The First Run II Measurement of the W Boson Mass by CDF

University of Oxford

People involved:

Oliver Stelzer-Chilton (W Mass Convenor)

Chris Hays (Electroweak Convenor)

Pete Renton (Chair of CDF committee overseeing the analysis)

Particle Physics Seminar Hilary Term

February 27th, 2007
Outline

1. Motivation
2. W Production at the Tevatron
3. Analysis Strategy
4. Detector Calibration
 - Momentum Scale
 - Energy Scale
 - Recoil
5. Event Simulation
6. Results
7. Conclusions
• 1930’s: Fermi explains nuclear β-decay as 4-point interaction

• 1960’s: Glashow, Weinberg and Salam
 → unify electromagnetic and weak interaction
 → explain interaction by exchange of massive vector bosons

• Became foundation of the Standard Model
• W boson mass is fundamental parameter
Introduction

- Derive W mass from precisely measured electroweak quantities

\[m_W^2 = \frac{\pi \alpha_{em}}{\sqrt{2} G_F \sin^2 \theta_W (1 - \Delta r)} \]

- where \(M_W = M_Z \cos \theta_W \)

- \(\alpha_{EM}(M_Z) = 1/127.918(18) \)

- \(G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2} \)

- \(M_Z = 91.1876(21) \text{ GeV} \)

- \(\Delta r: \mathcal{O}(1\%) \) radiative corrections dominated by tb and Higgs loop
Measured Top Mass

Top mass now measured to 2.1 GeV

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mass (GeV)</th>
<th>(stat)</th>
<th>(syst)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 Dilepton</td>
<td>178.1 ± 6.7 ± 4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 370 pb⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0 Lepton+Jets</td>
<td>170.3 ± 2.5 ± 3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 370 pb⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDF Dilepton</td>
<td>164.5 ± 3.9 ± 3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 1030 pb⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDF Lepton+Jets</td>
<td>170.9 ± 1.6 ± 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 940 pb⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDF All hadronic</td>
<td>174.0 ± 2.2 ± 4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L = 1020 pb⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Best Tevatron Run II (°Preliminary)

Tevatron July'06

(CDF+D0 Run II Average)
Motivation

Current top mass uncertainty 1.2% (2.1 GeV) → contributes 0.016% (13 MeV) to δM_W

Current W mass uncertainty 0.036% (29 MeV)

- Progress on W mass uncertainty now has the biggest impact on Higgs mass constraint
- With improved precision also sensitive to possible exotic radiative corrections
Predicted Higgs mass from W loop corrections:
\[m_H = 85^{+39}_{-28} \text{ GeV} \] (<166 GeV at 95% CL)

Direct search from LEP II: \(m_H > 114.4 \)
Analysis Strategy
Tevatron Collider

- Tevatron is a proton antiproton collider with ~1 TeV per beam
- Currently the only place in the world where W and Z bosons can be produced directly
- 36 p and pbar bunches, 396 ns between bunch crossing, $E_{CM}=1.96$ TeV
Quark-antiquark annihilation dominates (80%)

precise charged lepton measurement is the key (achieved ~0.03%)

Recoil measurement allows inference of neutrino E_T (restricted to $u<15$ GeV)

Combine information into transverse mass m_T:

$$m_T = \sqrt{2 p_T^l p_T^\nu (1 - \cos \phi_{lv})}$$
W/Z Boson Production at the Tevatron

- Initial state QCD radiation O(10 GeV) appears as soft “hadronic recoil” in calorimeter
- Pollutes W mass information *fortunately* $p_T^W \ll M_W$

- Can use $Z \rightarrow ll$ decays to calibrate recoil model
$\sigma(W \rightarrow l\nu) = 2775 \text{ pb}$

$\sigma(Z \rightarrow ll) = 254.9 \text{ pb}$

From the high p_T lepton triggers ($p_T > 18 \text{ GeV}$)

After event selection

(l, ν $E_T > 30 \text{ GeV}$)

51,128 $W \rightarrow \mu\nu$ candidates

63,964 $W \rightarrow e\nu$ candidates

4,960 $Z \rightarrow \mu\mu$ candidates

2,919 $Z \rightarrow ee$ candidates
Measurement Strategy

W mass is extracted from transverse mass, transverse momentum and transverse missing energy distribution.

