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Extra Dimensions and Constraints 
from Electroweak Physics

Two popular scenarios

All fermions on the brane, only gauge 
bosons and/or Higgs in the bulk

Pomarol & Quiros, 1998, Nath & Yamaguchi, 1999, Masip & Pomarol, 1999

Everything in the bulk, Universal Extra 
dimensions (UED)

Appelquist, Cheng & Dobrescu, 2000



Electroweak Constraints
Brane fermions scenario: Strict constraints on the size 
of the extra dimension

For 1 extra dimension:
Gauge bosons in the bulk: Mc~4.5 TeV (EWPT), Mc~6.3 TeV (LEP-II) at 95% CL

Gauge bosons + Higgs in the bulk: Mc~3.8 TeV (EWPT), Mc~6.3 TeV (LEP-II) at 
95% CL 

Barbieri, Pomarol, Rattazzi & Strumia, 2004

Universal extra dimensions: Less severe constraints
For 1 extra dimension, Mc~300-600 GeV (Heavier Higgs alows for lower values)

Gogoladge & Macesanu, 2004 



+

Bulk Gauge Boson Theories
Corrections from KK modes appear in tree level processes ⇒ severe constraints on Mc

UED
KK number conservation only allows processes with pairs of KK particles ⇒ less constrained

Electroweak Constraints



• 600 GeV - 6.3 TeV is rather larger domain. 
The two models lie on the two ends of the 
spectrum.

• 600 GeV is at the limits of Tevatron. 6.3 
TeV is even beyond LHC territory.

Macesanu, McMullen & Nandi, 2002

•  Are there possible models in the middle 
ground?

Alternative Scenarios



• Well motivated from string theory.

• UED not a natural choice in the context of strings - 
weak and strong interaction branes extend in 
different directions inside the compactified space.

• Weak/strong coupling ratio can be retrieved if we 
assume an additional dimension for the weak brane. 
Lepton and Higgs sector propagate in this extra 
dimension.

Bulk Lepton Model



• No tree level KK processes present (same as UED) ⇒ 
Automatically less constrained compared to the bulk 
gauge boson models.

• Oblique corrections? Can we get constraints from 
there?

• Answer: Probably not good. In the case of UED, the 
strongest bound comes from

for a top quark with KK modes. But now the top has no 
KK states, only leptons of very small mass do. We 
expect the correction to be negligible.

Possible Electroweak Constraints
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Only quark vertices can break KK number 
conservation. KK vector bosons can be emitted in 
this case.

We are interested in diagram containing a quark 
bubble with a KK vector boson propagator 
attached to it.

Possible Electroweak Constraints

l

νl

W
(0)

W
(n)

b

t

g g g
q

Final Expressions

The results of the above calculations can be summarized in the following expressions
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Easiest to examine: Fermi constant

In this case, it receives KK corrections only 
from 2-loop quark diagrams

Relevant Processes
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Estimated bound from Fermi Constant: Mc≥320 GeV



Best constraints from processes with only 
one intermediate quark loop.

Suitable electroweak observables:

σh

Rb

Rc

Forward-Backward Asymmetry

Fit Using LEP-II data (up to 207 GeV)

Relevant Processes



We need to define form factors for the 
diagram involving 1-loop corrections and 
KK vector boson propagators

2 ways to do this:

Define effective ee vertices (suitable for 
calculating corrections to Fermi Constant)

Define effective qq vertices (suitable for 
total hadronic cross-section)

Total Hadronic Cross-Section



Relevant Diagrams
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Notice that this time, we can define the effective couplings by first summing over all
KK modes. This could not be done in the previous definition, since the couplings did not
involve the propagator of the KK modes, as they do now. In a similar fashion to our previous
treatment, we define the amplitudes for the one loop diagrams as
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Note the presence of the
√

2 factor in front of the coupling constants, coming from the fact
that here it is the KK mode which couples to the fermions (quarks in this case), not the zero
mode as we had before. The quark charge is denoted by Qq, i.e. the up quark has Qq = + 2

3

etc. We have introduced the masses of the KK bosons, mn = nMc, where n is the KK number
and Mc is the mass scale of the extra dimension, Mc = 1/R where R the radius of the extra
dimension. The masses of all the KK states corresponding to the same KK number n for both
photons and the Z are considered to be identical, so we neglect the zero mode mass mz of
the Z boson. We should also point out that in this case the effective couplings depend on the
quark vector and axial couplings, contrary to the previous case where the electron couplings
entered the expressions. Finally we stress that the expressions ΠZγ and ΠγZ are identical.
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graphs
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Using these results we write the effective vertex for the Z boson as
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Similarly for the photon vertex
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with the loop diagrams being
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Form Factor Diagrams

4 Total cross-section in terms of q − q̄ effective vertexes

The total amplitude for the scattering process eē → qq̄ is in this case determined by adding
the following four diagrams
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Figure 2: Diagrams contributing to the eē → qq̄ cross-section, in terms of qq̄ effective vertexes.

Note that this time, the sum over the available KK modes has already been performed
beforehand, when we calculated the effective couplings. So we only have to write down the
amplitudes for the four diagrams and sum them. Again, we can combine the two photon
diagrams and the Z-boson diagrams into one amplitude, since they share similar structure
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Again, the first term encompasses the two photon diagrams, while the second comes from the
Z boson. We will collectively call the first term iMγ and the second iMZ . The definitions of
the new effective couplings in terms of the ones we defined earlier for the qq̄ vertices are

ḡV γ = Qq +
g′V γ

sin 2θw
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We now proceed with the application of Feynman rules in the same way we did in the previous
section. The overall squared amplitude is again
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In the last two expressions, we opted for the corrected Z propagator, since some of the energies
we will be dealing with are relatively close to the Z-peak (although, as it turns out, the impact
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Results depend logarithmically on the cutoff 
Λ of the theory

For LEP-II data, Mc ~ 750 - 1100 GeV 
depending on Λ (assume 2 - 10 TeV)

Rb and Rc seem at this point unable to 
provide a better constraint

Total Hadronic Cross-Section



Further Developments
Include contributions from quark vertex 
corrections

Check forward-backward asymmetry

Find and compare similar constraints from 
LEP-I

Verify that oblique corrections from KK 
leptons are negligible

Include the mass of the Higgs as a parameter 
of the fit


