Field-theoretical branes and their effective actions

Katarzyna Zuleta University of Ioannina

work in collaboration with Y. Burnier (Univ. Bielefeld) (in preparation)

Outline

Motivation - why this calculation?
 Branons and the fate of the zero mode of the 5D kink in the presence of gravity

Outline

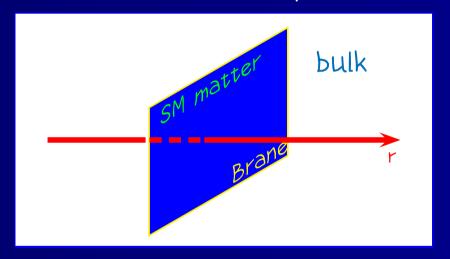
- Motivation why this calculation?
 Branons and the fate of the zero mode of the 5D kink in the presence of gravity
- Effective action of a domain wall

Outline

- Motivation why this calculation?
 Branons and the fate of the zero mode of the 5D kink in the presence of gravity
- Effective action of a domain wall
- Conclusions

Rubakov and Shaposhnikov, 1983 Akama, 1983

 Idea: Our universe is a "brane": a (3+1)-dimensional defect in a higher-dimensional field theory:



Thin branes - approximations of finite-width defects

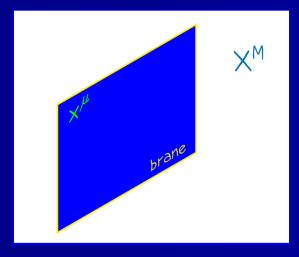
SM particles: low-energy modes trapped on the defect => extra dimensions only visible in the very high energy experiments; 4D action - low energy effective action

Goldstone bosons of broken isometries of extra space

Goldstone bosons of broken isometries of extra space Exemple: 5D Minkowski space—time, coordinates X^M

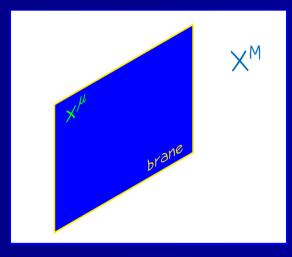
Goldstone bosons of broken isometries of extra space Exemple: 5D Minkowski space—time, coordinates X^M

brane with coords x^{μ} , $\mu = 0,1,2,3$ 5D Poincaré broken to 4D



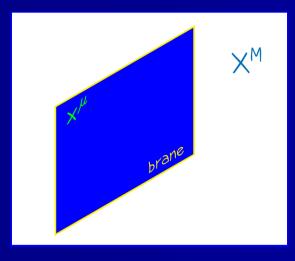
Goldstone bosons of broken isometries of extra space Exemple: 5D Minkowski space—time, coordinates X^M

- brane with coords x^{μ} , $\mu = 0,1,2,3$ 5D Poincaré broken to 4D
- brane (static gauge): $\begin{cases} X^{\mu}(x) = x^{\mu} \\ X^{5}(x) = Y(x) \end{cases}$
- induced metric: $g_{\mu\nu} = \eta_{\mu\nu} \partial_{\mu} Y \partial_{\nu} Y$



Goldstone bosons of broken isometries of extra space Exemple: 5D Minkowski space—time, coordinates X^M

- brane with coords x^{μ} , $\mu = 0,1,2,3$ <u>5D Poincaré broken to 4D</u>
- brane (static gauge): $\begin{cases} X^{\mu}(x) = x^{\mu} \\ X^{5}(x) = Y(x) \end{cases}$
- induced metric: $g_{\mu\nu} = \eta_{\mu\nu} \partial_{\mu} Y \partial_{\nu} Y$



Nambu-Goto action (7 tension, branon
$$\tilde{Y}(x) = \sqrt{\tau}Y(x)$$
)

$$S_{\text{brane}} = -\int d^4 x \sqrt{-g} \tau$$

$$= \int d^4 x \left\{ -\tau + \frac{1}{2} \partial_{\mu} \widetilde{Y} \partial^{\mu} \widetilde{Y} + \frac{1}{3\tau} (\partial_{\mu} \widetilde{Y} \partial^{\mu} \widetilde{Y})^2 + \ldots \right\}$$

J. A. R. Cembranos, A. Dobado and A. L. Maroto, "Brane-world dark matter", Phys. Rev. Lett. 90 (2003) 241301.

- interact weakly
- become massive when the symmetry is not exact (warping)

J. A. R. Cembranos, A. Dobado and A. L. Maroto, "Brane-world dark matter", Phys. Rev. Lett. 90 (2003) 241301.

- interact weakly
- become massive when the symmetry is not exact (warping)
- WIMP > perfect DM candidate!