Detector Calibration
- Tracking momentum scale
- Calorimeter energy scale
- Recoil

Fast Simulation
- NLO event generator
- Model detector effects

W Mass templates

Data

Binned likelihood fit

W Mass

+ Backgrounds

81 GeV

80 GeV
W Mass Measurement

m_T
- Insensitive to p_T^W to 1st order
- Reconstruction of p_T^ν sensitive to hadronic response and multiple interactions

p_T
- Less sensitive to hadronic response modeling
- Sensitive to W production dynamics
CDF Detector

- Silicon tracking detectors
- Central drift chambers (COT)
- Solenoid Coil
- EM calorimeter
- Hadronic calorimeter
- Muon scintillator counters
- Muon drift chambers
- Steel shielding
Tracking Momentum Scale Calibration
Tracker Alignment

- Internal alignment is performed using a large sample of cosmic rays → Fit hits on both sides to one helix
- Determine final track-level curvature corrections from electron-positron E/p difference in W → eν decays

- Statistical uncertainty of track-level corrections leads to systematic uncertainty
 \[\Delta M_W = 6 \text{ MeV} \]
Mass Measurements

- Template mass fits to $J/\Psi \rightarrow \mu \mu$, $\Upsilon \rightarrow \mu \mu$, $Z \rightarrow \mu \mu$ resonances

- Fast simulation models relevant physics processes
 - internal bremsstrahlung
 - ionization energy loss
 - multiple scattering

- Simulation includes event reconstruction and selection

- First principle simulation of tracking

- Detector material model
 - Map energy loss and radiation lengths in each detector layer
 (3D lookup table in r, φ and z)

- Overall material scale determined from data
Momentum Scale J/Ψ

- J/ψ mass independent of p_T
- Slope affected by energy loss modelling
- Measurement dominated by systematic uncertainties → QED and energy loss model

$\Delta p/p = (-1.536 \pm 0.088) \times 10^{-3}$

χ^2/dof = 17 / 22

default material scaled to 0.94 to tune energy loss

$J/\psi \rightarrow \mu\mu$ data

Scale correction = $(-1.64\pm0.01_{\text{stat}}\pm0.06_{\text{slope}}) \times 10^{-3}$
• Y provide invariant mass intermediate between J/Ψ and Z’s

• Y are all primary tracks can be beam-constrained, like W tracks

• Test beam constraint by measuring mass using unconstrained tracks

• Correct by half the difference between fits and take corrections as systematic uncertainty
Δp/p = (-1.50 ± 0.20) x 10^{-3}

- **Systematic uncertainties:**

<table>
<thead>
<tr>
<th>Source</th>
<th>J/ψ (x10^{-3})</th>
<th>Υ (x10^{-3})</th>
<th>Common (x10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED and energy loss model</td>
<td>0.20</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Magnetic field nonuniformities</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Beam constraint bias</td>
<td>N/A</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Ionizing material scale</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>COT alignment corrections</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Fit range</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>pT threshold</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Resolution model</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Background model</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>World-average mass value</td>
<td>0.01</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Statistical</td>
<td>0.01</td>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>0.25</td>
<td>0.21</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Momentum Scale Cross-Check

Apply momentum scale to Z sample

$Z \rightarrow \mu\mu$

$M_Z = (91184 \pm 43) \text{ MeV}$

$\chi^2/\text{dof} = 32/30$

Z mass in good agreement with PDG $(91188\pm2 \text{ MeV})$

All momentum scales consistent

$\Delta M_W = 17 \text{ MeV}$
EM Calorimeter Scale Calibration
Calorimeter Energy Calibration

- Transfer momentum calibration to calorimeter using E/p distribution of electrons from W decay by fitting peak of E/p

- Additional physics effects beyond those for muon tracks
 - photon radiation and conversion
Full Electron Simulation

- Response and resolution in EM calorimeter
- Energy loss into hadronic calorimeter
- Energy loss in solenoid
- Track reconstruction in outer tracker
- Bremsstrahlung and conversions in silicon

Electromagnetic Calorimeter

SVX II 5 LAYERS

INTERMEDIATE SILICON LAYERS

END WALL HADRON CAL.

END PLUG HADRON CAL.

