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The process of freeze out
Limitations of existing treatment

Thermal freeze out

◮ Once upon a time in distant past....
◮ Γ & H ⇒ A + B ↔ C + D
◮ Γ < H ⇒ Freeze out

◮ Boltzmann Equation L̂[f ] = C [f ]

dY

dx
=

−x〈σv〉s
H(m)

(Y 2 − Y 2
eq)

where:- s = entropy
Y = n

s

x = m
T

◮ Relic density Ωh2 = 2.8 × 108Y∞(m/GeV )

Suchita Kulkarni Investigating thermal abundance of semi-relativistic particles



Outline
Introduction

Mathematical formalism
Physical scenarios (toy models)

Conclusion

The process of freeze out
Limitations of existing treatment

Limiting cases

◮ Relativistic treatment (m ≪ T )
◮ Ωh2 ∝ m, independent of 〈σv〉

◮ Non-relativistic treatment (m ≫ T )
◮ Expansion of thermal average of cross-section in terms of

velocity 〈σv〉 = a + 6b
x

◮ Y∞ =
√

90

4πmMPl

√
g∗(xf )

„

a
xf

+ 3b

x2
f

« ∝ 1
〈σv〉

◮ Ωh2 ∝ mY∞ ∝ 1
〈σv〉

◮ No known analytical solution in intermediate range (m ≃ T )
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Modifications required
Treating the thermal average
Solution of the Boltzmann equation

We need to...

◮ Modify the expression for abundance
◮ Assuming Maxwell-Boltzmann distribution

Yeq ≡ neq

s
= 0.115

g

g∗s
x2K2(x)

Kn(x) = Modified Bessel function

◮ New treatment for thermal averaging of cross-section

〈σv〉 =
1

8m4TK 2
2 (m/T )

∫

∞

4m2

ds σ (s − 4m2)
√

s K1(
√

s/T )

Note :- s here is the Mandelstam variable.
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Treating the thermal average
Solution of the Boltzmann equation

Treating the thermal average

◮ Scenario :- Stable neutrinos

◮ Annihilation cross-section form
◮ σv = G 2s

16π

(Dirac type, S-wave)

◮ σv = G 2s
16π

(

1 − 4m2

s

)

(Majorana type, P-wave)

◮ We do not take into account
resonance

◮ 〈σv〉app/〈σv〉exact :
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◮ Thermally averaged annihilation cross-section

◮ 〈σv〉 = G 2m2

16π

(

12
x2 + 5+4x

1+x

)

(Dirac type, S-wave)

◮ 〈σv〉 = G 2m2

16π

(

12
x2 + 3+6x

(1+x)2

)

(Majorana type, P-wave)
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Modifications required
Treating the thermal average
Solution of the Boltzmann equation

Solution of the Boltzmann equation

◮ Freeze out temperature
Γ(xF ) = H(xF )
where:- Γ(xF ) = 〈σv〉neq(xF )
(Different from standard
definition of xF )

◮ Leads to semi analytical
expression for xf hence
computing Ωh2 possible

◮ Assume that the comoving relic
abundance does not change
after decoupling
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Semi-analytical
Numerical

Comparison of numerical and semi-analytical methods
For G = 1.16*10^-5 GeV^-2 (Majoana particles)

◮ Constant g∗s

◮ g = 2
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Feasibility of relic densities
Entropy production

Feasibility of relic densities

◮ Decoupling at xF = 1.8 and g∗s = 10 with ΩDMh2 = 0.13
⇒ m ∼ eV

◮ Too light

◮ Coupling G > 1GeV−2

◮ Not a very promising scenario
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Feasibility of relic densities
Entropy production

Entropy production

◮ Out of equilibrium decay produces entropy

sf

si
= 1.7 g

1/4
∗

mY
√

τ
√

Mpl

∝ Ωh2

◮ Sterile neutrinos decay through mixing
with standard model neutrinos

νs

ν

ν

ν

Γ =
1

τ
=

G 2m2

192π3
sin2θ

◮ Large pair annihilation rate via
mediation of new U(1) gauge boson

f̄

fνs

ν̄s

U
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Feasibility of relic densities
Entropy production

Final results

◮ Region to the left of the bold
line allowed (τ < 1 Sec BBN
contraint)

◮ Possible to produce large
entropy

◮ Entropy
production sf /si
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Conclusion:-

◮ Found semi-analytical method to compute density of
semi-relativistic relics (TF ∼ m)

◮ Semi-relativistic particles as a stable dark matter relic is
not a very promising scenario

◮ They can be used to produce considerable amount of
entropy in the early Universe
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