Investigating thermal abundance of semi-relativistic particles

Suchita Kulkarni Manuel Drees Mitsuru Kakizaki

Physics Institute, University of Bonn, Germany

22 September 2007, Second UniverseNet School

() < </p>

Outline

Introduction Mathematical formalism Physical scenarios (toy models) Conclusion

Introduction

The process of freeze out Limitations of existing treatment

Mathematical formalism

Modifications required Treating the thermal average Solution of the Boltzmann equation

Physical scenarios (toy models)

Feasibility of relic densities Entropy production

Conclusion

< ∃ >

The process of freeze out Limitations of existing treatment

Thermal freeze out

Once upon a time in distant past....

•
$$\Gamma \gtrsim H \Rightarrow A + B \leftrightarrow C + D$$

• $\Gamma < H \Rightarrow$ Freeze out

• Boltzmann Equation $\hat{L}[f] = C[f]$

$$\frac{dY}{dx} = \frac{-x\langle \sigma v \rangle s}{H(m)} (Y^2 - Y_{eq}^2)$$

where:- s = entropy $Y = \frac{n}{s}$ $x = \frac{m}{T}$ Relic density $\Omega h^2 = 2.8 \times 10^8 Y_{\infty} (m/GeV)$

- 4 同 2 4 日 2 4 日 2

The process of freeze out Limitations of existing treatment

Limiting cases

- - $\Omega h^2 \propto m$, independent of $\langle \sigma v
 angle$
- Non-relativistic treatment $(m \gg T)$
 - Expansion of thermal average of cross-section in terms of velocity $\langle \sigma v \rangle = a + \frac{6b}{x}$

$$\begin{array}{l} \blacktriangleright \quad Y_{\infty} = \frac{\sqrt{90}}{4\pi m M_{Pl} \sqrt{g_*(x_f)} \left(\frac{a}{x_f} + \frac{3b}{x_f^2}\right)} \propto \frac{1}{\langle \sigma v \rangle} \\ \blacktriangleright \quad \Omega h^2 \propto m Y_{\infty} \propto \frac{1}{\langle \sigma v \rangle} \end{array}$$

▶ No known analytical solution in intermediate range $(m \simeq T)$

イロト イポト イヨト イヨト

Modifications required Treating the thermal average Solution of the Boltzmann equation

We need to...

- Modify the expression for abundance
 - Assuming Maxwell-Boltzmann distribution

$$Y_{eq} \equiv \frac{n_{eq}}{s} = 0.115 \frac{g}{g_{*s}} x^2 K_2(x)$$

 $K_n(x) =$ Modified Bessel function

New treatment for thermal averaging of cross-section

$$\langle \sigma v \rangle = rac{1}{8m^4 T K_2^2(m/T)} \int_{4m^2}^{\infty} ds \, \sigma \left(s - 4m^2\right) \sqrt{s} \, K_1(\sqrt{s}/T)$$

Note :- s here is the Mandelstam variable.

Modifications required Treating the thermal average Solution of the Boltzmann equation

Treating the thermal average

- Scenario :- Stable neutrinos
- Annihilation cross-section form
 - $\sigma v = \frac{G^2 s}{16\pi}$ (Dirac type, S-wave)

•
$$\sigma v = \frac{G^2 s}{16\pi} \left(1 - \frac{4m^2}{s} \right)$$

(Majorana type, P-wave)

We do not take into account resonance

•
$$\langle \sigma v \rangle_{app} / \langle \sigma v \rangle_{exact}$$
:

Ratio of approximate to exact cross sections

Thermally averaged annihilation cross-section

►
$$\langle \sigma v \rangle = \frac{G^2 m^2}{16\pi} \left(\frac{12}{x^2} + \frac{5+4x}{1+x} \right)$$
 (Dirac type, S-wave)
► $\langle \sigma v \rangle = \frac{G^2 m^2}{16\pi} \left(\frac{12}{x^2} + \frac{3+6x}{(1+x)^2} \right)$ (Majorana type, P-wave)

Modifications required Treating the thermal average Solution of the Boltzmann equation

Solution of the Boltzmann equation

- Freeze out temperature Γ(x_F) = H(x_F) where:- Γ(x_F) = ⟨σν⟩n_{eq}(x_F) (Different from standard definition of x_F)
- Leads to semi analytical expression for x_f hence computing Ωh² possible
- Assume that the comoving relic abundance does not change after decoupling

Feasibility of relic densities Entropy production

Feasibility of relic densities

- Decoupling at $x_F = 1.8$ and $g_{*s} = 10$ with $\Omega_{DM} h^2 = 0.13$ $\Rightarrow m \sim eV$
 - Too light
- Coupling $G > 1 GeV^{-2}$
 - Not a very promising scenario

イロト イポト イヨト イヨト

Feasibility of relic densities Entropy production

Entropy production

Out of equilibrium decay produces entropy

$$rac{s_f}{s_i} = 1.7 \, g_*^{1/4} rac{m Y \sqrt{ au}}{\sqrt{M_{pl}}} \propto \Omega h^2$$

 Sterile neutrinos decay through mixing with standard model neutrinos

$$\Gamma = \frac{1}{\tau} = \frac{G^2 m^2}{192\pi^3} sin^2 \theta$$

 Large pair annihilation rate via mediation of new U(1) gauge boson

Feasibility of relic densities Entropy production

Final results

 Entropy production s_f/s_i

- Region to the left of the bold line allowed ($\tau < 1$ Sec BBN contraint)
- Possible to produce large entropy

< E

・ロト ・回ト ・ヨト

Conclusion:-

- ► Found semi-analytical method to compute density of semi-relativistic relics (T_F ~ m)
- Semi-relativistic particles as a stable dark matter relic is not a very promising scenario
- They can be used to produce considerable amount of entropy in the early Universe

イロト イヨト イヨト イヨト