Gravitational lensing time delays as a tool for testing Lorentz Invariance Violation

Aleksandra Piórkowska

Department of Astrophysics and Cosmology, University of Silesia, Poland

apiorko@us.edu.pl

"UniverseNet" The second network school and meeting Oxford, UK

22 to 26 September 2008

General expectations from different approaches to quantum gravity:

possible breaking of basic symmetries of nature

(e.g. Lorentz and CPT symmetry)

manifested at very short distances/very high energy scale.

General expectations from different approaches to quantum gravity:

possible breaking of basic symmetries of nature

(e.g. Lorentz and CPT symmetry)

manifested at very short distances/very high energy scale.

Lorentz invariance violating (LIV) effect:

modification of the dispersion relation of the energetic particles propagating through the vacuum ...

General expectations from different approaches to quantum gravity:

possible breaking of basic symmetries of nature

(e.g. Lorentz and CPT symmetry)

manifested at very short distances/very high energy scale.

• Lorentz invariance violating (LIV) effect:

modification of the dispersion relation of the energetic particles propagating through the vacuum ...

• ... with the general form:

$$\mathbf{E^2} = \mathbf{F}(\mathbf{p},\mathbf{m}) \longrightarrow \mathbf{m^2c^4} + \mathbf{p^2c^2} \quad (\text{for small momenta})$$

General expectations from different approaches to quantum gravity:

possible breaking of basic symmetries of nature

(e.g. Lorentz and CPT symmetry)

manifested at very short distances/very high energy scale.

• Lorentz invariance violating (LIV) effect:

modification of the dispersion relation of the energetic particles propagating through the vacuum . . .

• ... with the general form:

$$\mathbf{E^2} = \mathbf{F}(\mathbf{p},\mathbf{m}) \longrightarrow \mathbf{m^2c^4} + \mathbf{p^2c^2} \hspace{0.2cm} (\text{for small momenta})$$

... and more useful form to search for low-energy effects:

$${\bf E^2}\simeq {\bf m^2c^4}+{\bf p^2c^2}+{\bf F_i^{(1)}p^i}+{\bf F_{ij}^{(2)}p^ip^j}+{\bf F_{ijk}^{(3)}p^ip^jp^k}+\dots$$

Modified dispersion relation

For rotational and translational invariant case:

$$\mathbf{F^{(n)}} = \epsilon \mathbf{E^2} (\frac{\mathbf{E}}{\xi_n \mathbf{E_{QG}}})^n$$

where:

- $\epsilon=\pm 1$ is a "sign parameter",
- n = 1, 2, ...
- ξ_n is a dimensionless parameter (related with the magnitude of LIV). We have only the lower bounds: $\xi_1 \gtrsim 0.01$ and $\xi_2 \gtrsim 10^{-9}$. Limit on higher values of n are too small.
 - M. Rodriguez Martinez and Tsvi Piran, JCAP04(2006)006, [arXiv:astro-ph/0601219]

Energy dependent group velocity

Interesting implication:

modified dispersion relation makes group velocity

of relativistic particles energy dependent

Energy dependent group velocity

Interesting implication:

modified dispersion relation makes group velocity of relativistic particles energy dependent

Important conclusion:

in the presence of LIV photons of different energies travel with different velocities and consequently with different times of arrival:

$$t = \int_0^z \left[1 + \epsilon \frac{n+1}{2} \left(\frac{\mathbf{E_0}}{\xi_n E_{QG}}\right)^n (1+z')^n\right] \frac{dz'}{H(z')}$$

time delay

• Time delay between two photons with energy difference ΔE :

$$\Delta t = \epsilon \frac{1}{2} \frac{n+1}{(\xi_n E_{QG})^n} \int_0^z (1+z')^n (\mathbf{E_2^n} - \mathbf{E_1^n}) \frac{dz'}{H(z')}$$

time delay

• Time delay between two photons with energy difference ΔE :

$$\Delta t = \epsilon \frac{1}{2} \frac{n+1}{(\xi_n E_{QG})^n} \int_0^z (1+z')^n (\mathbf{E_2^n} - \mathbf{E_1^n}) \frac{dz'}{H(z')}$$

Simple experimental setting for LIV testing:

searching for time delay by comparison between the arrival times of photons from distant, transient sources in different energy bands.

time delay

• Time delay between two photons with energy difference ΔE :

$$\Delta t = \epsilon \frac{1}{2} \frac{n+1}{(\xi_n E_{QG})^n} \int_0^z (1+z')^n (\mathbf{E_2^n} - \mathbf{E_1^n}) \frac{dz'}{H(z')}$$

Simple experimental setting for LIV testing:

searching for time delay by comparison between the arrival times of photons from distant, transient sources in different energy bands.