J. A. R. Cembranos, A. Dobado and A. L. Maroto, "Brane-world dark matter", Phys. Rev. Lett. 90 (2003) 241301.

- interact weakly
- become massive when the symmetry is not exact (warping)

WIMP perfect DM candidate!

Branon ~ zero mode of the 5D kink

Our study: gravitational backreaction of the brane important

M.Shaposhnikov, P.Tinyakov, K.Zuleta, 'The Fate of the zero mode of the five-dimensional kink in the presence of gravity', JHEP 0509:062,2005

wide resonance (=> high probability to tunnel into the bulk

J. A. R. Cembranos, A. Dobado and A. L. Maroto, "Brane-world dark matter", Phys. Rev. Lett. 90 (2003) 241301.

- interact weakly
- become massive when the symmetry is not exact (warping)

WIMP perfect DM candidate!

Branon ~ zero mode of the 5D kink

Our study: gravitational backreaction of the brane important

M.Shaposhnikov, P.Tinyakov, K.Zuleta, 'The Fate of the zero mode of the five-dimensional kink in the presence of gravity', JHEP 0509:062,2005

wide resonance (=> high probability to tunnel into the bulk

← DM ????

=> Look into the effective action of the brane perturbations!

Domain wall - two scalars model

Action:
$$S = \int d^4x dy \left[\frac{1}{2} \eta^{MN} \partial_M \Phi \partial_N \Phi + \frac{1}{2} \eta^{MN} \partial_M \Xi \partial_N \Xi - V(\Phi, \Xi) \right] ,$$
$$V(\Phi, \Xi) = \frac{\lambda}{4} \left(\Phi^2 - v^2 \right)^2 + \frac{\tilde{\lambda}}{4} \Xi^4 + \frac{1}{2} M^2 \Xi^2 + \frac{1}{2} \alpha (\Phi^2 - v^2) \Xi^2$$

Idea: Set up a brane as a domain wall. Compute the 4d low energy effective action.

Domain wall - two scalars model

Action:
$$S = \int d^4x dy \left[\frac{1}{2} \eta^{MN} \partial_M \Phi \partial_N \Phi + \frac{1}{2} \eta^{MN} \partial_M \Xi \partial_N \Xi - V(\Phi, \Xi) \right] ,$$

$$V(\Phi, \Xi) = \frac{\lambda}{4} \left(\Phi^2 - v^2 \right)^2 + \frac{\widetilde{\lambda}}{4} \Xi^4 + \frac{1}{2} M^2 \Xi^2 + \frac{1}{2} \alpha (\Phi^2 - v^2) \Xi^2$$

Idea: Set up a brane as a domain wall. Compute the 4d low energy effective action.

If $M^2 < \alpha v^2$ and $\lambda \tilde{\lambda} v^4 > (\alpha v^2 - M^2)^2$, the system has a degenerate GS ($\Phi_{GS} = \pm v, \Xi_{GS} = 0$)

 \Rightarrow domain wall interpolating between the two vacua; kink configuration ($\Phi = v \tanh(ay)$, $\Xi = 0$), $a^2 = \lambda v^2/2$, always solves EOM

Perturbations around $(\Phi = \vee \tanh(ar), \Xi = 0)$

Look at the perturbations around the background (using 4D Poincaré invariance):

$$\Phi(x,y) = \Phi_{c}(y) + \varphi(x^{\mu},y) = \Phi_{c}(y) + \iint_{n} f_{n}(y)u_{n}(x)$$

$$\Xi(x,y) = \xi(x^{\mu},y) = \iint_{n} h_{n}(y)v_{n}(x)$$

Perturbations around $(\Phi = \vee \tanh(ar), \Xi = 0)$

Look at the perturbations around the background (using 4D Poincaré invariance):