COT

SOLENOID
Energy Scale Calibration

- Calibrate calorimeter energy with peak of E/p distribution
- Energy Scale S_E set to $S_E = 1 \pm 0.00025^{\text{stat}} \pm 0.00011^{\text{X0}} + -0.00021^{\text{Tracker}}$
- Setting S_E to 1 using E/p calibration

Calorimeter Energy $<$ Track Momentum:
Energy loss in Hadronic calorimeter

Calorimeter Energy $>$ Track Momentum:
Energy loss in tracker

CDF II preliminary $\int Ldt \approx 200 \text{ pb}^{-1}$

$W \rightarrow e\nu$

$S_E = 1 \pm 0.00025^{\text{stat}}$

$\chi^2/\text{dof} = 17 / 16$

Data
Simulation
Consistency of Radiative Material Model

- Excellent description of E/p tail
- Radiative material tune factor: \(S_{\text{mat}} = 1.004 \pm 0.009_{\text{stat}} \pm 0.0002_{\text{bkg}} \)
- Z mass reconstructed from electron track momenta

Data
Simulation

geometry confirmed: \(S_{\text{mat}} \) independent of \(|\eta| \)

Measured value in good agreement with PDG
• Fit Z Mass using scale from E/p calibration
• Measure non-linearity through E/p fits in bins of E_T in W→eν and Z→ee data and apply correction to simulation

\[\Delta M_W = 30 \text{ MeV} \]

Z Mass Cross-Check and Final Energy Scale

Z→ee

\[M_Z = (91190 \pm 67_{\text{stat}}) \text{ MeV} \]

\[\chi^2/\text{dof} = 34/38 \]

Z mass in good agreement with PDG (91187±2 MeV)
Detector Resolutions

- Tracking resolution parametrized in fast Monte Carlo by
 - Drift chamber hit resolution $\sigma_h = 150 \pm 3_{\text{stat}} \ \mu m$
 - Beamspot size $\sigma_b = 39 \pm 3_{\text{stat}} \ \mu m$
 - Tuned on widths of $Z \rightarrow \mu \mu$ and $Y \rightarrow \mu \mu$ distribution
 $$\Delta M_W = 3 \text{ MeV}$$

- Electron cluster resolution parametrized by $13.5\% / \sqrt{E_T} \oplus \kappa$
 - primary electron constant term: $\kappa = 0.89 \pm 0.15_{\text{stat}} \%$
 - secondary photon resolution: $\kappa = 8.3 \pm 2.2_{\text{stat}} \%$

- Tuned on the widths of the E/p peak and $Z \rightarrow ee$ peak (selecting radiative electrons)
 $$\Delta M_W = 9 \text{ MeV}$$
Hadronic Recoil Model
Hadronic Recoil Definition

Recoil definition:
→ Vector sum over all calorimeter towers, excluding:
 - lepton towers
 - towers near beamline ("ring of fire")

• Lepton removal also removes underlying event
 → Need to measure recoil under lepton

• Recoil under lepton depends on lepton tower definition
Lepton Removal

- Estimate removed recoil energy using towers separated in Φ
- Model tower removal in simulation

Muon Electromagnetic E_T (MeV)

<table>
<thead>
<tr>
<th>Tower $\Delta \eta$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower $\Delta \phi$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>ΔM_W = 5 MeV</td>
<td></td>
</tr>
</tbody>
</table>

Electron Electromagnetic E_T (MeV)

<table>
<thead>
<tr>
<th>Tower $\Delta \eta$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower $\Delta \phi$</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>31</td>
<td>29</td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>ΔM_W = 8 MeV</td>
<td></td>
</tr>
</tbody>
</table>

Muons: Remove 3 towers (MIP)
Electrons: Remove 7 towers
keystone (shower)
Recoil momentum vector \(u \) has two components:

- Soft spectator interaction component, randomly oriented
 - modelled using minimum bias data with tuneable magnitude

- A hard ‘jet’ component, directed opposite the boson \(p_T \)
 - \(p_T \) dependent response and resolution parametrization
 - Hadronic response \(R=(u_{\text{meas}}/u_{\text{true}}) \)
 - \(R \) parametrized as a logarithmically increasing function of boson \(p_T \)