- **•** To put any constraints on quantum gravity energy scale we need:
 - fine-scale (millisecond) time structure,
 - hard spectrum (20 MeV and more),
 - cosmological distances.
 - G. Amelino-Camelia, John Ellis, N.E. Mavromatos, D.V. Nanopoulos and Subir Sarkar, Nature 393 (1998) 763 [arXiv: astro-ph/9712103].

LIV best laboratories

• Experimental tool:

- pulsars,
- Active Galactic Nuclei (AGN's) blazars (BL Lac),
- Gamma-Ray Bursters (GRB's).

LIV best laboratories

• Experimental tool:

- pulsars,
- Active Galactic Nuclei (AGN's) blazars (BL Lac),
- Gamma-Ray Bursters (GRB's).

Short comparison:

Source	Advantage	Problem
Pulsars	very well-defined time structure	only galactic distances
AGN's	TeV photons already detected	broad time structure
GRB's	cosmological distances	rather soft photons
	and fine-scale time structure	(up to MeV energy detected so far)

LIV best laboratories

Up-to-date best lower bounds on QG energy scale:

Crab pulsar (EGRET)	$E_{QG} > 1.8 \times 10^{15} \text{ GeV}$
[Philip Kaaret, (1999)]	
Mkn 421 (Whipple) [S.D. Biller et al., (1999)]	$E_{QG} > 6 imes 10^{16} \; \mathrm{GeV}$
Mkn 501 (MAGIC) [J. Albert et al., (2007)]	$E_{QG} > 0.17 \times 10^{18}$
Combined analysis of 35 GRBs (BATSE, HETE, and SWIFT) [John Ellis et al., (2006)]	$E_{QG} > 0.9 imes 10^{16} \; \mathrm{GeV}$
GRB 051221A (Swift-BAT and Konus-Wind) [M. Rodriguez Martinez, Tsvi Piran and Yonatan Oren, (2006)]	$E_{QG}\gtrsim 0.66 imes 10^{17}~{ m GeV}$

HIGHER ENERGIES

HIGHER ENERGIES

MORE DISTANT SOURCES

Gravitational lensing time delaysas a tool for testingLorentz Invariance Violation - p. 8/18

HIGHER ENERGIES

MORE DISTANT SOURCES

BETTER TEMPORAL RESOLUTION

Gravitational lensing time delaysas a tool for testingLorentz Invariance Violation - p. 8/18

HIGHER ENERGIES

• THE PROBLEM OF PAIR PRODUCTION:

Photons with energies above 10 TeV (like this from Mkn 501 BL Lac object)

should have been annihilated with CMBR background photons via pair production.

MORE DISTANT SOURCES

BETTER TEMPORAL RESOLUTION

HIGHER ENERGIES

• THE PROBLEM OF PAIR PRODUCTION:

Photons with energies above 10 TeV (like this from Mkn 501 BL Lac object)

should have been annihilated with CMBR background photons via pair production.

MORE DISTANT SOURCES

COSMOLOGICAL IMPACT:

Does cosmological model matter for time delay analysis?

BETTER TEMPORAL RESOLUTION

HIGHER ENERGIES

• THE PROBLEM OF PAIR PRODUCTION:

Photons with energies above 10 TeV (like this from Mkn 501 BL Lac object)

should have been annihilated with CMBR background photons via pair production.

MORE DISTANT SOURCES

COSMOLOGICAL IMPACT:

Does cosmological model matter for time delay analysis?

BETTER TEMPORAL RESOLUTION

INTRINSIC TIME LAGS:

How to distinguish LIV effects from any intrinsic (source) delay?

To tackle the problem with pair production

 We can use very high energy (100 TeV up to 10⁴ TeV) neutrinos from GRB's instead of photons

To tackle the problem with pair production

 We can use very high energy (100 TeV up to 10⁴ TeV) neutrinos from GRB's instead of photons

• EXTRA PROFIT:

- energies of such neutrinos are order of magnitude higher than GRB γ 's
- neutrino detectors like Ice Cube are extremely quiet in this energy range
 - Uri Jacob and Tsvi Piran,
 2007 Nature Phys. 3 87 [arXiv:hep-ph/0607145]

• Typical assumption in time delay data: ACDM model

- **Typical assumption in time delay data:** ACDM model
- But: the problem of "dark energy" triggered by current advances in observations leads to several cosmological scenarios.

