Transient breakdown of slow-roll, homogeneity and isotropy during inflation

Rose Lerner

r.lerner@lancaster.ac.uk

Supervisor: John McDonald

Cosmology and Astroparticle Physics Group

Lancaster University

UK

UniverseNet, Oxford 22nd - 25th September 2008

Rose Lerner, Lancaster University - p. 1.

Features and motivations

Our model

Mode equations and initial conditions

Results and discussion

Features in the inflaton potential

- Data from WMAP consistent with a smooth inflaton potential, with $P_{\mathcal{R}} \propto k^{n-1}$ (n \approx 1)
- However 5 year WMAP data also consistent with features in the potential (Joy, Shafieloo, Sahni and Starobinsky arXiv:0807.3334)
- Many examples of features have been studied such as kinks, steps and bumps (eg Adams, Cresswell and Easther arXiv:0102236 and Covi et al arXiv:0606452)
- We wish to consider the generic effects a space dependent inflaton potential has on the primordial power spectrum

Motivations

A *phenomenological model* for the transient breakdown of slow-roll, homogeneity and isotropy during inflation

But also motivated by

 Inhomogeneous cosmological phase transition (tachyonic preheating)
A second field coupled to the inflaton undergoes a phase transition; A 'mini-waterfall' transition

Modulated fluctuations

A third field imprints super-horizon inhomogeneity during a phase transition

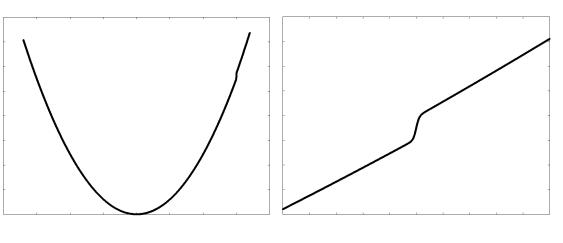
Inhomogeneity: our model

Effective potential:

$$V(\phi) = \frac{m^2 \phi^2}{2} \left(1 + c \tanh(w) \left[1 + e^{-w^2} \sin(k_L x) \sin(k_L y) \sin(k_L z) \right] \right)$$

where k_L is the inhomogeneity wavenumber and $w = \left(\frac{\phi-b}{d}\right)$

- choose b so step at N = 55
- solve for planar case $\sin(k_L x)$



Mode equations (1)

Start with the action $S = \frac{1}{2} \int \left(\partial_{\mu} u \partial^{\mu} u + \frac{z''}{z} u^2 \right) d^4 x$, with $u = -z\mathcal{R}$ and $z = a\dot{\phi}/H$ (\mathcal{R} is the curvature perturbation) No space dependence: use classical field equation and quantize in term of $a_{\mathbf{k}}$ and $a_{\mathbf{k}}^{\dagger}$:

$$u(\mathbf{x},\tau) = \int \frac{d^3k}{\left(2\pi\right)^{3/2}} \left[u_{\mathbf{k}}(\tau)e^{i\mathbf{k}\cdot\mathbf{x}}a_{\mathbf{k}} + u_{\mathbf{k}}^*(\tau)e^{-i\mathbf{k}\cdot\mathbf{x}}a_{\mathbf{k}}^{\dagger} \right]$$

giving

$$u_{\mathbf{k}}^{''} + \mathbf{k}^2 u_{\mathbf{k}} = \frac{z^{''}}{z} u_{\mathbf{k}}$$

Mode equations (2)

For the space dependent potential, the mode equations become

$$u_{\mathbf{k}}'' + \mathbf{k}^{2} u_{\mathbf{k}} - \frac{z''}{z} u_{\mathbf{k}} + \frac{a^{2}}{2i} \frac{d^{2} F}{d\phi^{2}} (u_{\mathbf{k} - \mathbf{k}_{L}} - u_{\mathbf{k} + \mathbf{k}_{L}}) = 0$$

where $F(\phi) = \frac{cm^2}{2} \tanh\left(\frac{\phi-b}{d}\right) e^{-\frac{\phi-b}{d}} \phi^2$

Equation only valid for $k \neq nk_L$ (as also classical contribution)

