Quantum Marginal Problems

David Gross (Colgone)

Joint with: Christandl, Doran, Lopes, Schilling, Walter
Outline

- Overview: Marginal problems
- Overview: Entanglement
- Main Theme: Entanglement Polytopes
- Shortly: Beyond the Pauli principle.
Overview: Marginal Problems
A marginal is obtained by integrating out parts of high-dim object.
A marginal is obtained by integrating out parts of high-dim object

Not every set of marginals is compatible
Marginals

- A marginal is obtained by integrating out parts of high-dim object

- Not every set of marginals is compatible
- Deciding compatibility is the marginal problem
Marginals in classical probability

- Marginals are distributions of subsets of variables.
Marginals in classical probability

- Marginals are distributions of subsets of variables.

One classical marginal prob well-known in quantum:
Marginals in classical probability

- Marginals are distributions of subsets of variables.

One classical marginal prob well-known in quantum: Bell tests.
Bell tests as marginal problems

There are four random variables:
polarization along two axes, as seen by Alice/Bob

- Only certain pairs accessible
- Q: Are these marginals compatible with classical distribution?
- Compatible marginals form convex polytope
- Facets are Bell inequalities

Testing locality NP-hard \Rightarrow so is classical marginal problem
Bell tests as marginal problems

- There are four random variables: polarization along two axes, as seen by Alice/Bob.
- Only certain pairs accessible.
- Q: Are these marginals compatible with classical distribution?

Compatible marginals form a convex polytope, with facets being Bell inequalities. Testing locality is NP-hard, so is the classical marginal problem.
Bell tests as marginal problems

- There are four random variables: polarization along two axes, as seen by Alice/Bob
- Only certain pairs accessible
- Q: Are these marginals compatible with classical distribution?

- Compatible marginals form convex polytope
- Facets are *Bell inequalities*.
Bell tests as marginal problems

- There are four random variables: polarization along two axes, as seen by Alice/Bob
- Only certain pairs accessible
- Q: Are these marginals compatible with classical distribution?

- Compatible marginals form convex polytope
- Facets are Bell inequalities.

- Testing locality NP-hard \Rightarrow so is classical marginal problem
Marginals in quantum theory

- For subset S_i specify state ρ_i.
- Q: Are these compatible:

$$\rho_i = \text{tr}_{S_i} \rho$$

for some global ρ?
Marginals in quantum theory

- For subset S_i specify state ρ_i.
- Q: Are these compatible:

$$\rho_i = tr_{\setminus S_i} \rho$$

for some global ρ?

Would solve all finite-dim. few-body ground-state probs!
Marginals in quantum theory

- For subset S_i specify state ρ_i.
- Q: Are these compatible:

$$\rho_i = \text{tr}_{\overline{S}_i} \rho$$

for some global ρ?

Would solve all finite-dim. few-body ground-state probs!

E.g.: For two-body Hamiltonian

$$H = \sum_{i,j=1}^{n} h_{i,j},$$

compute

$$\min_{\rho} \text{tr} H \rho = \min_{\rho} \sum_{i,j} \text{tr} h_{i,j} \rho = \min_{\{\rho_{i,j}\} \text{ comp.}} \sum_{i,j} \text{tr} h_{i,j} \rho_{i,j}.$$
Marginals in quantum theory: Ground States

\[
\min_{\rho} \text{tr} H \rho = \min_{\{\rho_{i,j}\}\text{ comp.}} \sum_{i,j} \text{tr} h_{i,j} \rho_{i,j}.
\]

Remarks:

- Left-hand side optimizes over \(O(d^n)\) variables.
- R.h.s. over \(O(n^2 d^4)\). Exponential improvement!
Marginals in quantum theory: Ground States

\[\min \text{tr} H \rho = \min_{\{\rho_{i,j}\} \text{ comp.}} \sum_{i,j} \text{tr} h_{i,j} \rho_{i,j}. \]

Remarks:
- Left-hand side optimizes over \(O(d^n) \) variables.
- R.h.s. over \(O(n^2 d^4) \). Exponential improvement!
- Optimization over convex set of compatible \(\rho_{i,j} \).

General theory of convex optimization \(\Rightarrow \) Computational complexity of 2-RDM method dominated by deciding compatibility of \(\rho_{i,j} \)’s.

Two directions:
- Progress on q. marginal prob. \(\Rightarrow \) info about ground states
- Hardness of ground-states \(\Rightarrow \) hardness of q. marginals.
Marginals in quantum theory: Ground States

\[\min \text{tr } H \rho = \min_{\{\rho_{i,j}\} \text{ comp.}} \sum_{i,j} \text{tr } h_{i,j} \rho_{i,j}. \]

Remarks:

- Left-hand side optimizes over \(O(d^n) \) variables.
- R.h.s. over \(O(n^2 d^4) \). Exponential improvement!
- Optimization over convex set of compatible \(\rho_{i,j} \).

General theory of convex optimization \(\Rightarrow \)

Computational complexity of 2-RDM method (r.h.s) dominated by deciding compatibility of \(\rho_{i,j} \)'s.
Marginals in quantum theory: Ground States

\[
\min_{\rho} \text{tr} H \rho = \min_{\{\rho_{i,j}\} \text{ comp.}} \sum_{i,j} \text{tr} h_{i,j} \rho_{i,j}.
\]

Remarks:

- Left-hand side optimizes over \(O(d^n)\) variables.
- R.h.s. over \(O(n^2 d^4)\). Exponential improvement!
- Optimization over convex set of compatible \(\rho_{i,j}\).

