On stars in f(R) gravity models

Vappu Reijonen

Helsinki Institute of Physics, Finland

Stars in f(R) gravity models

If you modify General Relativity,

what happens to stars?

Drastic changes in structure?

...Observations?

f(R) models

• f(R) theories:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} f(R) + \int d^4x \sqrt{-g} \mathcal{L}_m, \qquad (1)$$

- GR: $R 2\Lambda \rightarrow A$ general function of R: f(R)
- E.g. $f(R) = R \mu^4/R$
- Could construct models using other Lorentz invariant quantities $(R_{\mu\nu}R^{\mu\nu}, \nabla_{\mu}R\nabla^{\mu}R, ...)$
- f(R) models are a subclass of scalar-tensor theories

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

f(R) models

- Why study extensions to GR?
 - Observations (dark energy, dark matter)
 - Theory (GR an effective theory of gravity)
 - Just because it's interesting (How "stable" is GR?)
- Inflation models (Starobinsky 1980), eg. $f(r) = R + \alpha R^2$
- "First papers on cosmological models in f(R) gravity appeared already in 1969-1970" (Starobinsky: *Disappearing cosmological constant in* f(R)gravity, arXiv: 0706.2041)

f(R) models

- f(R) as "geometrical dark energy" modifying the gravity sector, not the matter sector
- DE: the expansion of the universe seems to be accelerating ...a huge amount of suggestions giving good a(t)
 → reason some out by supplementary investigations!

(E.g. contradicting structure formation, or what is done here)

• $f(R) = R - \frac{\mu^4}{R} \rightarrow$ "the simplest correction which becomes important at extremely low curvatures"

(Carroll, Duvvuri, Trodden, Turner: *Is cosmic speed-up due to new gravitational physics?*, arXiv: astro-ph/0306438)

[–] Typeset by FoilT $_{\!E\!}\mathrm{X}$ –

- Palatini vs. metric formalism
 - Palatini: the connection $\Gamma^{\rho}_{\mu\nu}$ defining the Riemann tensor

$$R^{\rho}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\Lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}$$
(2)

and the metric $g_{\mu\nu}$ are both free dynamical variables

– Metric formalism: $g_{\mu\nu}$ a free variable, the Levi-Civita connection

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2}g^{\rho\sigma}(\partial_{\mu}g_{\sigma\nu} + \partial_{\nu}g_{\sigma\mu} - \partial_{\sigma}g_{\mu\nu})$$
(3)

 Test particles fall along the extremal (shortest, "straight") paths on the manifold = the affine geodesics wrt the Levi-Civita connection

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Spherically symmetric solutions

• Cosmological expansion history \rightarrow the modified Friedmann equations

But (how) does theSchwarzschild solution change?The interior solution, the star?

Spherically symmetric solutions

- The general static, spherically symmetric metric + star: perfect fluid $ds^{2} = -e^{A(r)}dt^{2} + e^{B(r)}dr^{2} + r^{2}d\Omega^{2}$ $+ T^{\mu}_{\nu} = \text{diag}(-\rho(r), p(r), p(r), p(r))$
- To determine

the metric (A(r), B(r))

+ the stellar structure ($\rho(r), p(r)$)

need to solve the gravitational field equations

= the (MODIFIED) Einstein equation

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Schwarzschild- de Sitter and TOV

• GR:

$$- R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu} - \Lambda g_{\mu\nu} - \nabla_{\mu}T^{\mu\nu} = 0$$

- Exterior $(T_{\mu\nu} = 0, r \ge R)$: The Schwarzschild- de Sitter solution

$$ds^{2} = -\left(1 - \frac{2GM}{r} - \frac{1}{3}\Lambda r^{2}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{2GM}{r} - \frac{1}{3}\Lambda r^{2}} + r^{2}d\Omega^{2}$$