- **J** Typical assumption in time delay data: ACDM model
- But: the problem of "dark energy" triggered by current advances in observations leads to several cosmological scenarios.
- Our ignorance concerning cosmological models creates systematic effect in time delay measurements:

$$\Delta t = \int_0^z \left[\frac{m_\nu^2 c^4}{2E_{\nu 0}} \frac{1}{(1+z')^2} - \epsilon \frac{n+1}{2} \left(\frac{E_{\nu 0}}{\xi_n E_{QG}}\right)^n (1+z')^n\right] \frac{dz'}{\mathbf{H}(\mathbf{z'})}$$

(time delay between 100 TeV neutrinos ($m_{\nu} = 1 \text{ eV}$) and the low energy photon's as a function of redshift in the different cosmological scenarios)

 Marek Biesiada and Aleksandra Piórkowska, 2007 J. Cosmol. Astopart. Phys. JCAP05(2007)011

Observed time delays for 100 Tev neutrinos as a function of redshift in different dark energy scenarios

(Upper curves correspond to $n = 2, \xi = 10^{-7}$, and the lower curves correspond to $n = 1, \xi = 1$)

How to get rid of intrinsic time lags?

- Statistical analysis of a sample of sources with known distance distribution.
 - John Ellis et al., AA 402-409-424 (2003)
 - John Elliset al., Astropart. Phys. 25 (2006) 402-411, [arXiv:astro-ph/0510172]
 - John Elliset al., [arXiv:astro-ph/0712.2781] (Erratum)

How to get rid of intrinsic time lags?

- Statistical analysis of a sample of sources with known distance distribution.
 - John Ellis et al., AA 402-409-424 (2003)
 - John Elliset al., Astropart. Phys. 25 (2006) 402-411, [arXiv:astro-ph/0510172]
 - John Elliset al., [arXiv:astro-ph/0712.2781] (Erratum)

• Other solution:

Observe time delays between lensed images in different energy channels.

- G. Amelino-Camelia, John Ellis, N.E. Mavromatos, D.V. Nanopoulos and Subir Sarkar, Nature 393 (1998) 763, [arXiv: astro-ph/9712103]
- M. Biesiada and A. Piórkowska, [arXiv:astro-ph/0712.0941]

Gravitational lensing time delays

Time delay between lensed images of the source:

- geometric delay due to bending the light rays
- Shapiro time delay from the gravitational field

ACHROMATIC time delay in SIS model of the lens potential:

$$\Delta t_{SIS} = \frac{2(1+z_l)}{c} \frac{D_l D_s}{D_{ls}} \vartheta_E \beta = \frac{8\pi}{H_0} \tilde{r}_l \beta \frac{\sigma^2}{c^2}$$

LIV induced time delays in GL

Gravitational lensing time delay in the presence of LIV would NO LONGER BE ACHROMATIC:

$$\Delta t_{LIV,SIS} = \frac{8\pi}{H_0} \widetilde{\mathbf{r}}_{\mathbf{LIV}}(\mathbf{z}_{\mathbf{l}}) \beta \frac{\sigma^2}{c^2}$$

where:

$$\widetilde{r}_{LIV}(z_l) = \widetilde{r}_l + H_0 \frac{n+1}{2} \left(\frac{\mathbf{E}}{\xi_n E_{QG}}\right)^n \int_0^{z_l} \frac{(1+z')^n dz'}{H(z')}$$

LIV induced time delays in GL

Gravitational lensing time delay in the presence of LIV would NO LONGER BE ACHROMATIC:

$$\Delta t_{LIV,SIS} = \frac{8\pi}{H_0} \widetilde{\mathbf{r}}_{\mathbf{LIV}}(\mathbf{z}_{\mathbf{l}}) \beta \frac{\sigma^2}{c^2}$$

where:

$$\widetilde{r}_{LIV}(z_l) = \widetilde{r}_l + H_0 \frac{n+1}{2} \left(\frac{\mathbf{E}}{\xi_n E_{QG}}\right)^n \int_0^{z_l} \frac{(1+z')^n dz'}{H(z')}$$

• Restriction for n = 1**:**

(LIV effect is extremely small)

$$\widetilde{\mathbf{r}}_{\mathbf{LIV}}(\mathbf{z}_l) = \widetilde{\mathbf{r}}_l + \mathbf{H_0} \frac{\mathbf{E}}{\mathbf{E_{QG}}} \int_0^{\mathbf{z}_l} \frac{(1+\mathbf{z}')d\mathbf{z}'}{\mathbf{H}(\mathbf{z}')}$$

LIV induced vs GL time delay

Assumptions:

- Only first order LIV effects
- Observations in low energy: time delay between images equal to Δt_{SIS} (LIV corrections are negligible)
- Monitoring of the same images in high energy (TeV) channel: time delay equal to $\Delta t_{LIV,SIS}$

LIV induced vs GL time delay

Assumptions:

- Only first order LIV effects
- Observations in low energy: time delay between images equal to Δt_{SIS} (LIV corrections are negligible)
- Monitoring of the same images in high energy (TeV) channel: time delay equal to $\Delta t_{LIV,SIS}$
- The difference between LIV induced and gravitational lensing time delays:

$$\Delta t_{\mathbf{LIV},\mathbf{SIS}} - \Delta t_{\mathbf{SIS}} = \frac{8\pi}{H_0} \beta \frac{\sigma^2}{c^2} \frac{E}{E_{\mathbf{QG}}} \int_0^{\mathbf{z}} \frac{(1+z')dz'}{H(z')}$$