Initial conditions

Initial conditions set at $k^2 >> a^2 H^2$ are

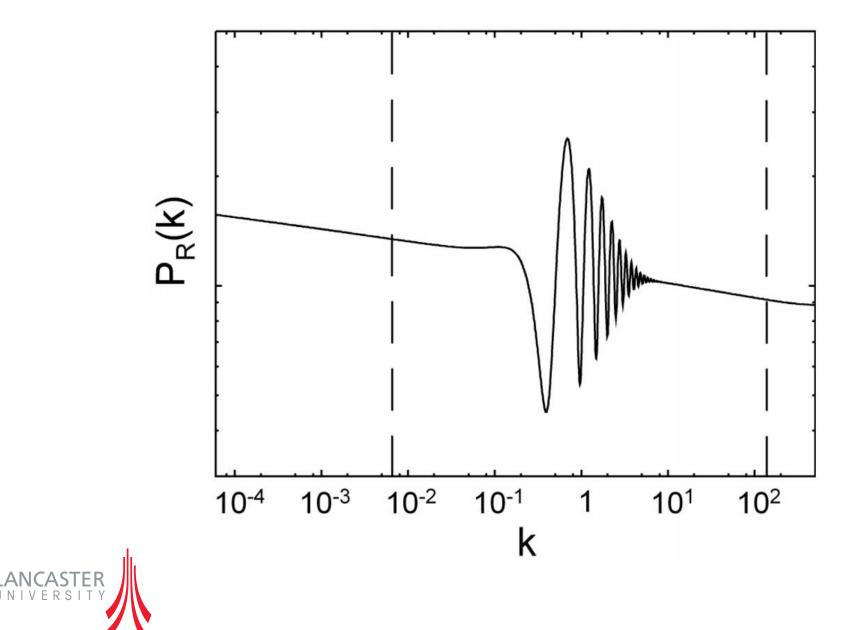
$$u_{\mathbf{k}} = \frac{e^{-i(|\mathbf{k}|\tau + \boldsymbol{\alpha}_{\mathbf{k}})}}{\sqrt{2|\mathbf{k}|}}$$

where τ is conformal time and $\alpha_{\mathbf{k}}$ a random phase. $\alpha_{\mathbf{k}}$ only has an effect when there is mode coupling.

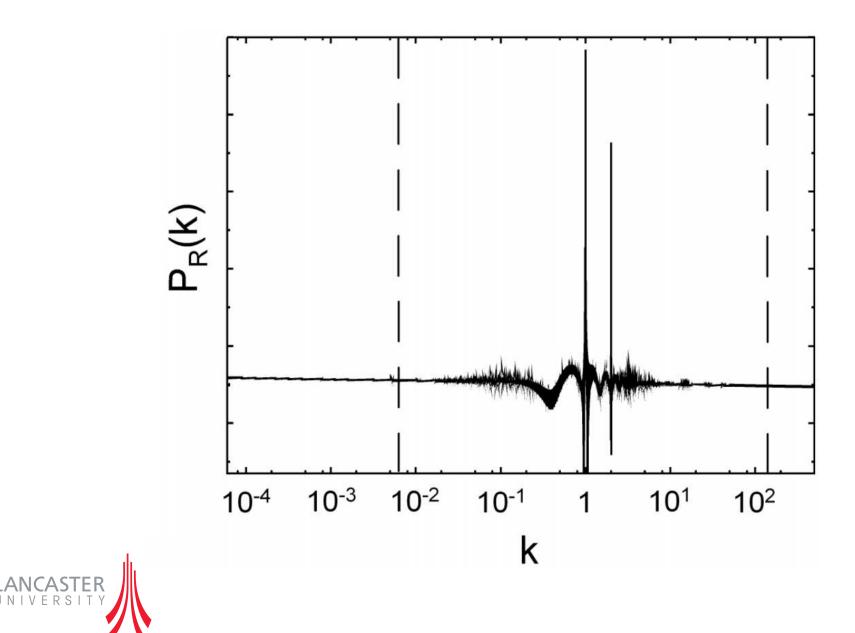
We solve for $u_{\mathbf{k}}$ and calculate the curvature perturbation power spectrum:

$$\mathcal{P}_{\mathcal{R}}^{1/2}(\mathbf{k}) = \sqrt{\frac{|\mathbf{k}|^3}{2\pi^2}} \left|\frac{u_{\mathbf{k}}}{z}\right|$$

