Leptogenesis with Supersymmetric Flat Directions

Lotta Mether

Helsinki Institute of Physics

UniverseNet School Oxford September 25th 2008

with Gian Giudice, Antonio Riotto and Francesco Riva, PLB, [arXiv:0804.0166]

Introduction

- Supersymmetric thermal leptogenesis with hierachical right-handed neutrino mass spectrum requires $T_{\rm RH}\gtrsim 10^9~{
 m GeV}$ • This is in conflict with the BBN gravitino bound
 - $T_{
 m RH} \lesssim 10^7 \;
 m GeV$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

• Supersymmetric thermal leptogenesis with hierachical right-handed neutrino mass spectrum requires

 $T_{\rm RH}\gtrsim 10^9~GeV$

- This is in conflict with the BBN gravitino bound $T_{
 m BH} \leq 10^7~{
 m GeV}$
- Possible solutions:
 - Modify assumptions on gravitinos
 - Modify properties of neutrino spectrum
 - Assume non-thermal production by added coupling
- However, possible non-thermal production channel already contained in the framework: SUSY flat directions decaying through instant preheating

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Instant preheating

Flat directions in the early Universe

Leptogenesis from flat directions

Conclusions

Preheating

Consider chaotic inflation $V(\phi) = \frac{1}{2}m^2\phi^2$

- Suppose coupling $\mathcal{L}_{\textit{I}}=-\frac{1}{2}g^{2}\phi^{2}\chi^{2}$ to scalar χ

$$\Rightarrow m_{\chi}^2(t) = m_{\chi}^2 + g^2 \phi^2(t)$$

Preheating

Consider chaotic inflation $V(\phi) = \frac{1}{2}m^2\phi^2$

• Suppose coupling $\mathcal{L}_{I}=-rac{1}{2}g^{2}\phi^{2}\chi^{2}$ to scalar χ

$$\Rightarrow m_{\chi}^2(t) = m_{\chi}^2 + g^2 \phi^2(t)$$

- After inflation ϕ starts oscillating about $\phi = 0$
- For $|\dot{m_{\chi}}| \gtrsim m_{\chi}^2(t)$ adiabaticity is violated

 \Rightarrow almost instantaneous production of χ particles in small region around $\phi={\rm 0}$

Instant preheating

• Suppose now χ couples to another (fermion) field ψ through

$$\mathcal{L}_{I} = -h\bar{\psi}\psi\chi$$

 Γ(χ → ψψ) ∝ m_χ ⇒ as χ gets heavier it becomes more and more unstable, and eventually decays into ψ particles

Instant preheating

• Suppose now χ couples to another (fermion) field ψ through

$$\mathcal{L}_{I} = -h\bar{\psi}\psi\chi$$

 Γ(χ → ψψ) ∝ m_χ ⇒ as χ gets heavier it becomes more and more unstable, and eventually decays into ψ particles

\Rightarrow Instant preheating

- Allows ψ production even for $m_\psi \gg m_\phi$
- Same mechanism works for other scalar fields as well, e.g. SUSY flat directions

Instant preheating

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Instant preheating

Instant preheating

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

Flat directions in the early Universe

- Directions ϕ in scalar field space with V = 0 for exact SUSY
- Potential from SUSY breaking and non-renormalizable terms $V(\phi) = (\tilde{m}^2 - cH^2)|\phi|^2 + \left(\lambda \frac{A + aH}{nM^{n-3}}\phi^n + h.c.\right) + |\lambda|^2 \frac{|\phi|^{2n-2}}{M^{2n-6}}$

Flat directions in the early Universe

- Directions ϕ in scalar field space with V = 0 for exact SUSY
- Potential from SUSY breaking and non-renormalizable terms $V(\phi) = (\tilde{m}^2 - cH^2)|\phi|^2 + \left(\lambda \frac{A + aH}{nM^{n-3}}\phi^n + h.c.\right) + |\lambda|^2 \frac{|\phi|^{2n-2}}{M^{2n-6}}$
- During inflation, φ obtains large VEV when H ~ m̃, V"(φ) changes sign ⇒ new minimum at φ = 0
- The term ∝ φⁿ in general complex ⇒ φ spirals around origin ⇒ no instant preheating (unless several flat directions)

Flat directions in the early Universe

- Directions ϕ in scalar field space with V = 0 for exact SUSY
- Potential from SUSY breaking and non-renormalizable terms $V(\phi) = (\tilde{m}^2 - cH^2)|\phi|^2 + \left(\lambda \frac{A + aH}{nM^{n-3}}\phi^n + h.c.\right) + |\lambda|^2 \frac{|\phi|^{2n-2}}{M^{2n-6}}$
- During inflation, φ obtains large VEV when H ~ m̃, V"(φ) changes sign ⇒ new minimum at φ = 0
- The term ∝ φⁿ in general complex ⇒ φ spirals around origin ⇒ no instant preheating (unless several flat directions)
- Consider thus $A \sim 0$ or W = 0, so that ϕ passes close enough to the origin for instant preheating to occur

