Sébastien Clesse (collaboration with J. Rocher)

Service de Physique Théorique, Free University of Brussels, Centre of Phenomenology and Particle Physics (CP3), University of Louvain

Anamorphosis in hybrid inflation How to avoid fine-tuning of initial conditions?

2nd. UniverseNet school - Oxford - September 22nd. to 26th. 2008

Outline

- Hybrid inflation
- Fine-tuning of the initial conditions
- How to avoid fine-tuning ?
 - Space of initial conditions
 - Anamorphosis points
- Robustness of predictions
 - Smooth Inflation
 - Shifted Inflation
 - Radion Inflation
- Conclusion and perspectives

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

0.0 $\psi/m_{
m pl}$

0.1

0 0

-0.1

 $\phi/m_{\rm pl}$

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

- Question : What are regions in space of initial values of the fields leading to sufficient inflation ?
- Sufficient inflation : > 60 e-folds (null initial speeds for simplicity)

1. Hybrid Inflation

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

1. Hybrid Inflation

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

1. Hybrid Inflation

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

1. Hybrid Inflation

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

• Isolated points or structures ?

1. Hybrid Inflation

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

- Isolated points or structures ?
- Origin ?

1. Hybrid Inflation

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

- Isolated points or structures ?
- Origin ?
- Quantification of successful areas ?

1. Hybrid Inflation

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Isolated points or structures ?
- Origin ?
- Quantification of successful areas ?

Numerical integration of exact 2-field dynamics to explore the space of initial conditions extended to super-planckian values

3. How to avoid fine-tuning?

• Extended space of initial conditions

fine-tuning? - Space of

1. Hybrid Inflation

2. Fine-tuning of

3. How to avoid

initial conditions

- Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
 - Shifted Inflation
 - Radion Inflation
- 5. Conclusions and Perspectives

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
 - Shifted Inflation
 - Radion Inflation
- 5. Conclusions and Perspectives

Questions...

3. How to avoid fine-tuning?

• Anamorphosis points:

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
 - Shifted Inflation
 - Radion Inflation
- 5. Conclusions and Perspectives

Questions...

3. How to avoid fine-tuning?

• Anamorphosis points:

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
 - Shifted Inflation
 - Radion Inflation
- 5. Conclusions and Perspectives

Questions...

3. How to avoid fine-tuning?

• Anamorphosis points:

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
 - Shifted Inflation
 - Radion Inflation
- 5. Conclusions and Perspectives

Questions...

3. How to avoid fine-tuning?

• Anamorphosis points:

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

3. How to avoid fine-tuning?

• Anamorphosis points:

 $\lambda = \lambda' = 1, \ M = 0.03 \ m_{\rm pl}, m = 10^{-6} \ m_{\rm pl}$

For $\phi, \psi < 0.2 \ m_{
m pl}$

Up to 20% of area are anamorphosis points

Anamorphosis is an elegant possibility to avoid fine-tuning problem of initial conditions

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

4. Robustness of predictions

• Smooth inflation: (Lazarides, Panagiotakopoulos, hep-ph/9506325) Effective 2-field potential (SUSY): $V(\phi, \psi) = \kappa^2 \left(M^2 - \frac{\psi^4}{m_{\rm Pl}^2}\right)^2 + 2\kappa^2 \phi^2 \frac{\psi^6}{m_{\rm Pl}^4}$

2 valleys and a flat $\psi = 0$ direction \Rightarrow No topological defects

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

4. Robustness of predictions

• Smooth inflation: (Lazarides, Panagiotakopoulos, hep-ph/9506325) Effective 2-field potential (SUSY): $V(\phi, \psi) = \kappa^2 \left(M^2 - \frac{\psi^4}{m_{\rm Pl}^2}\right)^2 + 2\kappa^2 \phi^2 \frac{\psi^6}{m_{\rm Pl}^4}$

2 valleys and a flat $\psi = 0$ direction \Rightarrow No topological defects

For $\phi, \psi < 0.2 m_{\rm pl}$ Up to 50% of area are anamorphosis points

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

4. Robustness of predictions

• Shifted inflation: (Jeannerot, Khalil, Lazarides, Shafi, hep-ph/0002151) Effective 2-field potential (SUSY):

$$V(\phi,\psi) = \kappa^2 \left(\psi^2 - M^2 - \frac{\beta}{\kappa}\psi^4\right)^2 + 2\kappa^2 \phi^2 \psi^2 \left(1 - 2\frac{\beta}{\kappa}\psi\right)^2$$