$$\Phi(x,y) = \Phi_c(y) + \varphi(x^{\mu},y) = \Phi_c(y) + \iint_n f_n(y)u_n(x)$$

$$\Xi(x,y) = \xi(x^{\mu},y) = \iint_n h_n(y)v_n(x)$$

• $u_n(x)$, $v_n(x)$ - scalar fields from the 4D point of view

Perturbations around $(\Phi = \vee \tanh(ar), \Xi = 0)$

Look at the perturbations around the background (using 4D Poincaré invariance):

$$\Phi(x,y) = \Phi_c(y) + \varphi(x^{\mu},y) = \Phi_c(y) + \sum_n f_n(y)u_n(x)$$

$$\Xi(x,y) = \xi(x^{\mu},y) = \sum_n h_n(y)v_n(x)$$

- $u_n(x)$, $v_n(x)$ scalar fields from the 4D point of view
- $f_n(y)$, $h_n(y)$ wave functions; determine the localization of the modes on the brane:

$$\begin{cases} -\partial_y^2 f + \left(4a^2 - \frac{6a^2}{\cosh^2(ar)}\right) f = m^2 f \\ -\partial_y^2 h + \left(M^2 - \frac{\alpha v^2}{\cosh^2(ar)}\right) h = \widetilde{m}^2 h \end{cases}.$$

Lowest lying states:

kink's zero mode:
$$\psi_0 = f_0(y)u_0(x) = N_0 \frac{va}{\cosh^2(ay)}u_0(x)$$

massive mode of
$$\equiv$$
: $\psi_1 = h_1(y)v_1(x) = N_1 \frac{v_0}{\cosh^{\bullet}(ay)}v_1(x)$

$$= \frac{1}{2}\left(-1 + \sqrt{1 + \frac{\alpha}{\lambda}}\right)$$

Lowest lying states:

kink's zero mode:
$$\psi_0 = f_0(y)u_0(x) = N_0 \frac{v_0}{\cosh^2(ay)}u_0(x)$$

massive mode of Ξ : $\psi_1 = h_1(y)v_1(x) = N_1 \frac{v_0}{\cosh^2(ay)}v_1(x)$

- mass of $v_1(x)$ is $\widetilde{m}_1^2 = -\sigma^2 a^2 + M^2$
- \Rightarrow if we choose $M^2 = +\sigma^2 a^2 + \frac{\lambda v^2}{4} \varepsilon^2$, $|\varepsilon| \ll 1$ we get a light v_1 : $\widetilde{m}_1^2 = (\lambda v^2/4) \varepsilon^2$

Lowest lying states:

kink's zero mode:
$$\psi_0 = f_0(y)u_0(x) = N_0 \frac{va}{\cosh^2(ay)}u_0(x)$$

massive mode of
$$\equiv$$
: $\psi_1 = h_1(y)v_1(x) = N_1 \frac{va}{\cosh^{\bullet}(ay)}v_1(x)$

- mass of $v_1(x)$ is $\widetilde{m}_1^2 = -\sigma^2 a^2 + M^2$
- \Rightarrow if we choose $M^2 = +\sigma^2 a^2 + \frac{\lambda v^2}{4} \varepsilon^2$, $|\varepsilon| \ll 1$

we get a light
$$v_1$$
: $\widetilde{m}_1^2 = (\lambda v^2/4)\varepsilon^2$

• rest of the spectrum:

for u_n 's: heavy mode with mass $3a^2$, continuum from $4a^2$ for v_n 's: continuum starts at $M^2 \approx \sigma a^2$, if other localized modes, then their masses $O(a^2)$

Lowest lying states:

kink's zero mode:
$$\psi_0 = f_0(y)u_0(x) = N_0 \frac{va}{\cosh^2(ay)}u_0(x)$$

massive mode of
$$\equiv$$
: $\psi_1 = h_1(y)v_1(x) = N_1 \frac{va}{\cosh^{\bullet}(ay)}v_1(x)$

- mass of $v_1(x)$ is $\widetilde{m}_1^2 = -\sigma^2 a^2 + M^2$
- \Rightarrow if we choose $M^2 = +\sigma^2 a^2 + \frac{\lambda v^2}{4} \varepsilon^2$, $|\varepsilon| \ll 1$ we get a light v_1 : $\widetilde{m}_1^2 = (\lambda v^2/4) \varepsilon^2$
- rest of the spectrum:

for u_n 's: heavy mode with mass $3a^2$, continuum from $4a^2$ for v_n 's: continuum starts at $M^2 \approx \sigma a^2$, if other localized modes, then their masses $O(a^2)$

a $\gg \widetilde{m}_1 \Rightarrow$ we can construct a sensible 4D low energy action

Towards the effective action...