- Interior $(r \leq R)$: The Tolman-Oppenheimer-Volkoff (TOV) = eq. of the hydrostatic equilibrium inside the star

$$\frac{dp(r)}{dr} = -\frac{(\rho(r) + p(r))(Gm(r) + 4\pi Gr^3 p(r))}{r(r - 2Gm(r))}, \text{ where } m(r) = \int_0^r dr 4\pi r^2 \rho(r)$$

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

Schwarzschild- de Sitter and TOV

• The mass parameter m(r) defined

$$(g_{rr} =)e^{B(r)} = \frac{1}{1 - 2Gm(r)/r}$$

- The Schwarzschild mass M = m(R)
- The equation $m(r) = \int_0^r dr 4\pi r^2 \rho(r)$ comes from the Einstein equation
- M the mass of an object $(M \neq \int_0^R dr e^{B(r)/2} 4\pi r^2 \rho(r) !)$

Spherical solutions in the f(R) theories: Metric f(R) gravity

• The modified Einstein equation - vary the action wrt the metric

$$FR_{\mu\nu} - \frac{1}{2}fg_{\mu\nu} - \nabla_{\mu}\nabla_{\nu}F + g_{\mu\nu}\Delta^{\alpha}\Delta_{\alpha}F = 8\pi GT_{\mu\nu},$$

notation: $F(R) \equiv \frac{\partial f(R)}{\partial R}$, eg. $f(R) = R - \mu^4/R \rightarrow F(R) = 1 + \mu^4/R^2$

• $\nabla_{\mu}T^{\mu\nu} = 0$

• The trace: $\nabla_{\mu}\nabla^{\mu}F + \frac{1}{3}(FR - 2f) = \frac{8\pi G}{3}T - cf. GR: R = -8\pi GT + 4\Lambda$

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Spherical solutions in the f(R) theories: Metric f(R) gravity

• In the spherically symmetric, static case $(' \equiv \frac{d}{dr})$

$$\begin{aligned} A' &= -\frac{1}{1+rF'/2F} \left(\frac{1-e^B}{r} - \frac{re^B}{F} 8\pi G p + \frac{re^B}{2} \left(R - \frac{f}{F} \right) + \frac{2F'}{F} \right) \\ B' &= \frac{1-e^B}{r} + \frac{re^B}{F} \frac{8\pi G}{3} (2\rho + 3p) + \frac{re^B}{6} \left(R + \frac{f}{F} \right) - \frac{rF'}{2F} A'. \end{aligned}$$

Spherical solutions in the f(R) theories: Palatini f(R) gravity

• The modified Einstein equation – vary the action wrt $g_{\mu\nu}$ and $\Gamma^{\rho}_{\mu\nu}$:

$$FR_{\mu\nu} - \frac{1}{2}fg_{\mu\nu} = 8\pi GT_{\mu\nu}$$

$$\nabla_{\rho}(\sqrt{-g}Fg^{\mu\nu}) = 0$$

• $\tilde{\nabla}_{\mu}T^{\mu\nu} = 0$, where $\tilde{\nabla}_{\mu}$ is the covariant derivative wrt. the Levi-Civita

• The trace: $FR - 2f = 8\pi GT$ (GR: $R = -8\pi GT + 4\Lambda$)

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

• In the spherically symmetric, static case

$$A' = -\frac{1}{1+rF'/2F} \left(\frac{1-e^B}{r} - \frac{e^B}{F} 8\pi Grp + \frac{\alpha}{r}\right)$$

$$B' = \frac{1}{1 + rF'/2F} \left(\frac{1 - e^B}{r} + \frac{e^B}{F} 8\pi G r\rho + \frac{\alpha + \beta}{r} \right)$$

where

$$\alpha = r^2 \left(\frac{3}{4} \left(\frac{F'}{F} \right)^2 + \frac{2F'}{rF} + \frac{e^B}{2} \left(R - \frac{f}{F} \right) \right)$$
$$\beta = r^2 \left(\frac{F''}{F} - \frac{3}{2} \left(\frac{F'}{F} \right)^2 \right) \qquad \leftarrow F'' \propto T'' !!!$$