1 central + 2 parallel valleys

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

4. Robustness of predictions

• Shifted inflation: (Jeannerot, Khalil, Lazarides, Shafi, hep-ph/0002151) Effective 2-field potential (SUSY):

$$V(\phi,\psi) = \kappa^2 \left(\psi^2 - M^2 - \frac{\beta}{\kappa}\psi^4\right)^2 + 2\kappa^2 \phi^2 \psi^2 \left(1 - 2\frac{\beta}{\kappa}\psi\right)^2$$

1 central + 2 parallel valleys

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

4. Robustness of predictions

• Shifted inflation: (Jeannerot, Khalil, Lazarides, Shafi, hep-ph/0002151) Effective 2-field potential (SUSY):

$$V(\phi,\psi) = \kappa^2 \left(\psi^2 - M^2 - \frac{\beta}{\kappa}\psi^4\right)^2 + 2\kappa^2 \phi^2 \psi^2 \left(1 - 2\frac{\beta}{\kappa}\psi\right)^2$$

1 central + 2 parallel valleys

New unsuccessful region around the parallel valley without anamorphosis points

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

4. Robustness of predictions

• Radion assisted gauge inflation:

(M. Fairbairn, L.Lopez-Honorez, M.Tytgat, hep-ph/0302160)

Effective 2-field potential: $V(\phi, \psi) = \frac{1}{4} \frac{\phi^2}{f^2} \psi^4 + \frac{\lambda}{4} \left(\psi^2 - \psi_0^2\right)^2$

Super-planckian values allowed

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
 - Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

4. Robustness of predictions

Radion assisted gauge inflation:

(M. Fairbairn, L.Lopez-Honorez, M.Tytgat, hep-ph/0302160)

Effective 2-field potential: $V(\phi, \psi) = \frac{1}{4} \frac{\phi^2}{f^2} \psi^4 + \frac{\lambda}{4} \left(\psi^2 - \psi_0^2\right)^2$

Super-planckian values allowed

For $\phi, \psi < 0.2 m_{\rm pl}$ Up to 25% of area are anamorphosis points

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Space of Initial Conditions
- Anamorphosis points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

5. Conclusions and perspectives

♦ Hybrid inflation:

- Two ways to avoid the fine-tuning problem of initial field values
 - Extend the field-space to super-planckian values
 - Anamorphosis successful points (up to 20 %)

Hybrid-type models:

- Observations seem to be robust
 - Smooth inflation: up to 50% due to anamorphosis
 - Shifted inflation: new unsuccessful zone due to parallel valley
 - Radion inflation: trans-planckian field justified up to 25% due to anamorphosis
- ◆ <u>Perspectives</u>:
 - Fine-tuning problem in F-term and D-term inflation ?
 - Other hybrid-type models ?
 - Effect of initial speeds ?
 - Spectral index ?

Thank you for your attention...

- 1. Hybrid Inflation
- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

1. Hybrid inflation

- Inflaton ϕ
- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002)

$$V(\phi,\psi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\left(M^2 - \psi^2\right)^2 + \frac{\lambda'}{2}\phi^2\psi^2$$

- 1. Hybrid Inflation
- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

1. Hybrid inflation

- Inflaton ϕ
- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002)

$$V(\phi,\psi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\left(M^2 - \psi^2\right)^2 + \frac{\lambda'}{2}\phi^2\psi^2$$

 $V(\phi) = \Lambda^4 \left[1 + \left(\frac{\phi}{\mu}\right)^2 \right]$

- 1-field effective potential
- First slow-roll parameter $\epsilon_1 \equiv -\frac{\dot{H}}{H^2}$
 - inflation: $\epsilon_1 < 1$

slow-roll approximation: $\epsilon_1 \ll 1$

- 1. Hybrid Inflation
- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

1. Hybrid inflation

- Inflaton ϕ
- Higgs-type auxiliary field ψ
- Hybrid potential (Linde, astro-ph/9307002)

$$V(\phi,\psi) = \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4}\left(M^2 - \psi^2\right)^2 + \frac{\lambda'}{2}\phi^2\psi^2$$

- 1-field effective potential $V(\phi) = \Lambda^4 \left| 1 + \left(\frac{\phi}{\mu}\right)^2 \right|$
- First slow-roll parameter $\epsilon_1 \equiv -\frac{\dot{H}}{H^2}$

inflation: $\epsilon_1 < 1$

slow-roll approximation: $\epsilon_1 \ll 1$

Slow-roll can be violated ⇒ Exact approach

Blue spectrum avoided

- If critical point of instability is in the large field phase
- When slow-roll is violated

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

3. How to avoid fine-tuning?

• Super-Planckian initial conditions:

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

3. How to avoid fine-tuning?

• Super-Planckian initial conditions:

 $\lambda = \lambda' = 1, \ M = 0.03 \ m_{\rm pl}, m = 10^{-6} \ m_{\rm pl}$

Variation of potential parameters:

- λ ' reduced
- \Rightarrow slope of the transition reduced
- ⇒ less "isolated" points
- M or λ increases
- \Rightarrow less "isolated" points
- m has no effect until it is small

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

3. How to avoid fine-tuning?

• Super-Planckian initial conditions:

Variation of potential parameters:

- λ ' reduced
- \Rightarrow slope of the transition reduced
- ⇒ less "isolated" points
- M or λ increases
- \Rightarrow less "isolated" points
- m has no effect until it is small

Isocurves of ϵ_1 (first slow-roll par.) $\epsilon_1 = 0.022, 0.020, 0.0167, 0.015$ (from left to right)

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

3. How to avoid fine-tuning?

• Super-Planckian initial conditions:

 $\lambda = 1, \ \lambda' = 0.01, \ M = m = 0.001 \ m_{
m pl}$

Variation of potential parameters:

- λ ' reduced
- \Rightarrow slope of the transition reduced
- \Rightarrow less "isolated" points
- M or λ increases
- \Rightarrow less "isolated" points
- m has no effect until it is small
- m increases

⇒ "small field" phase disappears
due to slow-roll violation
⇒ elliptic unsuccessful region

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

3. How to avoid fine-tuning?

• Super-Planckian initial conditions:

 $\lambda = 1, \ \lambda' = 0.01, \ M = m = 0.001 \ m_{\rm pl}$

Variation of potential parameters:

- λ ' reduced
- \Rightarrow slope of the transition reduced
- \Rightarrow less "isolated" points
- M or λ increases
- \Rightarrow less "isolated" points
- m has no effect until it is small
- m increases

⇒ "small field" phase disappears
due to slow-roll violation
⇒ elliptic unsuccessful region

If super-planckian values are allowed, The fine-tuning problem is resolved!

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

4. Robustness of predictions

• Shifted inflation:

F-term superpotential + non-renormalizable term Effective 2-field potential:

$$V(\phi,\psi) = \kappa^2 \left(\psi^2 - M^2 - \frac{\beta}{\kappa}\psi^4\right)^2 + 2\kappa^2 \phi^2 \psi^2 \left(1 - 2\frac{\beta}{\kappa}\psi\right)^2$$

1 central + 2 parallel valleys

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

4. Robustness of predictions

• Shifted inflation:

F-term superpotential + non-renormalizable term Effective 2-field potential:

$$V(\phi,\psi) = \kappa^2 \left(\psi^2 - M^2 - \frac{\beta}{\kappa}\psi^4\right)^2 + 2\kappa^2 \phi^2 \psi^2 \left(1 - 2\frac{\beta}{\kappa}\psi\right)^2$$

1 central + 2 parallel valleys

• Smooth inflation:

F-term superpotential + non-renormalizable term + Z₂ symmetry Effective 2-field potential: $V(\phi, \psi) = \kappa^2 \left(M^2 - \frac{\psi^4}{m_{\rm Pl}^2}\right)^2 + 2\kappa^2 \phi^2 \frac{\psi^6}{m_{\rm Pl}^4}$

- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

Questions...

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

4. Robustness of predictions

• Radion assisted gauge inflation:

(M. Fairbairn, L.Lopez-Honorez, M.Tytgat, hep-ph/0302160)

Gauge-type inflation :

- φ phase of a Wilson loop wrapped around a compact 5th dim.
- Super-planckian values allowed
- Varying radius R of the extra-dimension $\psi \equiv (2\pi R)^{-1}$

Effective 2-field potential: $V(\phi, \psi) = \frac{1}{4} \frac{\phi^2}{f^2} \psi^4 + \frac{\lambda}{4} \left(\psi^2 - \psi_0^2\right)^2$

2 valleys and a flat $\psi = 0$ direction

- 1. Hybrid Inflation
- 2. Fine-tuning of initial conditions
- 3. How to avoid fine-tuning?
- Super-Planckian
 Initial Conditions
 Anamorphosis
 points
- 4. Robustness of predictions: 3 others models
- Smooth Inflation
- Shifted Inflation
- Radion Inflation
- 5. Conclusions and Perspectives

- Slow-roll violations
- Varying parameters
- Grid with red spectrum prediction
- Shifted and Smooth models
- Radion model

4. Mendes and Liddle set of parameters

 $\psi_i / m_{\rm Pl}$