The number density of a charged relic

Federica Palorini

in collaboration with C. F. Berger, L. Covi, S. Kraml

Institut de Physique Nucléaire de Lyon

Second annual School of EU Network "The Origin of the Universe" - Oxford, September 2008

Big-Bang Nucleosynthesis limits on unstable relics

Minimal Supersymmetric Standard Model

Dark matter and thermal relics

Properties:

- Does not couple with photons
- Stable on cosmological scales
- Relic density:

$$\Omega_m h^2 = 0.1143 \pm 0.0034$$

Production:

- Thermal production, by scattering in the thermal plasma
- Non thermal production, by the decay of decoupled relics

Relic density

Big-Bang Nucleosynthesis limits on unstable relics Minimal Supersymmetric Standard Model

Number density of a thermal relic

Boltzmann equation:

$$\dot{n}_X + 3Hn_X = \int rac{dp_X^3}{(2\pi)^3 2E_X} \, \mathcal{C}[f_X]$$

 For a particle with conserved parity (e.g. R parity) collision integral at lowest order just two-particle scatterings

Relic density

Big-Bang Nucleosynthesis limits on unstable relics Minimal Supersymmetric Standard Model

Annihilation cross section of charged scalar particle

Abelian and non-abelian gauge interactions (depend on few parameters):

Unitarity bound \Rightarrow lower bound on yield:

$$\sigma_{ann} \leq rac{4\pi(2J+1)(1-\eta_J^2)}{(2s_p+1)^2\,ec{p}_i^2}$$

 \Rightarrow thermal average for a scalar particle:

$$\langle \sigma_{max} v \rangle_x = \frac{16\pi}{x^2} \frac{K_2(2x)}{K_2(x)^2}$$

Sommerfeld Enhancement

Expansion in terms of coupling close to threshold inadequate where:

$$\beta = \sqrt{1 - \frac{4m_X^2}{s}} \to 0$$

 \Rightarrow t-channel (ladder) exchanges of longitudinal gauge bosons.

Sommerfeld enhancement:

$$E \equiv \left|\Psi(0)
ight|^2 = rac{z}{1 - \exp(-z)}, \quad z = rac{Clpha\pi}{eta}$$

Corrected cross section:

$$\sigma^{\rm sf}(\beta, m_X) = E(\alpha(\beta m_X)) \times \sigma^0(\beta)$$

Relic density

Big-Bang Nucleosynthesis limits on unstable relics Minimal Supersymmetric Standard Model

Abelian and non-abelian relics

WMAP constraint and unitarity limit:

$$\Omega_X h^2 = m_X Y_{X+\bar{X}}(T_{now}) s(T_{now}) / \rho_c \le 0.13$$

 \Rightarrow for a stable scalar particle:

$$m_X \le 280 \text{ TeV}$$

BBN limits on decaying relics

Maximal values of $m_X Y_{X+\bar{X}}$ (GeV) allowed by BBN

m_X (TeV)	$10^{-1} - 10^2 s$	$10^2 - 10^7 s$	$10^7 - 10^{12} { m s}$
0.1	2×10^{-11}	$5 imes 10^{-14}$	10-14
1	1×10^{-10}	10 ⁻¹³	10 ⁻¹⁴
10	5×10^{-10}	$3 imes 10^{-13}$	10 ⁻¹⁴

For
$$B_H = 1$$

Relic staus

Number density:

- Dashed line for tree level $\tilde{\tau}\tilde{\tau}^* \rightarrow \gamma\gamma$ and dash-dotted includes Sommerfeld effect
- Full line includes annihilation into W and Z (other particles decoupled)
- Dotted line the case $m_{\tilde{B}} = 1.1 m_{\tilde{\tau}_1}$

BBN bounds:

- Full line for 0.1–100 s lifetime and $B_H = 0.65$,
- Dashed line for > 100 s lifetime and $B_H = 10^{-3}$.
- If lifetime exceeds ~ 10⁴ s, ⇒ CBBN constraints more important and quickly exclude number densities

Stau NLSP decay into axino or gravitino

Axino LSP:

$$\begin{split} \Gamma(\tilde{\tau}_R \to \tau \tilde{a}) &= (25 \text{ s})^{-1} \xi^2 \left(\frac{m_{\tilde{\tau}}}{10^2 \text{ GeV}}\right) \left(\frac{m_{\tilde{B}}}{10^2 \text{ GeV}}\right)^2 \left(\frac{10^{11} \text{ GeV}}{f_a}\right)^2 \left(1 - \frac{m_{\tilde{a}}^2}{m_{\tilde{\tau}}^2}\right) \\ &\Rightarrow \tau < 0.1 \text{ s for } m_{\tilde{\tau}} < 590 \text{ GeV} \end{split}$$

Gravitino LSP:

$$\Gamma(\tilde{\tau}_{R} \to \tau \,\tilde{G}) = (5.9 \times 10^{8} \text{ s})^{-1} \left(\frac{m_{\tilde{\tau}}}{100 \text{ GeV}}\right)^{5} \left(\frac{100 \text{ GeV}}{m_{3/2}}\right)^{2} \left(1 - \frac{m_{3/2}^{2}}{m_{\tilde{\tau}}^{2}}\right)^{4}$$

Relic stops

Top:

- Solid line for *t̃t*^{*} → gg, dashed line includes all channels into QCD+EW gauge and h bosons
- Dash-dotted line for $m_{\tilde{g}} = 2m_{\tilde{t}_R}$
- Dotted line the limit $Y_{\tilde{t}} = Y_{nab}/2$.

Bottom:

- Full line the tree level $\tilde{t}\tilde{t}^* \to gg$
- Dashed line and dash-dotted for $\sigma_{\rm av}^{\rm SF}$ and $\sigma_{\rm sum}^{\rm SF}$

BBN bound for 0.1–100 s lifetime (red line)

Stop NLSP decaying into axino or gravitino

Stop decay into a stable axino:

$$\Gamma(\tilde{t}_R \to t\tilde{a}) = (1.3 \times 10^{-3} \text{ sec})^{-1} \xi_t^2 \left(\frac{m_{\tilde{t}}}{10^2 \text{ GeV}}\right) \left(\frac{m_{\tilde{g}}}{10^2 \text{ GeV}}\right)^2 \left(\frac{10^{11} \text{ GeV}}{f_a}\right)^2 \left(1 - \frac{m_{\tilde{a}}^2}{m_{\tilde{t}}^2}\right)^2$$

• BBN bound never applies for $m_{\tilde{t}}^2 > (m_{\tilde{a}} + m_t)^2$

- for smaller $m_{\tilde{t}}$ virtual t and $\tau \sim 0.1$ s
- \Rightarrow BBN bounds completely avoided

Stop decay into a gravitino:

- Same formula as for stau, but width get suppressed for m_t < m_t + m_Ğ
- For 0.1 < τ < 100 s BBN limits avoided for m_i < 100 GeV (see plot before)
- Above 100 s, maybe in accord with BBN thanks to additional annihilation due to QCD phase transition

Conclusions

- Discussed the thermal production of a long lived charged relic
- Number density significantly altered by Sommerfeld enhancement
- Applied to the MSSM with stau or stop NLSP and axino or gravitino LSP
- BBN bounds give strong constraints, can be avoided for light masses
- BBN constraints can be avoided more easily for axino LSP

Berger, Covi, Kraml, Palorini, arXiv:0807.0211 [hep-ph]