Curvature Perturbations from Supersymmetric Flat Directions

Francesco Riva

University of Oxford and CERN

25 September 2008 UniverseNet 08 - Oxford

くしゃ 本面 そうせん ほう うめんろ

A. Riotto and F.R., PLB, [arXiv:0806.3382]

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

Outline

Fluctuations During Inflation

Dynamics after inflation

Decay and Production of Perturbations

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

Remarks and Conclusions II

・ロト ・ 「「・・」、・」、・「「・・」、

Fluctuations

During Inflation:

Recall FD potential for Flat Direction *QQQL* or *uude*

$$V(\phi) = -c_I H_I^2 |\phi|^2 + \left(\lambda \frac{\frac{\partial I}{\partial M_P}}{4M_P} \phi^4 + \text{h.c.}\right) + |\lambda|^2 \frac{|\phi|^6}{M^2},$$

FD VEV amplitude becomes large

$$\phi_I = |\phi_I| e^{i\theta_I}$$

• Mass of θ

$$m_\theta^2 \approx 4 a_I H_I^2 \ll H_I^2$$

 \Rightarrow Flat Direction phase θ_l fluctuates during inflation

$$|\delta\theta(k)|^2 \approx \frac{H_I^2}{2k^3|\phi_I|^2}$$

⇒ Different patches have different initial conditions

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

Fluctuations

During Inflation:

Recall FD potential for Flat Direction *QQQL* or *uude*

$$V(\phi) = -c_I H_I^2 |\phi|^2 + \left(\lambda \frac{\frac{\partial I}{\partial M_P}}{4M_P} \phi^4 + \text{h.c.}\right) + |\lambda|^2 \frac{|\phi|^6}{M^2},$$

FD VEV amplitude becomes large

$$\phi_I = |\phi_I| e^{i\theta_I}$$

• Mass of θ

$$m_\theta^2 \approx 4 a_I H_I^2 \ll H_I^2$$

 \Rightarrow Flat Direction phase θ_l fluctuates during inflation

$$|\delta\theta(k)|^2 \approx \frac{H_I^2}{2k^3|\phi_I|^2}$$

 \Rightarrow Different patches have different initial conditions

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

FD Potential During Inflation

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

Fluctuations in the FD Phase

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamic

Decay

Remarks and Conclusions II

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

AFTER Inflation

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

FD Dynamics

After (hybrid) Inflation:

- Energy transferred from ψ_1 to ψ_2 , inflation ends
- ψ_1 and ψ_2 have different couplings to FD
- FD potential V"(0) changes sign

$$V = +\frac{1}{2}H_{I}^{2}|\phi|^{2} + \left(\frac{a_{\rm osc}H_{I}}{M_{p}}\phi^{4} + h.c\right) + \lambda^{2}\frac{|\phi|^{6}}{M^{2}},$$

⇒ FD starts oscillations around $\phi = 0$ ⇒ Frequency of oscillations ~ H_I

For small a_{osc} ≠ 0 potential is phase-dependent
 ⇒ Different initial conditions θ_l have different dynamics

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

FD Dynamics

After (hybrid) Inflation:

- Energy transferred from ψ_1 to ψ_2 , inflation ends
- ψ_1 and ψ_2 have different couplings to FD
- FD potential V"(0) changes sign

$$V = +\frac{1}{2}H_{I}^{2}|\phi|^{2} + \left(\frac{a_{\rm osc}H_{I}}{M_{p}}\phi^{4} + h.c\right) + \lambda^{2}\frac{|\phi|^{6}}{M^{2}},$$

- ⇒ FD starts oscillations around $\phi = 0$ ⇒ Frequency of oscillations ~ H_I
- For small a_{osc} ≠ 0 potential is phase-dependent
 ⇒ Different initial conditions θ_l have different dynamics

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

FD Potetnial During Inflation

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

FD Potential After Inflation

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

Different Trajectories

 \Rightarrow FD passes at different distances from origin:

$$|\phi_*| \approx \frac{2\pi}{3} a_{\rm osc} |\phi_I| \sin(4\theta_I)$$

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

Different Trajectories

 \Rightarrow Different speed at origin:

$$|\dot{\phi}_*| pprox \mathcal{H}_I |\phi_I| \sqrt{1 + 4(a_{
m osc}/4)\cos(4 heta_I)}.$$