Motivated by Z boson data
Hadronic Recoil Response Calibration

- Project vector sum of $p_T^{(ll)}$ and u on orthogonal axes defined by lepton directions
- Use Z balancing to calibrate recoil energy scale
- Mean and RMS of projections as a function of $p_T^{(ll)}$ provide information for model parameters

Hadronic model parameters tuned by minimizing χ^2 between data and simulation

$\Delta M_W = 9 \text{ MeV}$
Resolution at low $p_T(Z)$ dominated by underlying event

Resolution at high $p_T(Z)$ dominated by jet resolution

$\Delta M_W = 7\, \text{MeV}$
Recoil Model Checks

• Apply model to W sample to check recoil model from Z’s
• Recoil projection along lepton direction \(u_{||} \)

→ directly affects \(m_{T} \) fits
→ Sensitive to: lepton removal, efficiency model, scale, resolution, W decay

• Recoil projection perpendicular to lepton direction \(u_{\perp} \)

→ Sensitive to resolution model
Recoil Model Checks

- Recoil distribution
 → Sensitive to recoil scale resolution and boson p_T

- Recoil model validation plots confirm the consistency of the model
Signal Simulation and Template Fitting

- All signals simulated using a fast simulation
 - Generate finely-spaced templates as a function of fit variable
 - perform binned maximum-likelihood fits to the data

- Custom fast simulation makes smooth, high statistics templates
 - provides analysis control over key components of simulation

- We will extract the W mass from six kinematic distributions:
 \(m_T, p_T \) and \(E_T \) for muon and electron channel
Generator-level Signal Simulation

- Generator-level input for W&Z simulation provided by RESBOS [Balazs et al. PRD56, 5558 (1997)]

- Radiative photons generated according to energy vs angle lookup table from WGRAD [Baur et al. PRD59, 013002 (1998)]
 - Simulate FSR (ISR, photons off the propagator, < 5 MeV)
 - Apply 10% correction for 2nd photon
[Calame et al. PRD69, 037301 (2004)]
 and take 5% systematic uncertainty \(\Delta M_W = 11 \pm 12 \) MeV for e (\(\mu \))
Boson p_T Model

- Model boson p_T using RESBOS generator

- Non-pertubative regime at low p_T parametrized with g_1, g_2, g_3 parameters

- g_2 parameter determines position of peak in p_T distribution

- Measure g_2 with Z boson data (other parameters negligible)

- Find: $g_2 = 0.685 \pm 0.048$

\[\Delta M_W = 3 \text{ MeV} \]
Parton Distribution Functions

- Affect W kinematic lineshape through acceptance cuts (only use $|\eta|<1$)
- We use CTEQ6M as the default
- Use CTEQ6 ensemble of 20 ‘uncertainty PDFs’:
 - 20 free parameters in global fit
 - compute δM_W contribution from each error PDF
- Using CTEQ prescription and interpreting ensemble as 90% CL

\[\Delta M_W = 11 \text{ MeV} \]

- Cross-check: Fitting MC sample generated with MRST2003 with default CTEQ6M template yields a 8 MeV shift in W mass
Backgrounds

- Backgrounds have very different lineshapes compared to W signal
 - distributions are added to template
 - QCD measured with data
 - EWK predicted with Monte Carlo

<table>
<thead>
<tr>
<th>Background</th>
<th>% (Muons)</th>
<th>% (Electrons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadronic Jets</td>
<td>0.1±0.1</td>
<td>0.25±0.15</td>
</tr>
<tr>
<td>Decay in Flight</td>
<td>0.3±0.2</td>
<td>-</td>
</tr>
<tr>
<td>Cosmic Rays</td>
<td>0.05±0.05</td>
<td>-</td>
</tr>
<tr>
<td>Z→ll</td>
<td>6.6±0.3</td>
<td>0.24±0.04</td>
</tr>
<tr>
<td>W→τν</td>
<td>0.89±0.02</td>
<td>0.93±0.03</td>
</tr>
</tbody>
</table>

$$\Delta M_W = 8 \ (9) \ MeV \ \text{for e} \ (\mu)$$
W Boson Mass Fits
Transverse Mass Fit (Muons)