Presence of a zero mode => introduce a collective coordinate :

$$\Phi = \Phi_{c}(y - Y(x)) + f_{n}(y - Y(x)) u_{n}(x)$$

$$\Xi = \xi(x, y) = h_{1}(y)v_{1}(x) + f_{n\neq 0} h_{n}(y - Y(x)) v_{n}(x)$$

 \Rightarrow only derivative interactions for Y, as expected for a Goldstone.

Towards the effective action...

Presence of a zero mode => introduce a collective coordinate :

$$\Phi = \Phi_{c}(y - Y(x)) + f_{n}(y - Y(x)) u_{n}(x)$$

$$\Xi = \xi(x, y) = h_{1}(y)v_{1}(x) + f_{n}(y - Y(x)) v_{n}(x)$$

 \Rightarrow only derivative interactions for Y, as expected for a Goldstone.

Effective action? Easy - neglect all the terms involving the heavy modes (only corrs to couplings, suppressed by the heavy scale):

$$S_{eff} = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} - \frac{\widetilde{\lambda}}{4} \left(\int_{-\infty}^{\infty} dy \, h_{1}^{4} \right) v_{1}^{4} + \frac{1}{2\tau} \left(\int_{-\infty}^{\infty} dy \, h_{1}^{\prime 2} \right) v_{1}^{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right\}$$

Towards the effective action...

Presence of a zero mode => introduce a collective coordinate :

$$\Phi = \Phi_{c}(y - Y(x)) + f_{n}(y - Y(x)) u_{n}(x)$$

$$= \xi(x, y) = h_{1}(y)v_{1}(x) + f_{n}(y - Y(x)) v_{n}(x)$$

 \Rightarrow only derivative interactions for Y, as expected for a Goldstone.

Effective action? Easy - neglect all the terms involving the heavy modes (only corrs to couplings, suppressed by the heavy scale):

$$S_{eff} = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} - \frac{\widetilde{\lambda}}{4} \left(\int_{-\infty}^{\infty} dy \, h_{1}^{4} \right) v_{1}^{4} + \frac{1}{2\tau} \left(\int_{-\infty}^{\infty} dy \, h_{1}^{\prime 2} \right) v_{1}^{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right\}$$

Integrating out the heavy modes

Wrong! The heavy modes contribute significantly because of the trilinear interactions LLH even when $m_n \to \infty$ and cannot be simply thrown away!

S. Ranjbar-Daemi,
A. Salvio, M. Shaposhnikov, 'On the decoupling of heavy modes in Kaluza-Klein theories'
Nucl. Phys. B741:236-26\$,2006.

We have to be extra careful as we have an infinite tower of heavy modes and all of them will contribute...

Integrating out the heavy modes

Wrong! The heavy modes contribute significantly because of the trilinear interactions LLH even when $m_n \to \infty$ and cannot be simply thrown away!

S. Ranjbar-Daemi,
A. Salvio, M. Shaposhnikov, 'On the decoupling of heavy modes in Kaluza-Klein theories'
Nucl. Phys. B741:236-26\$,2006.

We have to be extra careful as we have an infinite tower of heavy modes and all of them will contribute... We have to integrate them out:

$$S_{H} = \int d^{4}x \left\{ \frac{1}{2} \partial^{\mu} H \partial_{\mu} H - \frac{1}{2} m_{H}^{2} H^{2} + JH \right\}$$

Effective action:

$$S_{eff} = -\frac{1}{2} \int d^4x d^4y \ J(x) \Delta_H(x-y) J(y) = \frac{1}{2M_H^2} \int d^4x \ J^2(x) + \dots$$

