Entanglement Spectroscopy and its application to the fractional quantum Hall phases

N. Regnault

École Normale Supérieure Paris and CNRS, Department of Physics, Princeton Global Scholar
Acknowledgment

- A. Sterdyniak (MPQ, Germany)
- B. Estienne (Université Pierre et Marie Curie, France)
- Z. Papic (University of Leeds)
- F.D.M. Haldane (Princeton University)
- R. Thomale (Würzburg, Germany)
- M. Haque (Maynooth, Ireland)
- A.B. Bernevig (Princeton University)
Topological phases

What is topological order?

- phases that can’t be described by a broken symmetry. No local order parameter.
- At least one physical (i.e. measurable) quantity related to a topological invariant (like the surface genus).
- A system with a gapped bulk and gapped or gapless surface (or edge) modes.
- Simplest example: the integer quantum Hall effect (quantized Hall conductance).

Since 2005, the revolution of topological insulators
Making things harder: strong interactions

- Most celebrate example: the fractional quantum Hall effect.
- Alliance of a non-trivial band structure (Landau levels) and strong interactions.
- An exotic place: emergent fractional charges with fractional statistics or non-abelian.

- No classification of fractional phases (as opposed to the non-interacting case).
- Non-perturbative problem → variational methods and numerical simulations.
- No local order parameter → which phase is emerging?
Outline

- Entanglement Spectrum
- Fractional Quantum Hall Effect
- FQHE and Entanglement Spectrum
- ES and Fractional Chern Insulators
Entanglement Spectrum
Entanglement spectrum (Li and Haldane 2008)

- Start from a quantum state $|\Psi\rangle$.
- Create a bipartition of the system into A and B.
- Reduced density matrix
 \[\rho_A = \text{Tr}_B |\Psi\rangle \langle \Psi| \]
- Entanglement Hamiltonian:
 \[\rho_A = e^{-H_{\text{ent}}} \]

 - The eigenvalues of H_{ent} are the entanglement energies $\{\xi_i\}$.
 - Lower entanglement energies \simeq higher weights in ρ_A.
 - If $O = O_A + O_B$ and , the ξ_i can be labeled by the O_A quantum numbers.
 - Entanglement entropy $S_A = -\text{Tr}_A [\rho_A \ln \rho_A]$, area law for gapped systems (i.e. $S_A \propto L^{d-1}$).
Entanglement spectrum

Example: system made of two spins 1/2

Entanglement spectrum: ξ as a function of $S_{z,A}$ (z projection of the spin A)

The counting (i.e., the number of non-zero eigenvalues) also provides information about the entanglement.
The AKLT spin chain

A prototype of a gapped spin-1 chain.

\[H_{\text{AKLT}} = \sum_j \vec{S}_j \cdot \vec{S}_{j+1} + \frac{1}{3} \sum_j \left(\vec{S}_j \cdot \vec{S}_{j+1} \right)^2 \]

The ground state of the AKLT Hamiltonian is the valence bond state.

For an open chain, the two extreme unpaired spin-\(\frac{1}{2} \) correspond to the edge excitations (4-fold degenerate ground state)
The AKLT spin chain, the Li-Haldane conjecture

- Reduced density matrix is 81×81 but only two non-zero eigenvalues for the AKLT model.
- The trace has introduced an artificial edge \rightarrow a spin-$\frac{1}{2}$ edge excitation. The ES mimics the edge spectrum of the model.
- Away from the model state: An entanglement gap Δ_ξ between a low (entanglement) energy structure related the model state and a high energy structure. Δ_ξ should stay finite at the thermodynamical limit if the two phases are in the same universality class.

ES for an open chain with 8 sites and $l_A = 4$. $S_{z,A}$: z-projection of A total spin.
Fractional Quantum Hall Effect
Fractional Quantum Hall effect

Landau levels (spinless case)

- Cyclotron frequency: $\omega_c = \frac{eB}{m}$
- Filling factor: $\nu = \frac{\hbar n}{eB} = \frac{N}{N\Phi}$
- Partial filling + interaction \rightarrow FQHE
- Lowest Landau level ($\nu < 1$):
 $z^m \exp \left(-\frac{|z|^2}{4\ell_B^2}\right)$
- N-body wave function:
 $\Psi = P(z_1, \ldots, z_N) \exp(-\sum |z_i|^2/(4\ell_B^2))$
- What are the low energy properties? Gapped bulk, Massless edge
- Strongly correlated systems, emergence of exotic phases: fractional charges, non-abelian braiding.

