LEP II constraints on brane models with bulk leptons

UniverseNet
The second network school and meeting
Oxford, UK
22 to 26 September 2008

Charalampos Bogdanos, University of Ioannina

Extra Dimensions and Constraints from Electroweak Physics

© Two popular scenarios

- All fermions on the brane, only gauge bosons and/or Higgs in the bulk

Pomarol \& Quiros, 1998, Nath \& Yamaguchi, 1999, Masip \& Pomarol, 1999
. Everything in the bulk, Universal Extra dimensions (UED)

Appelquist, Cheng \& Dobrescu, 2000

Electroweak Constraints

- Brane fermions scenario: Strict constraints on the size of the extra dimension
- For 1 extra dimension:
(5) Gauge bosons in the bulk: $\mathrm{M}_{\mathrm{c}} \sim 4.5 \mathrm{TeV}$ (EWPT), $\mathrm{M}_{\mathrm{c}} \sim 6.3 \mathrm{TeV}$ (LEP-II) at $95 \% \mathrm{CL}$
(6) Gauge bosons + Higgs in the bulk: $\mathrm{M}_{\mathrm{c}} \sim 3.8 \mathrm{TeV}$ (EWPT), $\mathrm{M}_{\mathrm{c}} \sim 6.3 \mathrm{TeV}$ (LEP-II) at 95\% CL

Barbieri, Pomarol, Rattazzi \& Strumia, 2004

- Universal extra dimensions: Less severe constraints
(2) For 1 extra dimension, $\mathrm{M}_{\mathrm{c}} \sim 300-600 \mathrm{GeV}$ (Heavier Higgs alows for lower values)

Gogoladge \& Macesanu, 2004

Electroweak Constraints

Bulk Gauge Boson Theories

- Corrections from KK modes appear in tree level processes \Rightarrow severe constraints on M_{c}

UED

© KK number conservation only allows processes with pairs of KK particles \Rightarrow less constrained

Alternative Scenarios

- 600 GeV - 6.3 TeV is rather larger domain. The two models lie on the two ends of the spectrum.
- 600 GeV is at the limits of Tevatron. 6.3 TeV is even beyond LHC territory.

Macesanu, McMullen \& Nandi, 2002

- Are there possible models in the middle ground?

Bulk Lepton Model

- Well motivated from string theory.
- UED not a natural choice in the context of strings weak and strong interaction branes extend in different directions inside the compactified space.
- Weak/strong coupling ratio can be retrieved if we assume an additional dimension for the weak brane. Lepton and Higgs sector propagate in this extra dimension.

Possible Electroweak Constraints

- No tree level KK processes present (same as UED) \Rightarrow Automatically less constrained compared to the bulk gauge boson models.
- Oblique corrections? Can we get constraints from there?
- Answer: Probably not good. In the case of UED, the strongest bound comes from

$$
T \sim \frac{1}{\alpha} \frac{3 m_{t}^{2}}{8 \pi^{2} v^{2}} \frac{2}{3} \frac{m_{t}^{2}}{M_{c}^{2}}
$$

for a top quark with KK modes. But now the top has no KK states, only leptons of very small mass do. We expect the correction to be negligible.

Possible Electroweak Constraints

- Only quark vertices can break KK number conservation. KK vector bosons can be emitted in this case.
© We are interested in diagram containing a quark bubble with a KK vector boson propagator attached to it.

Relevant Processes

© Easiest to examine: Fermi constant

- In this case, it receives KK corrections only from 2-loop quark diagrams

Estimated bound from Fermi Constant: $\mathrm{M}_{\mathrm{c}} \geqq 320 \mathrm{GeV}$

Relevant Processes

- Best constraints from processes with only one intermediate quark loop.
© Suitable electroweak observables:
$\sqrt{\sigma_{h}}$
$\sqrt{ } \mathrm{R}_{\mathrm{b}}$
$\checkmark \mathrm{R}_{\mathrm{c}}$
\checkmark Forward-Backward Asymmetry
© Fit Using LEP-II data (up to 207 GeV)

Total Hadronic Cross-Section

- We need to define form factors for the diagram involving 1-loop corrections and KK vector boson propagators
- 2 ways to do this:
$>$ Define effective ee vertices (suitable for calculating corrections to Fermi Constant)
$>$ Define effective qq vertices (suitable for total hadronic cross-section)

Relevant Diagrams

Form Factor Diagrams

Total Hadronic Cross-Section

© Results depend logarithmically on the cutoff Λ of the theory
© For LEP-II data, $\mathrm{M}_{\mathrm{c}} \sim 750-1100 \mathrm{GeV}$ depending on Λ (assume 2-10 TeV)

- R_{b} and R_{c} seem at this point unable to provide a better constraint

Further Developments

- Include contributions from quark vertex corrections
- Check forward-backward asymmetry
© Find and compare similar constraints from LEP-I
© Verify that oblique corrections from KK leptons are negligible
© Include the mass of the Higgs as a parameter of the fit