Power spectrum (homogeneous)

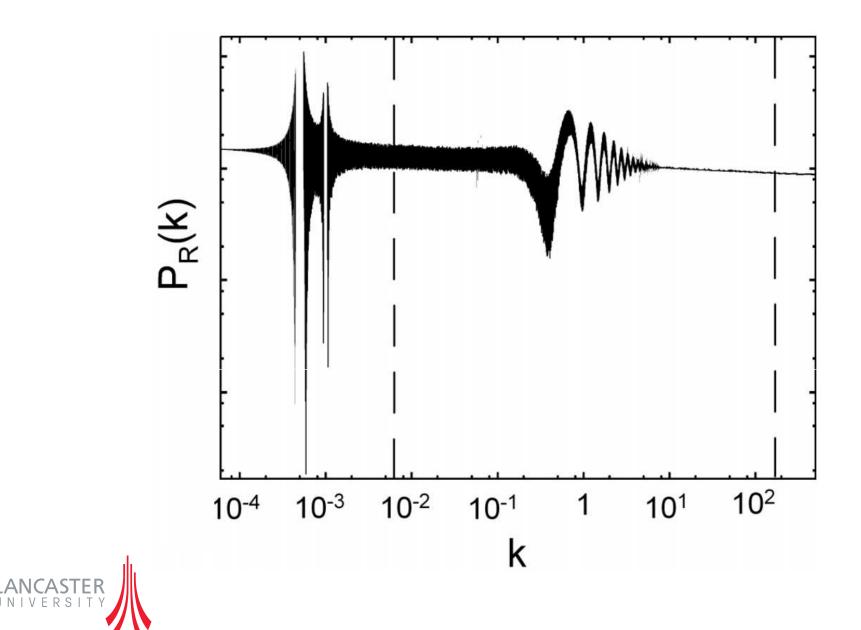


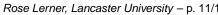
Power spectrum ($k_L = k_{STEP}$ **)**



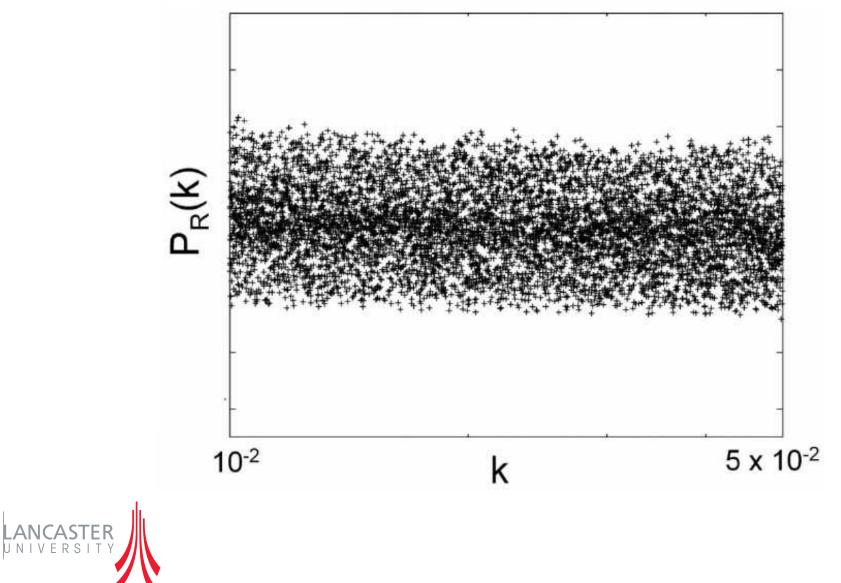
Rose Lerner, Lancaster University - p. 10/2

Power spectrum ($k_L < k_{STEP}$ **)**





Effect of phases



Rose Lerner, Lancaster University - p. 12/2

Questions

- Could the resonances be observed?
- Does current data enable us to put a bound on inhomogeneity during inflation?
- Are there chances of producing primordial black holes at the resonances?
- Does the mode mixing generate appreciable non-gaussian curvature perturbations?
- Could this provide a mechanism for large scale statistical anisotropy?

Summary

- Transient space dependence of the inflaton potential results in coupling between inflaton modes
- This produces interesting results including resonances and random broadening
- Resonances occur when modes are coupled to amplified super-horizon modes

arXiv:coming soon!