General theory of convex optimization \(\Rightarrow\)

Computational complexity of 2-RDM method (r.h.s) dominated by deciding compatibility of \(\rho_{i,j}\)'s.

Two directions:

- Progress on q. marginal prob. \(\Rightarrow\) info about ground states
- Hardness of ground-states \(\Rightarrow\) hardness of q. marginals.
Negative direction

Computational complexity of 2-RDM method (r.h.s) dominated by deciding compatibility of $\rho_{i,j}$'s.

- But finding two-body ground-states is NP-hard
- (...and even QMA-hard)
Negative direction

Computational complexity of 2-RDM method (r.h.s) dominated by deciding compatibility of $\rho_{i,j}$’s.

- But finding two-body ground-states is NP-hard
- (… and even QMA-hard)

Thus:

There is no efficient algorithm (quantum or classical) for the general two-body quantum marginal problem. 😞
Computational complexity of 2-RDM method (r.h.s) dominated by deciding compatibility of $\rho_{i,j}$'s.

- But finding two-body ground-states is NP-hard
- (… and even QMA-hard)

Thus:

There is no efficient algorithm (quantum or classical) for the general two-body quantum marginal problem. 😞

- Remains hard for Fermions.
- Argument works for classical marginal prob. (hardness of Ising)
- Leaves room for outer approximations → D. Mazziotti’s talk.
Negative direction

Computational complexity of 2-RDM method (r.h.s) dominated by deciding compatibility of $\rho_{i,j}$’s.

- But finding two-body ground-states is NP-hard
- (…and even QMA-hard)

Thus:
There is no efficient algorithm (quantum or classical) for the general two-body quantum marginal problem. 😞

- Remains hard for Fermions.
- Argument works for classical marginal prob. (hardness of Ising)
- Leaves room for outer approximations → D. Mazziotti’s talk.

Natural Question:
Is there subproblem with enough structure to be tractable?
1-RDM marginal problem

1-RDM subproblem: marginals do not overlap, global state pure

\[\begin{array}{cccc}
\circ & \circ & \circ & \circ \\
S_1 & S_2 & S_3 & S_4
\end{array} \]

Classical version:

\[\text{Globally pure} \iff \text{no global randomness} \implies \text{no local randomness}. \]

Quantum version:

\[\text{Globally pure} \not\implies \text{no local randomness} \text{ (in presence of entanglement)}. \]

\[\text{. . . seems non-trivial, but tractable!} \]
1-RDM marginal problem

1-RDM subproblem: marginals do not overlap, global state pure

\[
\begin{array}{cccc}
\circ & \circ & \circ & \circ \\
S_1 & S_2 & S_3 & S_4
\end{array}
\]

Classical version:

- Globally pure
 \iff no global randomness
 \implies no local randomness.
- . . . trivial.
1-RDM marginal problem

1-RDM subproblem: marginals do not overlap, global state pure

\[\begin{array}{cccc}
\circ & \circ & \circ & \circ \\
\end{array} \]

Classical version:

- Globally pure ⇔ no global randomness
- ⇒ no local randomness.
- ... trivial.

Quantum version:

- Globally pure
 - \(\nRightarrow\) no local randomness (in presence of entanglement).
- ... seems non-trivial, but tractable!
1-RDM marginal problem

Questions to be asked:

- Structure of set of 1-RDMs?
- What info about global ψ accessible from 1-RDM?
- Computational complexity of 1-RDM marginal prob.?
- Practical uses?
Structure of 1-RDMs.
Reduction to eigenvalues

- Local basis change does not affect compatibility
- ⇒ can assume ρ_i are diagonal ⇒ described by eigenvalues

$$\langle \vec{\lambda}^{(1)}, \ldots, \vec{\lambda}^{(n)} \rangle \in \mathbb{R}^{dn}.$$
Reduction to eigenvalues

- Local basis change does not affect compatibility
- \(\Rightarrow \) can assume \(\rho_i \) are diagonal \(\Rightarrow \) described by eigenvalues

\[
\langle \vec{\lambda}^{(1)}, \ldots, \vec{\lambda}^{(n)} \rangle \in \mathbb{R}^{dn}.
\]

Question becomes:

Which set of ordered local eigenvalues \(\vec{\lambda}^{(i)} \) can occur?
Reduction to eigenvalues

- Local basis change does not affect compatibility
- ⇒ can assume ρ_i are diagonal ⇒ described by eigenvalues

$$\langle \vec{\lambda}^{(1)}, \ldots, \vec{\lambda}^{(n)} \rangle \in \mathbb{R}^{dn}.$$

Question becomes:
Which set of ordered local eigenvalues $\vec{\lambda}^{(i)}$ can occur?

Deep fact:

- Compatible spectra form *convex polytope*
Reduction to eigenvalues

- Local basis change does not affect compatibility
- \(\Rightarrow \) can assume \(\rho_i \) are diagonal \(\Rightarrow \) described by *eigenvalues*
 \[
 \langle \vec{\lambda}^{(1)}, \ldots, \vec{\lambda}^{(n)} \rangle \in \mathbb{R}^{dn}.
 \]

Question becomes:

Which set of ordered local eigenvalues \(\vec{\lambda}^{(i)} \) can occur?

Deep fact:
- Compatible spectra form *convex polytope*
- Highly non-trivial! (Global set is *not* convex).
Reduction to eigenvalues

- Local basis change does not affect compatibility
- \(\Rightarrow \) can assume \(\rho_i \) are diagonal \(\Rightarrow \) described by eigenvalues

\[
\langle \vec{\lambda}(1), \ldots, \vec{\lambda}(n) \rangle \in \mathbb{R}^{dn}.
\]

Question becomes:

Which set of ordered local eigenvalues \(\vec{\lambda}(i) \) can occur?

Deep fact:

- Compatible spectra form *convex polytope*
- Highly non-trivial! (Global set is *not* convex).
- Several proofs, building on symplectic geometry & asymptotic rep theory

\[\text{[Klyachko, Kirwan, Christandl, Mitchison, Harrow, Daftuar, Hayden, \ldots]} \]
Reduction to eigenvalues

- Local basis change does not affect compatibility
- \Rightarrow can assume ρ_i are diagonal \Rightarrow described by *eigenvalues*

$$\langle \tilde{\lambda}^{(1)}, \ldots, \tilde{\lambda}^{(n)} \rangle \in \mathbb{R}^{dn}.$$

Question becomes:

Which set of ordered local eigenvalues $\tilde{\lambda}^{(i)}$ can occur?

Deep fact:

- Compatible spectra form *convex polytope*
- Highly non-trivial! (Global set is *not* convex).
- Several proofs, building on symplectic geometry & asymptotic rep theory

 [Klyachko, Kirwan, Christandl, Mitchison, Harrow, Daftuar, Hayden, ...]

- No *conceptually simple* proof known to me!
Example: $d = n = 2$

Warm up: work out solution for two qubits.
Example: $d = n = 2$

Warm up: work out solution for two qubits.

- Schmidt-decomposition:

\[|\psi\rangle = \sqrt{\lambda^{(1)}} |e_1\rangle \otimes |f_1\rangle + \sqrt{\lambda^{(2)}} |e_2\rangle \otimes |f_2\rangle \]

- With

\[\rho_1 = \lambda^{(1)} |e_1\rangle \langle e_1| + \lambda^{(2)} |e_2\rangle \langle e_2|, \quad \rho_2 = \lambda^{(1)} |f_1\rangle \langle f_1| + \lambda^{(2)} |f_2\rangle \langle f_2|. \]
Example: $d = n = 2$

Warm up: work out solution for two qubits.

- Schmidt-decomposition:

$$|\psi\rangle = \sqrt{\lambda^{(1)}}|e_1\rangle \otimes |f_1\rangle + \sqrt{\lambda^{(2)}}|e_2\rangle \otimes |f_2\rangle$$

- With

$$\rho_1 = \lambda^{(1)}|e_1\rangle\langle e_1| + \lambda^{(2)}|e_2\rangle\langle e_2|, \quad \rho_2 = \lambda^{(1)}|f_1\rangle\langle f_1| + \lambda^{(2)}|f_2\rangle\langle f_2|.$$

- So eigenvalues must be equal: $\bar{\lambda}_1 = \bar{\lambda}_2$.
Example: $d = n = 2$

Warm up: work out solution for two qubits.

▸ Schmidt-decomposition:

$$|\psi\rangle = \sqrt{\lambda^{(1)}} |e_1\rangle \otimes |f_1\rangle + \sqrt{\lambda^{(2)}} |e_2\rangle \otimes |f_2\rangle$$

▸ With

$$\rho_1 = \lambda^{(1)} |e_1\rangle \langle e_1| + \lambda^{(2)} |e_2\rangle \langle e_2|, \quad \rho_2 = \lambda^{(1)} |f_1\rangle \langle f_1| + \lambda^{(2)} |f_2\rangle \langle f_2|.$$

▸ So eigenvalues must be equal: $\vec{\lambda}_1 = \vec{\lambda}_2$.

In terms of largest eigenvalue, get simple polytope:
Further examples

Three qubits:

Three fermions on 6 modes ("Dennis-Borland"): (c.f. M. Christandl’s talk)
Summary: Structure of 1-RDM’s

- Compatible 1-RDMs described by convex polytopes of spectra.
Summary: Structure of 1-RDM's

- Compatible 1-RDMs described by convex polytopes of spectra.
- If this doesn’t surprise you, I’m terribly sad.
Computational aspects.
List inequalities?

<table>
<thead>
<tr>
<th>Inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_2 + \lambda_4 + \lambda_7 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_2 + \lambda_5 + \lambda_6 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_2 - \lambda_3 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_2 + \lambda_5 - \lambda_7 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_6 - \lambda_7 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_2 + \lambda_4 - \lambda_6 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_4 - \lambda_5 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_3 + \lambda_4 - \lambda_7 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_2 - \lambda_3 - \lambda_6 - \lambda_7 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_4 - \lambda_5 - \lambda_6 - \lambda_7 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 - \lambda_3 - \lambda_5 - \lambda_7 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_2 + \lambda_3 + 2\lambda_4 - \lambda_5 - \lambda_7 + \lambda_8 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_3 + 2\lambda_4 - \lambda_5 - \lambda_6 + \lambda_8 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + 2\lambda_2 - \lambda_3 + \lambda_4 - \lambda_5 + \lambda_8 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + 2\lambda_2 - \lambda_3 + \lambda_5 - \lambda_6 + \lambda_8 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_2 - 2\lambda_3 - \lambda_4 - \lambda_5 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 - \lambda_2 - \lambda_3 + \lambda_6 - 2\lambda_7 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 - \lambda_3 - \lambda_4 - \lambda_5 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 - \lambda_2 - \lambda_3 - \lambda_7 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$2\lambda_1 - \lambda_2 + \lambda_4 - 2\lambda_5 - \lambda_6 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_3 + 2\lambda_4 - 2\lambda_5 - \lambda_6 - \lambda_7 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$2\lambda_1 - \lambda_2 - \lambda_4 + \lambda_6 - 2\lambda_7 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$2\lambda_1 + \lambda_2 - 2\lambda_3 - \lambda_4 - \lambda_6 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_1 + 2\lambda_2 - 2\lambda_3 - \lambda_5 - \lambda_6 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$2\lambda_1 - 2\lambda_2 - \lambda_3 - \lambda_4 + \lambda_6 - 3\lambda_7 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$-\lambda_1 + \lambda_3 + 2\lambda_4 - 3\lambda_5 - 2\lambda_6 - \lambda_7 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$2\lambda_1 + \lambda_2 - 3\lambda_3 - 2\lambda_4 - \lambda_5 - \lambda_6 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 + 2\lambda_2 - 3\lambda_3 - \lambda_4 - 2\lambda_5 - \lambda_6 + \lambda_8 \leq 0$</td>
</tr>
</tbody>
</table>

$\langle \vec{D}, x \rangle \leq c.$

- Polytopes characterized by finitely many linear ineqs

[Klyachko, Altunbulak]
List inequalities?

Polytopes characterized by finitely many linear ineqs

\[\langle \vec{D}, x \rangle \leq c. \]

Ansatz so far: Compute all ineqs

→ Altunbulak’s talk

Doesn’t seem to scale: too many ineqs as \(n, d \) go up.

<table>
<thead>
<tr>
<th>Inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 \leq 2)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_2 + \lambda_4 + \lambda_7 \leq 2)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6 \leq 2)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_2 + \lambda_5 + \lambda_6 \leq 2)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_2 - \lambda_3 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_2 + \lambda_5 - \lambda_7 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_6 - \lambda_7 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_2 + \lambda_4 - \lambda_6 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_4 - \lambda_5 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_3 + \lambda_4 - \lambda_7 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_8 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_2 - \lambda_3 - \lambda_6 - \lambda_7 \leq 0)</td>
</tr>
<tr>
<td>(\lambda_4 - \lambda_5 - \lambda_6 - \lambda_7 \leq 0)</td>
</tr>
<tr>
<td>(\lambda_1 - \lambda_3 - \lambda_5 - \lambda_7 \leq 0)</td>
</tr>
<tr>
<td>(\lambda_2 + \lambda_3 + 2\lambda_4 - \lambda_5 - \lambda_7 + \lambda_8 \leq 2)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_3 + 2\lambda_4 - \lambda_5 - \lambda_6 + \lambda_8 \leq 2)</td>
</tr>
<tr>
<td>(\lambda_1 + 2\lambda_2 - \lambda_3 + \lambda_4 - \lambda_5 + \lambda_8 \leq 2)</td>
</tr>
<tr>
<td>(\lambda_3 + 2\lambda_2 - \lambda_3 + \lambda_4 - \lambda_6 + \lambda_8 \leq 2)</td>
</tr>
<tr>
<td>(\lambda_1 + \lambda_2 - 2\lambda_3 - \lambda_4 - \lambda_5 \leq 0)</td>
</tr>
<tr>
<td>(\lambda_1 - \lambda_2 - \lambda_3 + \lambda_6 - 2\lambda_7 \leq 0)</td>
</tr>
<tr>
<td>(\lambda_1 - \lambda_3 - \lambda_4 + \lambda_5 - \lambda_8 \leq 0)</td>
</tr>
<tr>
<td>(\lambda_1 - \lambda_2 - \lambda_3 - \lambda_7 + \lambda_8 \leq 0)</td>
</tr>
<tr>
<td>(2\lambda_1 - \lambda_2 + \lambda_4 - 2\lambda_5 - \lambda_6 + \lambda_8 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_3 + 2\lambda_4 - 2\lambda_5 - \lambda_6 - \lambda_7 + \lambda_8 \leq 1)</td>
</tr>
<tr>
<td>(2\lambda_1 - \lambda_2 - \lambda_4 + \lambda_6 - 2\lambda_7 + \lambda_8 \leq 1)</td>
</tr>
<tr>
<td>(2\lambda_1 + \lambda_2 - 2\lambda_3 - \lambda_4 - \lambda_6 + \lambda_8 \leq 1)</td>
</tr>
<tr>
<td>(\lambda_1 + 2\lambda_2 - 2\lambda_3 - \lambda_5 - \lambda_6 + \lambda_8 \leq 1)</td>
</tr>
<tr>
<td>(2\lambda_1 - 2\lambda_2 - \lambda_3 - \lambda_4 + \lambda_6 - 3\lambda_7 + \lambda_8 \leq 0)</td>
</tr>
<tr>
<td>(-\lambda_1 + \lambda_3 + 2\lambda_4 - 3\lambda_5 - 2\lambda_6 - \lambda_7 + \lambda_8 \leq 0)</td>
</tr>
<tr>
<td>(2\lambda_1 + \lambda_2 - 3\lambda_3 - 2\lambda_4 - \lambda_5 - \lambda_6 + \lambda_8 \leq 0)</td>
</tr>
<tr>
<td>(\lambda_1 + 2\lambda_2 - 3\lambda_3 - \lambda_4 - 2\lambda_5 - \lambda_6 + \lambda_8 \leq 0)</td>
</tr>
</tbody>
</table>

[Klyachko, Altunbulak]
List inequalities?

There might be better algorithm than “checking all ineqs”.

[Klyachko, Altunbulak]
List inequalities?

<table>
<thead>
<tr>
<th>Inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_2 + \lambda_3 + \lambda_7 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_3 + \lambda_4 + \lambda_6 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_2 + \lambda_5 + \lambda_6 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_2 - \lambda_3 - \lambda_4 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_2 + \lambda_5 - \lambda_7 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_6 - \lambda_7 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_2 + \lambda_4 - \lambda_5 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_4 - \lambda_5 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_3 + \lambda_4 - \lambda_7 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_2 - \lambda_3 - \lambda_6 - \lambda_7 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_4 - \lambda_5 - \lambda_6 - \lambda_7 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 - \lambda_3 - \lambda_5 - \lambda_7 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_2 + \lambda_3 + 2\lambda_4 - \lambda_5 - \lambda_6 - \lambda_7 + \lambda_8 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_3 + 2\lambda_4 - \lambda_5 - \lambda_6 + \lambda_7 + \lambda_8 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + 2\lambda_2 - \lambda_3 + \lambda_4 - \lambda_5 + \lambda_8 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_3 + 2\lambda_2 - \lambda_3 + \lambda_5 - \lambda_6 + \lambda_8 \leq 2$</td>
</tr>
<tr>
<td>$\lambda_1 + \lambda_2 - 2\lambda_3 - \lambda_4 - \lambda_5 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 - \lambda_2 - \lambda_3 + \lambda_6 - 2\lambda_7 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 - \lambda_3 - \lambda_4 - \lambda_5 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 - \lambda_2 - \lambda_3 - \lambda_7 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$2\lambda_1 - \lambda_2 + \lambda_3 - 2\lambda_4 - 2\lambda_5 - \lambda_6 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_3 + 2\lambda_4 - 2\lambda_5 - \lambda_6 - \lambda_7 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$2\lambda_1 - \lambda_2 - \lambda_4 + \lambda_6 - 2\lambda_7 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$2\lambda_1 + \lambda_2 - 2\lambda_3 - \lambda_4 - \lambda_6 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$\lambda_1 + 2\lambda_2 - 2\lambda_3 - \lambda_5 - \lambda_6 + \lambda_8 \leq 1$</td>
</tr>
<tr>
<td>$2\lambda_1 - 2\lambda_2 - \lambda_3 - \lambda_4 + \lambda_6 - 3\lambda_7 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$-\lambda_1 + \lambda_3 + 2\lambda_4 - 3\lambda_5 - 2\lambda_6 - \lambda_7 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$2\lambda_1 + \lambda_2 - 3\lambda_3 - 2\lambda_4 - \lambda_5 - \lambda_6 + \lambda_8 \leq 0$</td>
</tr>
<tr>
<td>$\lambda_1 + 2\lambda_2 - 3\lambda_3 - \lambda_4 - 2\lambda_5 - \lambda_6 + \lambda_8 \leq 0$</td>
</tr>
</tbody>
</table>

[Klyachko, Altunbulak]

- There might be better algorithm than “checking all ineqs”.
- Ex.: ℓ_1-unit ball in \mathbb{R}^n has 2^n linear ineqs, but membership equivalent to $\|x\|_{\ell_1} = \sum_{i=1}^{n} |x_i| \leq 1$.

\[\|x\|_{\ell_1} = \sum_{i=1}^{n} |x_i| \leq 1. \]
Thus, central open question:

Q.: Is there a poly-time algorithm that decides the 1-RDM quantum marginal problem?
Thus, central open question:

Q.: Is there a poly-time algorithm that decides the 1-RDM quantum marginal problem?

Progress Nov. 2015 [Burgisser, Christandl, Mulmuley, Walter]:

- Problem in $\text{NP} \cap \text{coNP}$
 - Virtually guarantees that it can’t be proven hard
 - Suggests it might be in P.

Info about global state from 1-RDMs.

Selection rules

Selection rule, “Generalized Hartree-Fock”:

If a state ψ maps to the boundary of the polytope, only few, special Slater determinants can appear in an expansion of ψ.

Stated by Klyachko (2009). He didn’t feel proof was necessary.
True for general scenarios – stated here for Fermions.

[Schilling, DG, Christandl, PRL ’13]
Selection rules

Selection rule, “Generalized Hartree-Fock”:

If a state ψ maps to the boundary of the polytope, only few, special Slater determinants can appear in an expansion of ψ.

- Stated by Klyachko (2009). He didn’t feel proof was necessary.
- True for general scenarios – stated here for Fermions.

[Schilling, DG, Christandl, PRL '13]
Selection rules

Consider n-Fermion system with modes $\{\phi_1, \ldots, \phi_d\}$.
Selection rules

- Consider n-Fermion system with modes $\left\{ \phi_1, \ldots, \phi_d \right\}$.
- Expand $\psi \in \wedge^n \mathbb{C}^d$ in Slater dets:

$$
\psi = \sum_{i_1 < \cdots < i_n} c_{i_1, \ldots, i_n} \phi_{i_1} \wedge \cdots \wedge \phi_{i_n}.
$$

(1)
Consider n-Fermion system with modes $\{\phi_1, \ldots, \phi_d\}$.

Expand $\psi \in \wedge^n \mathbb{C}^d$ in Slater dets:

$$\psi = \sum_{i_1 < \ldots < i_n} c_{i_1, \ldots, i_n} \phi_{i_1} \wedge \cdots \wedge \phi_{i_n}. \quad (1)$$

Assume (wlog) $\rho^{(1)}(\psi)$ is diagonal with eigenvalues λ.
Consider n-Fermion system with modes $\{\phi_1, \ldots, \phi_d\}$.