• The continuity equation $p' = -\frac{A'}{2}(\rho + p)$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Solar System observations

- The structure and microphysics of the Sun well known (interior solution)
- So far the experiments (exterior solution) give upper bounds for deviations from GR

• No contradiction to GR predictions has been observed (except the Pioneer anomaly)

Solar System observations

• E.g. Solar System observations constrain the value of the cosmological constant (Kagramanova, Kunz, Lammerzahl: *Solar system effects in Schwarzshild-de Sitter spacetime*, arXiv: gr-qc/0602002):

Observed effect	Estimate on Λ
gravitational redshift	$ \Lambda \le 10^{-27} m^{-2}$
perihelion shift	$ \Lambda \le 10^{-41} m^{-2}$
light deflection	no effect
gravitational time delay	$ \Lambda \le 6 \cdot 10^{-24} m^{-2}$
geodetic precession	$ \Lambda \le 10^{-27} m^{-2}$
Pioneer anomaly	$\Lambda \sim -10^{-37} m^{-2}$

- To account for dark energy $\Lambda \sim 10^{-52} m^{-2}$

– Typeset by FoilT $_{\!E\!}\mathrm{X}$ –

The Post-Newtonian parameters

- The amount of deviations from Newtonian theory in Solar System scale gravity effects ("weak field limit")
- The Post-Newtonian parameters β_{PPN} and γ_{PPN} :

$$ds^2 = -\left(1 - \frac{2GM}{r} + \frac{\beta_{PPN}}{2} \left(\frac{2GM}{r}\right)^2\right) dt^2 + \left(1 + \gamma_{PPN} \frac{2GM}{r}\right) \left(dr^2 + r^2 d\Omega^2 + r^2 d\Omega^2\right) dt^2 + \left(1 + \gamma_{PPN} \frac{2GM}{r}\right) \left(dr^2 + r^2 d\Omega^2 + r^2 d\Omega^2\right) dt^2 + \left(1 + \gamma_{PPN} \frac{2GM}{r}\right) \left(dr^2 + r^2 d\Omega^2\right) dt^2 + \left(1 + \gamma_{PPN} \frac{2GM}{r}\right) \left(dr^2 + r^2 d\Omega^2\right) dt^2 + \left(1 + \gamma_{PPN} \frac{2GM}{r}\right) dt^2 + \left(1 + \gamma_{PN} \frac{2GM}{r}\right) dt^2 + \left(1 + \gamma_{PN} \frac{2GM}{r}\right) dt^2 + \left(1 + \gamma_{PN} \frac{2GM}{r}\right) dt^2 +$$

•
$$\beta_{PPN} = 1, \gamma_{PPN} = 1$$
 in GR

• Experiments: Lunar Laser Ranging $\beta_{PPN} - 1 \le 2.3 \cdot 10^{-4}$

Cassini Tracking
$$\gamma_{PPN} - 1 \leq 2.3 \cdot 10^{-5}$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

The weak field limit in f(R) models

• Kainulainen, Reijonen, Sunhede: *The interior spacetimes of stars in Palatini* f(R) gravity. **arXiv: gr-qc/0611132**; Kainulainen, Piilonen, Reijonen, Sunhede: Spherically symmetric spacetimes in f(R) gravity theories. **arXiv: 0704.2729**

Numerical results: the Sun + $f(R) = R - \mu^4/R$

- Palatini f(R): $\gamma_{PPN} = 1$
- Metric f(R): $\gamma_{PPN} = 1/2(!!!)^*$

*) except for a tuned class of solutions \rightarrow the Dolgov-Kawasaki instability, see Kainulainen, Sunhede: On the stability of spherically symmetric spacetimes in metric f(R) gravity, arXiv: 0803.0867

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ –

Compact objects in modified gravity theories

• Compact objects: white dwarfs, neutron stars and black holes

- the final stages of stellar evolution

• Small size, enormous densities

- strong gravitational fields, advanced microphysics

• Equilibrium structure and stability:

f(R) (or other alternative gravity models) vs. GR

• Binary star dynamics; rotation; magnetic fields; gravitational waves; supernovae; ...

– Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

Compact objects in modified gravity theories

- The "death" of a star: no more nuclear fuel to burn no more support by thermal pressure against gravitational collapse
 - White dwarfs: the pressure of degenerate electrons
 - Neutron stars: \sim the pressure of degenerate neutrons
- Degenerate Fermi gas; T = 0 single species of ideal (non-interacting) fermions

$$p = \frac{2}{3h^3} \int_0^{p_F} dp 4\pi p^2 \frac{p^2 c^2}{\sqrt{p^2 c^2 + m_x^2 c^4}}$$

• The **polytropic** equation of state

$$p = K \rho_0^{\gamma}$$

K, γ constants and $ho_0 = n_x m_x$ the rest mass density

• Extremely relativistic fermions: $\gamma=4/3$

Non-relativistic fermions: $\gamma = 5/3$

(electrons $\rho_0 << 10^9 \text{ kg/m}^3$ (ions), neutrons $\rho_0 << 6 \cdot 10^{18} \text{ kg/m}^3$)

• Corrections: electrostatic interactions – onset of inverse β -decay $e^- + p \rightarrow n + \nu_e$ – nucleon interactions – relativistic strongly interacting matter – quark matter...a bit "messy" = complicated + not-so-well-known physics

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

CH. = The Chandrasekhar limit, maximum mass of a white dwarf TOV = The TOV limit, maximum mass of a neutron star

• E.g. If the Chandrasekhar limit became a bit smaller, might the supernovae la appear a bit dimmer $(\Delta E_B \sim \frac{GM_{core}^2}{R})$?

[–] Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

- E.g. Palatini $f(R) = R \frac{\mu^4}{R}$ $\rightarrow F(R) = 1 + \frac{\mu^4}{R^2}$
- From the trace equation $R = \frac{1}{2}(-8\pi GT + \sqrt{(8\pi GT)^2 + 12\mu^4})$ ($T = 3p \rho$)
- Take $\rho(r) \sim {\rm constant:}$

$$B' = \frac{1}{1+rF'/2F} \left(\frac{1-e^B}{r} + \frac{e^B}{F} 8\pi Gr\rho + \frac{\alpha+\beta}{r} \right) \approx \frac{1-e^B}{r} + \frac{e^B}{F} 8\pi Gr\rho$$
$$\rightarrow M = \int_0^R dr 4\pi r^2 \frac{\rho(r)}{F}$$

• i)
$$|T| >> \mu^2 \to F \approx 1 \to M = M_{GR}$$

ii) $|T| << \mu^4 \to R = \sqrt{3\mu^4} \to F = \frac{4}{3} \to M = \frac{3}{4}M_{GR}$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

• The Chandrasekhar limit:

 $E = E_F + E_G$ "A given $\rho(r) \rightarrow \text{less } E_G$ than in GR" \rightarrow the peak shifts to the right, to higher $\rho_c - a$ more dense we explodes as SnIa

" E_G grows faster than E_F as a function of ρ " \rightarrow the peak is lower: the maximum mass of a wd becomes lower – **less energy** is released in SnIa

[–] Typeset by FoilT $_{\!E\!}\!\mathrm{X}$ –

- Dark energy $\mu_{DE}^2 \sim 10^{-26}~{\rm kg/m^3}$
- A Newtonian star (eg. the Sun): $\rho >> p \rightarrow T \approx -\rho >> \mu_{DE}^2 \rightarrow case i$) $M = M_{GR}$
- To worry $(M \neq M_{GR}...)$, should have $p = \frac{1}{3}\rho$ (extremely relativistic)

Conclusion

• See a forthcoming paper...

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –