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Introduction

Combined observational data from CMB, SN, LSS indicate that

i) Universe expands in accelerating rate

ii) Most of the energy density of the universe is in a dark form

(dark matter, dark energy)

Within GR one must introduce extra fields to play the role of

dark matter (e.g. superpartners) and dark energy (e.g. dynamical

scalar field)

Alternative: Explain dark side of the universe by modifying grav-

ity
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Consider the model

S =
∫

d4x
√−gf(R) + Smatter (1)

Varying w.r.t. metric we obtain the field eqns for gravity (gen-
eralized Einstein’s eqns)

Gµν = Tmatter
µν + T grav

µν (2)

The second term in total energy-momentum tensor comes from
gravity itself and can play the role of dark energy.

In addition: One can compute the gravitational potential in the
non-relativistic limit

V (r) =
1

r
+ δV (r) (3)

The modification in the gravitational potential can explain the
galaxy rotation curves without dark matter.
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The model

We wish to investigate primordial nucleosynthesis and WIMP

dark matter within the simple model

f(R) ∼ Rn (4)

where n is the parameter of the model and the special value

n = 1 corresponds to GR. First obtain the field eqns

f ′Rµν − 1

2
fgµν −∇µ∇νf ′ + gµν¤f ′ = κ2Tµν, (5)

where Tµν is the energy-momentum tensor for the matter.

For gravity we consider the spatially flat Robertson-Walker line

element

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2), (6)
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For matter we consider a cosmological fluid (ρ(t), pressure p(t))

Tµ
ν = diag(ρ,−p,−p,−p) (7)

Using the cosmological equations it is possible to obtain exact

simple solution for the early universe (radiation era)

a(t) ∼ tn/2 (8)

and

H(T ) ∼ T2/n (9)
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Nucleosynthesis

Consider temperatures T ≤ 100 MeV so that nucleons exist.

Define ∆m = mn −mp = 1.29, y = ∆m/T , τ ' 886 sec, and

Xn =
nn(T )

nn(T ) + np(T )
(10)

The cosmological helium abundance is given by

Y4 = 2exp(−tc/τ)X(T ' 0) (11)

where tc ∼ 3 min corresponds to the temperature (1/25 of deu-

terium binding energy or 100 keV) at which deuterium can form

helium

exp(B/Tc)η ∼ 1 (12)
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The frozen value X(T ' 0) is computed solving the basic rate
equation (I.C. X(y = 0) = 1/2)

dX(t)

dt
= λpn(t)(1−X(t))− λnp(t)X(t) (13)

where λpn: processes protons into neutrons
and λnp: processes neutrons into protons.
From particle physics

λnp(y) =

(
255

τy5

)
(12 + 6y + y2) (14)

and

λpn(y) = e−yλnp(y) (15)

In terms of y

dX(y)

dy
=

dt

dy
(λpn(y)(1−X(y))− λnp(y)X(y)) (16)
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Theoretical helium 4 abundance versus δ = 1 − n. The strip

shows the allowed observational range.
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Dark (WIMP) matter

Assume that a weakly interacting particle χ of mass m ∼ 100 GeV

plays the role of DM in the universe

Must compute the abundance and impose the DM constraint

Ωχh2 = Ωdmh2 ∼ 0.1 (17)

Standard method: Integrate Boltzmann eqn

ṅ + 3Hn = − < συ > (n2 − n2
EQ) (18)

Introduce new dimensionless quantities

x =
m

T
(19)

Y =
n

s
(20)
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Using

H(T ) = 1.67g
1/2
∗ T2/Mp (21)

< συ > = σ0x−l (22)

the Boltzmann equation takes the final compact form

dY

dx
= −λx−l−2(Y 2 − Y 2

EQ) (23)

Finally thermal relic abundance for WIMP is given by

Ωχh2 = Ωcdmh2 =
mY∞s(T0)h

2

ρcr
(24)

Y∞ ≡ Y (x = ∞) =
l + 1

λ
xl+1

f (25)

where xf ' 22 determined by H ∼ Γ
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In the s-wave approximation (l = 0) and for a typical cross sec-

tion σ0 ∼ α2/M2
ew one obtains Ωχh2 ∼ 0.1.

Now take into account the modifications of gravity

l̃ = l + (2− 1

α
) (26)

σ̃0 =
H(m)

Hα(m)
σ0 (27)

where

Hα(m) =
αA

1
2

g
1
4α
α M

1
2α
p

(
4π3g∗
15

) 1
4α

m
1
α (28)

and

H(m) ≡ Hα=1/2(m) (29)
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Neutralino relic density versus δ = 1 − n. The strip shows the

allowed observational range.
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Conclusions

- We have discussed a class of modifications of gravity, f(R) ∼
Rn

- This class of models predict a new expansion law for the early

universe, a(t) ∼ tn/2

- BBN and WIMP dark matter considerations constrain the single

model parameter n

- Our investigation shows that the bound coming from BBN is

more stringent, and n ' 1

- The main result is that the class of models under discussion is

only slightly different than Einstein’s general relativity
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Thank you
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