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

...Different Distance and speed at origin:

 \Rightarrow Different decay (preheat) efficiency into light fields

$$n_{\text{light}} = \frac{(h|\dot{\phi}_{*}|)^{3/2}}{8\pi^{3}} \exp\left[-\frac{\pi h|\phi_{*}|^{2}}{|\dot{\phi}_{*}|}\right] \quad \text{with} \quad \phi_{*} = \phi_{*}(\theta_{I})$$

⇒ Curvature perturbation

$$\zeta = rac{\dot{
ho}_{ ext{light}}}{\dot{
ho}_{ ext{tot}}} \, \zeta_{ ext{light}} \simeq -rac{1}{3} rac{
ho_{ ext{light}}}{
ho_{ ext{tot}}} rac{\delta \, n_{ ext{light}}}{n_{ ext{light}}},$$

 \Rightarrow Maximum spectrum for $\lambda = 0.01$

$$\mathscr{P}_{\zeta}^{1/2}(k) \simeq rac{\operatorname{cot}(4\theta_l)}{2\pi} \left(rac{H_l^3}{\lambda M_p^{(3)}}\right)^{1/2} \sim 2.5 \times 10^{-5},$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

...Different Distance and speed at origin:

 \Rightarrow Different decay (preheat) efficiency into light fields

$$n_{\text{light}} = \frac{\left(h|\dot{\phi}_*|\right)^{3/2}}{8\pi^3} \exp\left[-\frac{\pi h|\phi_*|^2}{|\dot{\phi}_*|}\right] \quad \text{with} \quad \phi_* = \phi_*(\theta_l)$$

 \Rightarrow Curvature perturbation

$$\zeta = \frac{\dot{\rho}_{\text{light}}}{\dot{\rho}_{\text{tot}}} \zeta_{\text{light}} \simeq -\frac{1}{3} \frac{\rho_{\text{light}}}{\rho_{\text{tot}}} \frac{\delta n_{\text{light}}}{n_{\text{light}}},$$

 \Rightarrow Maximum spectrum for $\lambda = 0.01$

$$\mathscr{P}_{\zeta}^{1/2}(k) \simeq rac{\cot(4\theta_I)}{2\pi} \left(rac{H_I^3}{\lambda M_p^{(3)}}\right)^{1/2} \sim 2.5 \times 10^{-5},$$

ション ふゆ ア キョン キョン ヨー もくの

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

...Different Distance and speed at origin:

 \Rightarrow Different decay (preheat) efficiency into light fields

$$n_{\text{light}} = \frac{\left(h|\dot{\phi}_*|\right)^{3/2}}{8\pi^3} \exp\left[-\frac{\pi h|\phi_*|^2}{|\dot{\phi}_*|}\right] \quad \text{with} \quad \phi_* = \phi_*(\theta_l)$$

 \Rightarrow Curvature perturbation

$$\zeta = rac{\dot{
ho}_{ ext{light}}}{\dot{
ho}_{ ext{tot}}} \, \zeta_{ ext{light}} \simeq -rac{1}{3} rac{
ho_{ ext{light}}}{
ho_{ ext{tot}}} rac{\delta n_{ ext{light}}}{n_{ ext{light}}},$$

 \Rightarrow Maximum spectrum for $\lambda = 0.01$

$$\mathscr{P}_{\zeta}^{1/2}(k) \simeq \frac{\cot(4\theta_I)}{2\pi} \left(\frac{H_I^3}{\lambda M_p^{(3)}}\right)^{1/2} \sim 2.5 \times 10^{-5},$$

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay

Remarks and Conclusions II

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Remarks and Conclusions II

- Large and possibly dominating curvature perturbation can be produced by the non-perturbative decay of Flat Directions
- FD QQQL and uude don't produce baryon isocurvature perturbation

ション ふゆ アメリア メリア しょうくしゃ

Large Non-Gaussianities are expected

Curvature Perturbations from Supersymmetric Flat Directions

Fluctuations

Dynamics

Decay