Expand $\psi \in \wedge^n C^d$ in Slater dets:

$$\psi = \sum_{i_1 < \cdots < i_n} c_{i_1, \ldots, i_n} \phi_{i_1} \wedge \cdots \wedge \phi_{i_n}. \tag{1}$$

Assume (wlog) $\rho^{(1)}(\psi)$ is diagonal with eigenvalues λ

Let $\langle D, x \rangle \leq c$ be a face of the 1-RDM polytope.
Selection rules

Consider n-Fermion system with modes $\{\phi_1, \ldots, \phi_d\}$.

Expand $\psi \in \wedge^n \mathbb{C}^d$ in Slater dets:

$$\psi = \sum_{i_1 < \cdots < i_n} c_{i_1, \ldots, i_n} \phi_{i_1} \wedge \cdots \wedge \phi_{i_n}. \quad (1)$$

Assume (wlog) $\rho^{(1)}(\psi)$ is diagonal with eigenvalues λ

Let $\langle D, x \rangle \leq c$ be a face of the 1-RDM polytope.

If the eigenvalues of ψ saturate the ineq. $\langle D, \lambda \rangle = c$, then (1) only contains Slater dets whose eigenvalues do so as well.
If the eigenvalues of ψ saturate the ineq. $\langle D, \lambda \rangle = c$, then (1) only contains Slater dets whose eigenvalues do so as well.

Elementary proof [Alex Lopes, PhD thesis; Lopes, Schilling, DG, in eternal prep.]
If the eigenvalues of ψ saturate the ineq. $\langle D, \lambda \rangle = c$, then (1) only contains Slater dets whose eigenvalues do so as well.

Elementary proof [Alex Lopes, PhD thesis; Lopes, Schilling, DG, in eternal prep.]

Trick:

- Introduce operator $\hat{D} = \sum_i D_i a_i^{\dagger} a_i$.

- Then

 $$\langle D, \lambda \rangle = \text{tr} \hat{D} \rho^{(1)} = \text{tr} \hat{D} \psi \langle \psi |.$$
Selection rules: Proof

If the eigenvalues of ψ saturate the ineq. $\langle D, \lambda \rangle = c$, then (1) only contains Slater dets whose eigenvalues do so as well.

Elementary proof [Alex Lopes, PhD thesis; Lopes, Schilling, DG, in eternal prep.]

Trick:
- Introduce operator $\hat{D} = \sum_i D_i a_i^\dagger a_i$.
- Then
 $$\langle D, \lambda \rangle = \text{tr} \hat{D} \rho^{(1)} = \text{tr} \hat{D} |\psi\rangle \langle \psi|.$$

Selection rule equivalent to:
- If $\text{tr} \hat{D} |\psi\rangle \langle \psi| = c$, then $\hat{D} |\psi\rangle = c |\psi\rangle$.

(Non-trivial, as c need not be extremal eigenvalue of \hat{D}).
Selection rules: Proof

If the eigenvalues of ψ saturate the ineq. $\langle D, \lambda \rangle = c$, then (1) only contains Slater dets whose eigenvalues do so as well.

Elementary proof [Alex Lopes, PhD thesis; Lopes, Schilling, DG, in eternal prep.]

Trick:

- Introduce operator $\hat{D} = \sum_i D_i a_i^\dagger a_i$.

- Then

 $$\langle D, \lambda \rangle = \text{tr} \hat{D} \rho^{(1)} = \text{tr} \hat{D} |\psi\rangle \langle \psi|.$$

Selection rule equivalent to:

If $\text{tr} \hat{D} |\psi\rangle \langle \psi| = c$, then $\hat{D} |\psi\rangle = c |\psi\rangle$.

(Non-trivial, as c need not be extremal eigenvalue of \hat{D}).

Proof: Blackboard.
Info about global state from 1-RDMs.

Part 2: Entanglement.
Entanglement

- Two pure states ψ, ϕ are in same *entanglement class* if they can be converted into each other with finite probability of success using local operations and classical communication.
Entanglement

- Two pure states ψ, ϕ are in same *entanglement class* if they can be converted into each other with finite probability of success using local operations and classical communication.
- Often referred to as *SLOCC classes*. But that sounds too unpleasant.
Entanglement

▶ Two pure states ψ, ϕ are in same entanglement class if they can be converted into each other with finite probability of success using local operations and classical communication.

▶ Often referred to as SLOCC classes. But that sounds too unpleasant.

▶ Formally:

$$\psi \sim \phi \iff \psi = (g_1 \otimes \cdots \otimes g_n)\phi$$

with g_i local invertible matrices (filtering operations).

▶ Mathematically: We’re looking at $SL(\mathbb{C}^d)^\times \times^n$-orbits in $(\mathbb{C}^d)^n$.
SLOCC, SLOCC! – Who’s There?

- For three qubits \((d = 2, n = 3)\), equivalence classes known since mid-1800s. Re-discovered in 2000 to great effect:

> **Three qubits can be entangled in two inequivalent ways**
> Abstract: Invertible local transformations of a multipartite system are used to define equivalence classes in the set of entangled states. This classification concerns the entanglement properties of a single copy of the state. Accordingly, we say that two states ...
> Cited by 1683 - Related articles - BL Direct - All 22 versions - Import into BibTeX

> **Four qubits can be entangled in nine different ways**
> F Verstraete, J Dehaene, B De Moor... - Physical Review A, 2002 - APS
> ... to the singlet state by SLOCC operations 3. In the case of three entangled qubits, it was shown 2,4,5 that each state can be converted by SLOCC operations either to the GHZ-state \((000 111)\)/& or to the W-state \((001 010 100 \rangle\), leading to two inequivalent ways of entangling ...
> Cited by 350 - Related articles - BL Direct - All 12 versions - Import into BibTeX

> **Control and measurement of three-qubit entangled states**
> CF Roos, M Riebe, H Häffner, W Hänsel... - Science, 2004 - sciencemag.org
> ... The ions’ electronic qubit states are initialized in the S state by optical pumping. Three qubits can be entangled in only two inequivalent ways, represented by the Greenberger-Horne-Zeilinger (GHZ) state, and the W state, (17). ...
> Cited by 273 - Related articles - All 13 versions - Import into BibTeX
Examples

Classes:

- Products $\psi = \phi_1 \otimes \phi_2 \otimes \phi_3$.
- Three classes of *bi-separable* states: $\psi = \phi_1 \otimes \phi_{2,3}$.
- The W-class:

 $$|W\rangle = |001\rangle + |010\rangle + |100\rangle.$$

- The GHZ-class:

 $$|GHZ\rangle = |000\rangle + |111\rangle.$$
Further examples

4 qubits:

- Classification apparently first obtained in QI community [Verstraete et al. (2002)].
- Nine families of four complex parameters each.
4 qubits:

- Classification apparently first obtained in QI community [Verstraete et al. (2002)].
- Nine families of four complex parameters each.

Beyond:

- Number of parameters required to label orbits increases exponentially.
- Only sporadic facts known.
Desiderata

Can we come up with theory that

- is systematic
 (any number of particles, local dimensions, symmetry constraints),

- is efficient
 (only polynomial number of parameters have to be learned),

- experimentally feasible
 (parameters easily accessible, robust to noise)?
Desiderata

Can we come up with theory that

▶ is systematic
 (any number of particles, local dimensions, symmetry constraints),
▶ is efficient
 (only polynomial number of parameters have to be learned),
▶ experimentally feasible
 (parameters easily accessible, robust to noise)?

Claim:
The single-site quantum marginal problem lives up to these standards.
Entanglement Polytopes
Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class of global state.

[Walter, Doran, Gross, Christandl, Science 2013]
Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class of global state.

Thus:

- To every class C, associated set Δ_C of local eigenvalues of states in (closure of) C.

[Walter, Doran, Gross, Christandl, Science 2013]
Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class of global state.

Thus:

- To every class C, associated set Δ_C of local eigenvalues of states in (closure of) C.
- Turns out: Δ_C is again polytope: the entanglement polytope associated with C.

[Walter, Doran, Gross, Christandl, Science 2013]
Central observation, entanglement polytopes

Set of allowed eigenvalues may depend on entanglement class of global state.

Thus:

- To every class C, associated set Δ_C of local eigenvalues of states in (closure of) C.
- Turns out: Δ_C is again polytope: the entanglement polytope associated with C.

[Walter, Doran, Gross, Christandl, Science 2013]

- Clearly: the position of $\vec{\lambda}(\psi)$ w.r.t. the entanglement polytopes contains all local information about global entanglement class.
Examples re-visited: 3 qubit entanglement polytopes

For three qubits, polytopes resolve all 6 entanglement classes:

\[\lambda^{(1)}_{\text{max}} + \lambda^{(2)}_{\text{max}} + \lambda^{(3)}_{\text{max}} \geq 2 \]

Any violation of that witnesses GHZ-type entanglement.

[Hang et al. (2004), Sawicki et al. (2012), our paper]
Examples re-visited: 3 qubit entanglement polytopes

For three qubits, polytopes resolve all 6 entanglement classes:

\[\lambda^{(1)}_{\text{max}} + \lambda^{(2)}_{\text{max}} + \lambda^{(3)}_{\text{max}} \geq 2. \]

W-class corresponds to “upper pyramid”:

Any violation of that witnesses GHZ-type entanglement.
Examples re-visited: 4 qubit entanglement polytopes

4 qubits:

- Entanglement classes:
 - 9 families with up to four complex parameters each
 - [Verstraete et al. (2002)].
Examples re-visited: 4 qubit entanglement polytopes

4 qubits:

- Entanglement classes:
 9 families with up to four complex parameters each
 [Verstraete et al. (2002)].

- Entanglement Polytopes:
 13 polytopes, 7 of which are genuinely 4-party entangled.
Examples re-visited: 4 qubit entanglement polytopes

4 qubits:

- **Entanglement classes:**
 9 families with up to four complex parameters each [Verstraete et al. (2002)].

- **Entanglement Polytopes:**
 13 polytopes, 7 of which are genuinely 4-party entangled.

- **We feel:** attractive balance between coarse-graining and preserving structure.

Example: 4-qubit W-class

\[\mathcal{C}_W \ni |0001\rangle + |0010\rangle + |0100\rangle + |1000\rangle \]

again an “upper pyramid”:

\[\lambda^{(1)}_{\max} + \lambda^{(2)}_{\max} + \lambda^{(3)}_{\max} + \lambda^{(4)}_{\max} \geq 3. \]
Example: 4 qubit entanglement polytopes
Example: Bosonic qubits

Consider n bosonic qubits:

$$\psi \in \text{Sym}^n (\mathbb{C}^2).$$
Example: Bosonic qubits

Consider n bosonic qubits:

$$\psi \in \text{Sym}^n (\mathbb{C}^2).$$

- Symmetry \Rightarrow all local reductions are equal:

$$\rho_{i,j}^{(1)} = \langle \psi | a_i^\dagger a_j | \psi \rangle.$$

- \Rightarrow single number captures all: $\lambda_{\text{max}} \in [0.5, 1]$.
Example: Bosonic qubits

Consider n bosonic qubits:

$$\psi \in \text{Sym}^n (\mathbb{C}^2).$$

- Symmetry \Rightarrow all local reductions are equal:

 $$\rho^{(1)}_{i,j} = \langle \psi | a_i^\dagger a_j | \psi \rangle.$$

- \Rightarrow single number captures all: $\lambda_{\text{max}} \in [0.5, 1]$.