LIV induced vs GL time delay

• Estimates for HST 14176+5226:

- ${\scriptstyle {\scriptstyle \bullet}} {\scriptstyle {\scriptstyle {\rm source}}} \rightarrow {\rm quasar}, {\scriptstyle {\scriptstyle {\scriptstyle {\rm Z}}} {\scriptstyle {\rm source}}} = 3.4$
- ${\scriptstyle {\rm J}} {\scriptstyle ~}$ lens ${\scriptstyle \rightarrow}$ elliptical galaxy, ${\scriptstyle {\rm Z}} {\scriptstyle {\rm lens}} = 0.809$
- from the lens model (best fitted to the observed images) based on a singular isothermal ellipsoid:

$$egin{aligned} & heta_{ extbf{E}} = \mathbf{1}''.489 \ & eta = \mathbf{0}".\mathbf{13} = \mathbf{8.4} imes \mathbf{10^{-7} \ rad} \end{aligned}$$

 SUBARU / Keck optical spectroscopy measurements of the velocity dispersion in lensing galaxy gives:

$$\sigma = 290 \pm 8 \text{ km/s}$$

$$egin{aligned} \Delta extstyle extsty$$

LIV modification of image configurations

• ANOTHER EFFECT:

images seen at different energies should be located at different positions

 Fermat's principle -> images located at stationary points of the wavefront travel time functional, which is energy dependent in LIV.

LIV modification of image configurations

ANOTHER EFFECT:

images seen at different energies should be located at different positions

 Fermat's principle -> images located at stationary points of the wavefront travel time functional, which is energy dependent in LIV.

BUT

the difference between Einstein radii for high and low energy photons would be:

$$\Delta \theta_{E,LIV} = \theta_E \; \frac{E}{E_{QG}} \left(\frac{I^{(1)}(z_l, z_s)}{\widetilde{r}(z_l, z_s)} - \frac{I^{(1)}(z_s)}{\widetilde{r}(z_s)} \right)$$

where:

$$I^{(1)}(z_1, z_2) := \int_{z_1}^{z_2} \frac{(1+z')dz'}{H(z')}$$

LIV modification of image configurations

ANOTHER EFFECT:

images seen at different energies should be located at different positions

 Fermat's principle -> images located at stationary points of the wavefront travel time functional, which is energy dependent in LIV.

BUT

the difference between Einstein radii for high and low energy photons would be:

$$\Delta \theta_{E,LIV} = \theta_E \, \frac{E}{E_{QG}} \left(\frac{I^{(1)}(z_l, z_s)}{\widetilde{r}(z_l, z_s)} - \frac{I^{(1)}(z_s)}{\widetilde{r}(z_s)} \right)$$

where:

$$I^{(1)}(z_1, z_2) := \int_{z_1}^{z_2} \frac{(1+z')dz'}{H(z')}$$

For realistic lens configurations like HST 14176+5226 this would give negligibly small corrections of order 10⁻¹⁶ arc sec

 Measurements searching for time delay by comparison between the arrival times of photons from distant, transient sources in different energy bands is very promising tool in LIV testing.

- Measurements searching for time delay by comparison between the arrival times of photons from distant, transient sources in different energy bands is very promising tool in LIV testing.
- Several problems in this technique exist:
 - our ignorance concerning cosmological models creates systematic effect in time delay measurements;
 - knowledge about intrinsic emission delays in different energy channels is crucial.

- Measurements searching for time delay by comparison between the arrival times of photons from distant, transient sources in different energy bands is very promising tool in LIV testing.
- Several problems in this technique exist:
 - our ignorance concerning cosmological models creates systematic effect in time delay measurements;
 - knowledge about intrinsic emission delays in different energy channels is crucial.
- New test of LIV effects:

(independent on cosmology and intrinsic time-lags)

time delays between images of gravitationally lensed quasars should be different at different energies (e.g. optical or gamma-rays and TeV photons).

- Measurements searching for time delay by comparison between the arrival times of photons from distant, transient sources in different energy bands is very promising tool in LIV testing.
- Several problems in this technique exist:
 - our ignorance concerning cosmological models
 creates systematic effect in time delay measurements;
 - knowledge about intrinsic emission delays in different energy channels is crucial.
- New test of LIV effects:

(independent on cosmology and intrinsic time-lags)

time delays between images of gravitationally lensed quasars should be different

at different energies (e.g. optical or gamma-rays and TeV photons).

The idea looks very interesting, but at present seems experimentally unrealistic.