Importance of the heavy modes

Integrating out the heavy modes:

$$\begin{split} S_{eff} &= \int d^4x \Big\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{2\tau^2} \sum_{n \neq 0}^{+} \frac{1}{m_n^2} \left(\int_{-\infty}^{\infty} dy \, \varPhi_c' f_n' \right)^2 \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^2 \\ &+ \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 \\ &- \left[\frac{\widetilde{\lambda}}{4} \left(\int_{-\infty}^{\infty} dy \, h_1^4 \right) - \frac{1}{2\tau^2} \sum_{n \neq 0}^{+} \frac{1}{m_n^2} \left(\int_{-\infty}^{\infty} dy \, \varPhi_c' f_n' \right)^2 \right] v_1^4 \\ &+ \frac{2}{\tau} \sum_{n \neq 0}^{+} \frac{1}{\widetilde{m}^2} \left(\int_{-\infty}^{\infty} dy \, h_1 h_n' \right)^2 \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_1 \partial_{\nu} v_1 \\ &+ \left[\frac{1}{2\tau} \int_{-\infty}^{\infty} dy \, h_1'^2 - \frac{\alpha}{\tau} \sum_{n \neq 0}^{+} \frac{1}{m_n^2} \left(\int_{-\infty}^{\infty} dy \, \varPhi_c' f_n' \right) \left(\int_{-\infty}^{\infty} dy \, \varPhi_c' f_n' \right) \right] v_1^2 \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \Big\} \end{split}$$

Importance of the heavy modes

Integrating out the heavy modes:

$$\begin{split} S_{eff} &= \int d^4x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} + \frac{1}{2\tau^2} \sum_{\substack{n \neq 0 \\ n \neq 0}}^{\uparrow} \frac{1}{m_n^2} \left(\int_{-\infty}^{\infty} d \varphi \, \varPhi_c' f_n' \right)^2 \left(\partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \right)^2 \right. \\ &+ \left. \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 \right. \\ &- \left[\frac{\widetilde{\lambda}}{4} \left(\int_{-\infty}^{\infty} d \varphi \, h_1^4 \right) - \frac{1}{2\tau^2} \sum_{\substack{n \neq 0 \\ -\infty}}^{\uparrow} \frac{1}{m_n^2} \left(\int_{-\infty}^{\infty} d \varphi \, \varPhi_c' f_n' \right)^2 \right] v_1^4 \\ &+ \left. \frac{2}{\tau} \sum_{\substack{n \neq 1 \\ 1 \neq 0}}^{\uparrow} \frac{1}{\widetilde{m}^2} \left(\int_{-\infty}^{\infty} d \varphi \, h_1 h_n' \right)^2 \partial^{\mu} \widetilde{\Upsilon} \partial^{\nu} \widetilde{\Upsilon} \partial_{\mu} v_1 \partial_{\nu} v_1 \\ &+ \left[\frac{1}{2\tau} \int_{-\infty}^{\infty} d \varphi \, h_1'^2 - \frac{\alpha}{\tau} \sum_{\substack{n \neq 0 \\ n \neq 0}}^{\uparrow} \frac{1}{m_n^2} \left(\int_{-\infty}^{\infty} d \varphi \, \varPhi_c' f_n' \right) \left(\int_{-\infty}^{\infty} d \varphi \, \varPhi_c' f_n' \right) \right] v_1^2 \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \right\} \end{split}$$

We expect our effective action:

$$S_{eff} = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{\$\tau} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^{2} + \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} \right.$$

$$\left. - \left(\frac{\widetilde{\lambda}}{4} - \frac{\lambda \bullet^{2}}{16} \right) \left(\int_{-\infty}^{\infty} dy \, h_{1}^{4} \right) v_{1}^{4} + \frac{1}{2\tau} \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_{1} \partial_{\nu} v_{1} \right\}$$

to coincide with the Nambu-Goto action:

$$\begin{split} S_{NG} &= \int d^4 x \sqrt{-g} \left\{ -\tau + \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 - \frac{\lambda_4}{4} v_1^4 \right\} \\ &= \int d^4 x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{\$\tau} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^2 + \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 - \frac{\lambda_4}{4} v_1^4 \right. \\ &\quad + \frac{1}{2\tau} \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_1 \partial_{\nu} v_1 - \frac{1}{4\tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \partial^{\nu} v_1 \partial_{\nu} v_1 + \frac{\widetilde{m}_1^2}{4\tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \partial_{\nu} + \dots \right\} \end{split}$$

We expect our effective action:

$$S_{eff} = \int d^{4}x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{3 \pi} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^{2} + \frac{1}{2} \partial^{\mu} v_{1} \partial_{\mu} v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} \right.$$

$$\left. - \left(\frac{\widetilde{\lambda}}{4} - \frac{\lambda \bullet^{2}}{16} \right) \left(\int_{-\infty}^{\infty} dy \, h_{1}^{4} \right) v_{1}^{4} + \frac{1}{2 \tau} \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_{1} \partial_{\nu} v_{1} \right\}$$

to coincide with the Nambu-Goto action:

$$\begin{split} S_{NG} &= \int d^4 x \sqrt{-g} \left\{ -\tau + \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 - \frac{\lambda_4}{4} v_1^4 \right\} \\ &= \int d^4 x \left\{ -\tau + \frac{1}{2} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} + \frac{1}{\$\tau} \left(\partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \right)^2 + \frac{1}{2} \partial^{\mu} v_1 \partial_{\mu} v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 - \frac{\lambda_4}{4} v_1^4 \right. \\ &\quad + \frac{1}{2\tau} \partial^{\mu} \widetilde{Y} \partial^{\nu} \widetilde{Y} \partial_{\mu} v_1 \partial_{\nu} v_1 - \frac{1}{4\tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \partial^{\nu} v_1 \partial_{\nu} v_1 + \frac{\widetilde{m}_1^2}{4\tau} \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} v_1^2 + \dots \right\} \end{split}$$

The two actions are almost identical - but not exactly...

What about $\frac{P^2}{m_n^2}$ corrections to our action?

What about $\frac{P^2}{m_n^2}$ corrections to our action? On-shell:

$$S_{eff} - S_{NG} = \int d^4x \left\{ -\frac{\pi^2 - 6}{4 \text{s}} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \partial^{\alpha} \partial^{\nu} \widetilde{\Upsilon} \partial_{\alpha} \partial_{\nu} \widetilde{\Upsilon} \right\}$$

$$+ \frac{1}{4\tau} \left(2F(\bullet) + 1 \right) \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \left[\partial^{\nu} \vee_{1} \partial_{\nu} \vee_{1} - \widetilde{m}_{1}^{2} \vee_{1}^{2} \right]$$

No closer to NG... Why?

What about $\frac{P^2}{m_n^2}$ corrections to our action? On-shell:

$$S_{eff} - S_{NG} = \int d^4x \left\{ -\frac{\pi^2 - 6}{4 \text{s}} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \partial^{\alpha} \partial^{\nu} \widetilde{\Upsilon} \partial_{\alpha} \partial_{\nu} \widetilde{\Upsilon} \right\}$$

$$+ \frac{1}{4\tau} \left(2F(\bullet) + 1 \right) \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \left[\partial^{\nu} \vee_{1} \partial_{\nu} \vee_{1} - \widetilde{m}_{1}^{2} \vee_{1}^{2} \right]$$

No closer to NG... Why?

Nambu-Goto action is only correct in the zero-thickness approximation! => curvature corrections

B. Carter, R. Gregory, "Curvature corrections to dynamics of domain walls", PRD51:5839-5846,1995

What about $\frac{P^2}{m_n^2}$ corrections to our action? On-shell:

$$S_{eff} - S_{NG} = \int d^4x \left\{ -\frac{\pi^2 - 6}{4 \text{s}} \partial^{\mu} \widetilde{\Upsilon} \partial_{\mu} \widetilde{\Upsilon} \partial^{\alpha} \partial^{\nu} \widetilde{\Upsilon} \partial_{\alpha} \partial_{\nu} \widetilde{\Upsilon} \right\}$$

$$+ \frac{1}{4\tau} \left(2F(\bullet) + 1 \right) \partial^{\mu} \widetilde{Y} \partial_{\mu} \widetilde{Y} \left[\partial^{\nu} \vee_{1} \partial_{\nu} \vee_{1} - \widetilde{m}_{1}^{2} \vee_{1}^{2} \right]$$

No closer to NG... Why?