Choice of flat direction

- Goal is to produce right handed neutrinos $\phi o X o N_1$
 - $X = H_U$ couples to N_1 via superpotential term $h_{1j}N_1\ell_jH_U$ \Rightarrow suitable for leptogenesis

Choice of flat direction

• Goal is to produce right handed neutrinos $\phi o X o N_1$

 $X = H_U$ couples to N_1 via superpotential term $h_{1j}N_1\ell_jH_U$ \Rightarrow suitable for leptogenesis

• Consider flat directions involving u_3 , so that the condensate couples to H_U through top Yukawa term $h_t^2 |\phi|^2 |H_U|^2$

• Example $\phi = Que$

Leptogenesis

- When ϕ approaches the origin adiabaticity is violated and particles, including H_U are produced
- As ϕ continues its oscillation, H_U increases in mass

$$m_{H_U}^2 = \widetilde{m}_{H_U}^2 + h_t^2 \left|\phi\right|^2$$

and becomes unstable

Leptogenesis

- When ϕ approaches the origin adiabaticity is violated and particles, including H_U are produced
- As ϕ continues its oscillation, H_U increases in mass

$$m_{H_U}^2 = \widetilde{m}_{H_U}^2 + h_t^2 \left|\phi\right|^2$$

and becomes unstable

• Most decay channels of H_U blocked due to large masses from the ϕ VEV, in particular if Q_3 not in the flat direction

 \Rightarrow H_U decays mainly into $N_1 + \ell$

• When $\phi \rightarrow 0$ again, m_{H_U} decreases and the produced N_1 can efficiently decay into $H_U + \ell$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Leptogenesis

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

Leptogenesis

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の < @

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The baryon asymmetry

• Assuming efficient decay $n_{N_1} \sim n_{H_U}$, the resulting baryon asymmetry at reheating becomes

$$Y_B = 10^{-19} M_1 \left(\frac{T_{\rm RH}}{10^7 \,{
m GeV}} \right) \left(\frac{|\phi_0|}{M_p} \right)^{3/2} \left(\frac{100 \,{
m GeV}}{\widetilde{m}} \right)^{1/2}$$

The baryon asymmetry

• Assuming efficient decay $n_{N_1} \sim n_{H_U}$, the resulting baryon asymmetry at reheating becomes

$$Y_B = 10^{-19} M_1 \left(\frac{T_{\rm RH}}{10^7 \, {\rm GeV}}\right) \left(\frac{|\phi_0|}{M_p}\right)^{3/2} \left(\frac{100 \, {\rm GeV}}{\widetilde{m}}\right)^{1/2}$$

 \Rightarrow Observed baryon asymmetry $Y_B\simeq 0.87 imes 10^{-10}$ produced if

$$M_1\gtrsim 2 imes 10^{11}\,{
m GeV}\left(rac{10^7\,{
m GeV}}{T_{
m RH}}
ight)\left(rac{M_p}{|\phi_0|}
ight)^{3/2}\left(rac{\widetilde{m}}{100\,{
m GeV}}
ight)^{1/2}$$

The baryon asymmetry

• Assuming efficient decay $n_{N_1} \sim n_{H_U}$, the resulting baryon asymmetry at reheating becomes

$$Y_B = 10^{-19} M_1 \left(\frac{T_{\rm RH}}{10^7 \,{
m GeV}} \right) \left(\frac{|\phi_0|}{M_p} \right)^{3/2} \left(\frac{100 \,{
m GeV}}{\widetilde{m}} \right)^{1/2}$$

 \Rightarrow Observed baryon asymmetry $Y_B\simeq 0.87 imes 10^{-10}$ produced if

$$M_1\gtrsim 2\times 10^{11}\,{\rm GeV}\left(\frac{10^7\,{\rm GeV}}{T_{\rm RH}}\right)\left(\frac{M_p}{|\phi_0|}\right)^{3/2}\left(\frac{\widetilde{m}}{100\,{\rm GeV}}\right)^{1/2}$$

• The maximum produced neutrino mass (for $h_t \sim 0.6$) is

$$M_1^{\rm max} \simeq h_t \phi^{\rm max} = 4 \times 10^{12} \ {\rm GeV} \Big(\frac{\phi_0}{M_p} \Big)^{\frac{1}{2}} \Big(\frac{\widetilde{m}}{100 \, {\rm GeV}} \Big)^{\frac{1}{2}}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Remarks and Conclusion

- Gravitinos produced through scattering of decay products, but never more than during reheating
- Wash out through inverse processes negligible, $M_1 \gg T_{eff}$

Remarks and Conclusion

- Gravitinos produced through scattering of decay products, but never more than during reheating
- Wash out through inverse processes negligible, $M_1 \gg T_{eff}$

The conflict with the gravitino bound in SUSY leptogenesis with hierarchical right-handed neutrino masses can be avoided, BUT

- Requires ϕ_0 close to M_P
- Phase dependent terms in superpotential small or vanishing