CDF II preliminary

\[\int L \, dt \approx 200 \text{ pb}^{-1} \]

\[M_W = \left(80349 \pm 54_{\text{stat}}\right) \text{ MeV} \]

\[\chi^2/\text{dof} = 59/48 \]

- Data
- Simulation
Muon and Electron combined: $M_W = 80417 \pm 48 \text{ MeV}$ $P(\chi^2) = 7\%$
Transverse Momentum Fit (Muons)

CDF II preliminary

\[\int L \, dt \approx 200 \, \text{pb}^{-1} \]

\[M_W = (80321 \pm 66_{\text{stat}}) \, \text{MeV} \]

\[\chi^2/\text{dof} = 72 / 62 \]
Transverse Energy Fit (Electrons)

Muon and Electron combined: $M_W = 80388 \pm 59$ MeV $P(\chi^2) = 18\%$
Missing Transverse Energy Fit (Muons)

CDF II preliminary

\[\int L \, dt \approx 200 \text{ pb}^{-1} \]

\[M_W = (80396 \pm 66_{\text{stat}}) \text{ MeV} \]

\[\chi^2/\text{dof} = 44 / 62 \]

- Data
- Simulation
Muon and Electron combined: $M_W = 80434 \pm 65$ MeV $P(\chi^2) = 43\%$
Systematic Uncertainty

Systematic uncertainty on transverse mass fit

<table>
<thead>
<tr>
<th>CDF II preliminary</th>
<th>L = 200 pb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_T) Uncertainty [MeV]</td>
<td>Electrons</td>
</tr>
<tr>
<td>Lepton Scale</td>
<td>30</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>9</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>9</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>7</td>
</tr>
<tr>
<td>(u_{ll}) Efficiency</td>
<td>3</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>8</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>8</td>
</tr>
<tr>
<td>(p_T(W))</td>
<td>3</td>
</tr>
<tr>
<td>PDF</td>
<td>11</td>
</tr>
<tr>
<td>QED</td>
<td>11</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>39</td>
</tr>
<tr>
<td>Statistical</td>
<td>48</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
</tr>
</tbody>
</table>

⇒ Combined Uncertainty: 48 MeV for 200 pb⁻¹
Results

- Combining all six mass fits yields:

\[M_W = 80413 \pm 48 \text{ MeV (stat+syst)}, \ P(\chi^2) = 44\% \]

- New CDF result is the world’s most precise single measurement

 - World average increases: 80392 to 80398 MeV
 - Uncertainty reduced ~15% (29 to 25 MeV)
Previous M_W vs M_{top}
Winter 2007

Experimental errors 68% CL:

- LEP2/Tevatron (today)

Updated M_W vs M_{top}

- M_W vs M_{top}
- $M_H = 114$ GeV
- $M_W = 400$ GeV

SM
- MSSM
- light SUSY
- heavy SUSY
- both models

Heinemeyer, Hollik, Stockinger, Weber, Weiglein '06
Standard Model Higgs Constraint

• Previous SM Higgs fit:
 - $M_H = 85^{+39}_{-28}$ GeV
 - $M_H < 166$ GeV (95% CL)
 - $M_H < 199$ GeV (95% CL) Including LEPII direct exclusion

• Updated preliminary SM Higgs fit:
 - $M_H = 80^{+36}_{-26}$ GeV (M. Grünewald, private communication)
 - $M_H < 153$ GeV (95% CL)
 - $M_H < 189$ GeV (95% CL) Including LEPII direct exclusion
Progress since 1995

2007 direct m_t and m_w

2007 indirect m_t and m_w

1995 indirect m_t and m_w

1995 direct m_t and m_w
Projection

- Projection from previous Tevatron measurements
Summary

• W boson mass remains a very interesting parameter to measure with increasing precision

• CDF Run II measurement is the most precise single measurement

\[M_W = 80413 \pm 34 \pm 34 \text{ MeV} \]
\[= 80413 \pm 48 \text{ MeV (preliminary)} \]

• New preliminary Higgs constraint \(M_H = 80^{+36}_{-26} \text{ GeV} \)
 (previous \(M_H = 85^{+39}_{-28} \text{ GeV} \))

→ Mass has moved further in the directly excluded region

Looking forward:

→ Expect \(\Delta M_W < 25 \text{ MeV} \) with 1.5 fb\(^{-1} \) already collected by CDF
Backup Slides
Systematic Uncertainty

<table>
<thead>
<tr>
<th>CDF II preliminary</th>
<th>L = 200 pb⁻¹</th>
<th>CDF II preliminary</th>
<th>L = 200 pb⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T Uncertainty [MeV]</td>
<td></td>
<td>MET Uncertainty [MeV]</td>
<td></td>
</tr>
<tr>
<td>Lepton Scale</td>
<td>30</td>
<td>Lepton Scale</td>
<td>30</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>9</td>
<td>Lepton Resolution</td>
<td>9</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>17</td>
<td>Recoil Scale</td>
<td>15</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>3</td>
<td>Recoil Resolution</td>
<td>30</td>
</tr>
<tr>
<td>u_μ Efficiency</td>
<td>5</td>
<td>u_μ Efficiency</td>
<td>16</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>0</td>
<td>Lepton Removal</td>
<td>16</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>9</td>
<td>Backgrounds</td>
<td>7</td>
</tr>
<tr>
<td>p_T(W)</td>
<td>9</td>
<td>p_T(W)</td>
<td>5</td>
</tr>
<tr>
<td>PDF</td>
<td>20</td>
<td>PDF</td>
<td>13</td>
</tr>
<tr>
<td>QED</td>
<td>13</td>
<td>QED</td>
<td>9</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>45</td>
<td>Total Systematic</td>
<td>54</td>
</tr>
<tr>
<td>Statistical</td>
<td>58</td>
<td>Statistical</td>
<td>57</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>Total</td>
<td>79</td>
</tr>
</tbody>
</table>

Oliver Stelzer-Chilton - Oxford
Consistency Checks of Results

- Use BLUE method to combine results and check consistency
- List of obtained χ^2 and probabilities for several combinations:
 - two transverse mass fits: χ^2/dof = 3.2/1, prob = 7%
 - charged lepton fits: χ^2/dof = 1.8/1, prob = 18%
 - two MET fits: χ^2/dof = 0.6/1, prob = 43%
 - all three fits for electrons: χ^2/dof = 1.4/2, prob = 49%
 - all three fits for muons: χ^2/dof = 0.8/2, prob = 69%
 - all six fits, both channels: χ^2/dof = 4.8/5, prob = 44%
Signed χ

CDF II preliminary

$\int L \, dt \approx 200 \, \text{pb}^{-1}$
Tevatron Run I Uncertainties

<table>
<thead>
<tr>
<th></th>
<th>CDF μ</th>
<th>CDF e</th>
<th>DØ e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>100</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>85</td>
<td>75</td>
<td>56</td>
</tr>
<tr>
<td>Lepton resolution</td>
<td>20</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Recoil model</td>
<td>35</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>$p_T(W)$</td>
<td>20</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Selection bias</td>
<td>18</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>25</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Parton dist. Functions</td>
<td>15</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>QED rad. Corrections</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>G(W)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>144</td>
<td>113</td>
<td>84</td>
</tr>
</tbody>
</table>
Energy Loss Model

- Use GEANT to parametrize energy loss in solenoid and leakage into hadronic calorimeter
- Energy loss in hadronic calorimeter
- Relevant for E/p lineshape
Measurement of EM Calorimeter Non-Linearity

- Perform E/p fit-based calibration in bins of electron E_T
- Parametrize non-linear response as $S_E = 1 + \xi (E_T/\text{GeV}^{-39})$
- Apply energy dependent scale to simulated electron and photon
- Tune W and Z data: $\xi = (6 \pm 7) \times 10^{-5}$
Momentum Scale Calibration

Central Outer Tracker: Open-cell drift chamber

- Use clean sample of cosmic rays for cell-by-cell internal alignment
- Fit COT hits on both sides simultaneously to a single helix
- Measure cell displacements
Alignment Example

Final relative alignment of cells ~5μm (initial alignment ~50μm)
Consistency Check of COT Alignment

- Fit separate helices to cosmic ray tracks on each side
- Compare track parameters of the two tracks
- Measure of track parameter bias

Curvature:

![Graph showing curvature analysis](image)

False curvature smaller than 0.1% for 40 GeV track, over the length of the COT
Outlook

What is the Higgs mass?