Nambu-Goto action is only correct in the zero-thickness approximation! => curvature corrections

B. Carter, R. Gregory, "Curvature corrections to dynamics of domain walls", PRD51:5**\$3**9-5**\$4**6,1995

Are branon interactions modified by curvature effects?

Geometric description

Yes! As for NG, the effects of branons can be rewritten in purely qeometric terms:

$$\begin{split} S_{eff} &= \int d^4 x \sqrt{-g} \left\{ -\tau - \frac{(\pi^2 - 6)\tau}{24a^2} \; R + \frac{1}{2} \partial^\mu v_1 \partial_\mu v_1 - \frac{1}{2} \widetilde{m}^2 v_1^2 - \frac{\lambda_4}{4} v_1^4 \right. \\ & \left. - \frac{1}{4} \left(1 + 2 F(\bullet) \right) v_1^2 R \right\} \; , \\ \text{where } R &= - \frac{1}{\tau} \partial^\alpha \partial^\nu \widetilde{Y} \partial_\alpha \partial_\nu \widetilde{Y} \; \text{is the Ricci scalar} \end{split}$$

Geometric description

Yes! As for NG, the effects of branons can be rewritten in purely qeometric terms:

$$S_{eff} = \int d^{4}x \sqrt{-g} \left\{ -\tau - \frac{(\pi^{2} - 6)\tau}{24a^{2}} R + \frac{1}{2} \partial^{\mu}v_{1} \partial_{\mu}v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} - \frac{\lambda_{4}}{4} v_{1}^{4} - \frac{1}{4} \left(1 + 2F(\bullet) \right) v_{1}^{2} R \right\} ,$$

where $R = -\frac{1}{\tau} \partial^{\alpha} \partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y}$ is the Ricci scalar

• Comment 1:
$$\int d^4x R \sim \int d^4x \left\{ \underbrace{\partial^{\alpha} \left(\partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} \right)}_{\text{total derivative}} - \underbrace{\partial^{\nu} \widetilde{Y} \partial_{\nu} \partial^{\alpha} \partial_{\alpha} \widetilde{Y}}_{\text{vanishes on shell}} \right\},$$

however non-negligible contributions to the interaction terms

Geometric description

Yes! As for NG, the effects of branons can be rewritten in purely geometric terms:

$$S_{eff} = \int d^{4}x \sqrt{-g} \left\{ -\tau - \frac{(\pi^{2} - 6)\tau}{24a^{2}} R + \frac{1}{2} \partial^{\mu}v_{1} \partial_{\mu}v_{1} - \frac{1}{2} \widetilde{m}^{2} v_{1}^{2} - \frac{\lambda_{4}}{4} v_{1}^{4} - \frac{1}{4} \left(1 + 2F(\bullet) \right) v_{1}^{2} R \right\} ,$$

where $R = -\frac{1}{\tau} \partial^{\alpha} \partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y}$ is the Ricci scalar

• Comment 1:
$$\int d^4x R \sim \int d^4x \left\{ \underbrace{\partial^{\alpha} \left(\partial^{\nu} \widetilde{Y} \partial_{\alpha} \partial_{\nu} \widetilde{Y} \right)}_{\text{total derivative}} - \underbrace{\partial^{\nu} \widetilde{Y} \partial_{\nu} \partial^{\alpha} \partial_{\alpha} \widetilde{Y}}_{\text{vanishes on shell}} \right\},$$

however non-negligible contributions to the interaction terms

Comment 2: Curvature, but no graviton! Only one d.o.f

The contribution of the heavy modes to obtain the correct effective action is crucial.

- The contribution of the heavy modes to obtain the correct effective action is crucial.
- There are corrections to the Nambu-Goto action which can be expressed through the Ricci scalar of the induced metric

- The contribution of the heavy modes to obtain the correct effective action is crucial.
- There are corrections to the Nambu-Goto action which can be expressed through the Ricci scalar of the induced metric
- These corrections are likely to be important to describe branon interactions correctly!

- The contribution of the heavy modes to obtain the correct effective action is crucial.
- There are corrections to the Nambu-Goto action which can be expressed through the Ricci scalar of the induced metric
- These corrections are likely to be important to describe branon interactions correctly!
- Including bulk metric perturbations? To be looked into soon. Expect scalar-tensor gravity.