Analyze polytopes:

- $|0, \ldots, 0\rangle$ in all \mathcal{C}’s $\Rightarrow \Delta \mathcal{C} = [\gamma \mathcal{C}, 1]$.
Example: Bosonic qubits

Consider n bosonic qubits:

$$
\psi \in \text{Sym}^n \left(\mathbb{C}^2 \right).
$$

- Symmetry \Rightarrow all local reductions are equal:

$$
\rho^{(1)}_{i,j} = \langle \psi | a_i^{\dagger} a_j | \psi \rangle.
$$

- \Rightarrow single number captures all: $\lambda_{\text{max}} \in [0.5, 1]$.

Analyze polytopes:

- $|0, \ldots, 0\rangle$ in all \mathcal{C}’s \Rightarrow $\Delta \mathcal{C} = [\gamma \mathcal{C}, 1]$.

- Turns out: Possible choices are

$$
\gamma \mathcal{C} \in \left\{ \frac{1}{2} \right\} \cup \left\{ \frac{N - k}{N} : k = 0, 1, \ldots, \lfloor N/2 \rfloor \right\} \ldots
$$

- ... with innermost point γ the image of W-type states.
A vector is \textit{genuinely }\(n\)-\textit{partite entangled} if it does not factorize \textit{w.r.t.} any bi-partition:

\[\psi \neq \psi_1 \otimes \psi_2. \]
Example: No Solipsism

- A vector is *genuinely n-partite entangled* if it does not factorize w.r.t. any bi-partition:

\[\psi \neq \psi_1 \otimes \psi_2. \]

Observation: sometimes detectable from local spectra alone.
Example: No Solipsism

- A vector is *genuinely n-partite entangled* if it does not factorize w.r.t. any bi-partition:

\[\psi \neq \psi_1 \otimes \psi_2. \]

Observation: sometimes detectable from local spectra alone.

\[\Leftrightarrow \text{spectra } (\vec{\lambda}^{(1)}, \ldots, \vec{\lambda}^{(n)}) \text{ compatible, but no bi-partition is.} \]

Example:

\[
(\lambda^{(1)}_{\text{max}}, \ldots, \lambda^{(n)}_{\text{max}}) = \left(\frac{1}{2} + \frac{1}{n-1}, 1 - \frac{1}{n-1}, \ldots, 1 - \frac{1}{n-1} \right).
\]
Example: No Solipsism

- A vector is *genuinely n-partite entangled* if it does not factorize w.r.t. any bi-partition:

\[\psi \neq \psi_1 \otimes \psi_2. \]

Observation: sometimes detectable from local spectra alone.

\[\Leftrightarrow \text{spectra } (\vec{\lambda}^{(1)}, \ldots, \vec{\lambda}^{(n)}) \text{ compatible, but no bi-partition is.} \]

Example:

\[(\lambda_{\text{max}}^{(1)}, \ldots, \lambda_{\text{max}}^{(n)}) = \left(\frac{1}{2} + \frac{1}{n-1}, 1 - \frac{1}{n-1}, \ldots, 1 - \frac{1}{n-1} \right). \]

Interpretation:

- *no solipsism*: love needs a partner! (And entangled qubits need their counter-parts).
Example: Distillation

Entanglement measures from local information:

- (Linear) entropy of entanglement

\[E(\psi) = 1 - \frac{1}{N} \sum_i \text{tr} \rho_i^2 \]

simple function of Euclidean distance of eigenvalue point to origin.

- “Closer to origin ⇒ more entanglement”.
Example: Distillation

Entanglement measures from local information:

- (Linear) entropy of entanglement
 \[E(\psi) = 1 - \frac{1}{N} \sum_i \text{tr} \rho_i^2 \]
 simple function of Euclidean distance of eigenvalue point to origin.
- “Closer to origin ⇒ more entanglement”.

⇒ can bound \textit{distillable} entanglement from local information!
Example: Distillation

Entanglement measures from local information:

- (Linear) entropy of entanglement

\[E(\psi) = 1 - \frac{1}{N} \sum_i \text{tr} \rho_i^2 \]

simple function of Euclidean distance of eigenvalue point to origin.

- “Closer to origin ⇒ more entanglement”.

- ⇒ can bound \textit{distillable} entanglement from local information!

- Can even give \textit{distillation procedure} without need to know state beyond local densities (generalizing [Verstraete \textit{et al.} 2002]).
Yeah, but no pure state exists in Nature.
Pure???

- Yeah, but no pure state exists in Nature.
- Results are epsilonifiable: if distance d of spectrum to a polytope Δ exceeds
 \[4N\sqrt{1 - p}, \]
 then $\rho \not\in \text{conv}(\Delta)$.
- $p = \text{tr} \rho^2$ is purity, which an be lower-bounded from local information alone.
Summary of Entanglement Polytopes

- Locally accessible info about global entanglement encoded in *entanglement polytopes* – subpolytopes of the set of admissible local spectra.
- Provides a systematic and efficient way of obtaining information about entanglement classes.
Thank you for your attention!

David Gross (Uni Cologne)

Oxford, April 2016