion

String theory realises gravity and gauge theories through closed and open strings (bulk and brane) and has all the right generic ingredients to make contact with particle physics.

Most ideas for BSM physics are either motivated by string theory or contained in string theory.

Matter fields can arise from either brane intersections or gauge fields on high-dimensional branes. The latter possibility seems preferable.
Conclusion

String theory realises gravity and gauge theories through closed and open strings (bulk and brane) and has all the right generic ingredients to make contact with particle physics.

Most ideas for BSM physics are either motivated by string theory or contained in string theory.

Matter fields can arise from either brane intersections or gauge fields on high-dimensional branes. The latter possibility seems preferable.

There appears to be a huge number of consistent string vacua. Given the fundamental formulation of the theory is not known one should be careful about jumping to conclusions.
Conclusion

String theory realises gravity and gauge theories through closed and open strings (bulk and brane) and has all the right generic ingredients to make contact with particle physics.

Most ideas for BSM physics are either motivated by string theory or contained in string theory.

Matter fields can arise from either brane intersections or gauge fields on high-dimensional branes. The latter possibility seems preferable.

There appears to be a huge number of consistent string vacua. Given the fundamental formulation of the theory is not known one should be careful about jumping to conclusions.

One can construct standard-like models, but there is not a single standard model from string theory.
Conclusion

String theory realises gravity and gauge theories through closed and open strings (bulk and brane) and has all the right generic ingredients to make contact with particle physics.

Most ideas for BSM physics are either motivated by string theory or contained in string theory.

Matter fields can arise from either brane intersections or gauge fields on high-dimensional branes. The latter possibility seems preferable.

There appears to be a huge number of consistent string vacua. Given the fundamental formulation of the theory is not known one should be careful about jumping to conclusions.

One can construct standard-like models, but there is not a single standard model from string theory.

The ability to stabilise all moduli has opened up new possibilities for string phenomenology. E.g. the computation of Yukawa couplings for given models seems now feasible, although it is technically hard.
Deriving a SSM with the right particle content and couplings from string theory would be a major success.
Deriving a SSM with the right particle content and couplings from string theory would be a major success.

Should the LHC discover physics which points towards string theory (SUSY, KK modes,...) string phenomenology will get a substantial boost.
Deriving a SSM with the right particle content and couplings from string theory would be a major success.

Should the LHC discover physics which points towards string theory (SUSY, KK modes,...) string phenomenology will get a substantial boost.

Thanks!