\[\begin{align*}
N=2 & \quad \hbar \omega_c \\
N=1 & \quad \hbar \omega_c \\
N=0 & \quad \hbar \omega_c \\
\end{align*} \]
The Fractional QHE

FQHE is a hard N-body problem:

- a single Landau level (the lowest one for $\nu < 1$, no spin)
- the effective Hamiltonian is just the (projected) interaction!

$$\mathcal{H} = \mathcal{P}_{LLL} \sum_{i<j} V(\vec{r}_i - \vec{r}_j) \mathcal{P}_{LLL}$$

(insert in V your favorite interaction plus screening effect, finite width, Landau level,...)

Two major methods:

- variational method: find a wave functions describing low energy physics (symmetries, CFT, model...)
- numerical calculation: exact diagonalizations on different geometries (sphere, plane, torus, ...), DMRG

$\text{Nbr orb.} \approx N_\Phi$
The Laughlin wave function

A (very) good approximation of the ground state at $\nu = \frac{1}{3}$

$$\Psi_L(z_1, ... z_N) = \prod_{i<j} (z_i - z_j)^3 e^{-\sum_i \frac{|z_i|^2}{4j^2}}$$

- The Laughlin state is the unique (on genus zero surface) densest state that screens the short range (p-wave) repulsive interaction.
- **Topological state**: the degeneracy of the densest state depends on the surface genus (sphere, torus, ...
The Laughlin wave function: quasihole excitations

Add one flux quantum at $z_0 = \text{one quasi-hole}$

$$\Psi_{qh}(z_1, \ldots z_N) = \prod_i (z_0 - z_i) \, \Psi_L(z_1, \ldots z_N)$$

- Locally, create one quasi-hole with fractional charge $\pm \frac{e}{3}$
- Quasi-holes obey fractional statistics (fractional charge + flux)
- Adding quasiholes/flux quanta increases the size of the droplet
- For given number of particles and flux quanta, there is a specific number of qh states that one can write
- These numbers/degeneracies can be classified with respect some quantum number (angular momentum L_z) and are a fingerprint of the phase (related to the statistics of the excitations).
In the LLL, the one-body wf are:
\[\sum_{\mathbf{k} \in \mathbb{Z}} e^{\frac{2\pi}{L_y} (k_y + k_N \phi)(x + iy)} e^{-\frac{x^2}{2}} e^{-\frac{1}{2} \left(\frac{2\pi}{L_y} \right)^2 (k_y + k_N \phi)^2} \]

- The Laughlin \(\nu = 1/m \) is \(m \)-fold degenerate on the torus.
- Number of orbitals is \(N_{\phi} \).
- Each orbital is labeled by its quantum number \(k_y \).
- Invariant under the magnetic translations.
- \(K_T^y = (\sum_i k_y, i) \mod N_{\phi} \).
- There is another quantum number (purely many-body) related the center of mass degeneracy.

Model interaction for the Laughlin state,
\(N = 6, N_{\phi} = 18 \)
The Haldane’s exclusion principle

- The number of quasihole states per momentum sector can be predicted by a generalization of the Pauli’s principle.
- For the Laughlin $\nu = 1/m$, no more than 1 particle in m consecutive orbitals (including periodic boundary conditions on the torus).
- Example Laughlin $\nu = 1/3$ state with 9 flux quanta

 $k_y = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$

 1 0 0 1 0 0 1 0 0 \[\checkmark \]

 1 0 0 0 1 0 1 0 0 \[\times \]

 $k_y = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$

 1 0 0 0 1 0 0 1 0 \[\times \]

 0 1 0 0 1 0 0 1 0 \[\checkmark \]

- Can be generalized to the Moore-Read or Read-Rezayi states (non-abelian excitations): no more than k particles in $k + 2$ consecutive orbitals.
Example: Finding back the 3-fold degeneracy of the Laughlin $\nu = 1/3$ with $N_\phi = 3 \times N = 9$

\[
k_y = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}
\]

$K_T^y = 0 + 3 + 6 \mod 9 = 0$

\[
k_y = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}
\]

$K_T^y = 1 + 4 + 7 \mod 9 = 3$

\[
k_y = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}
\]

$K_T^y = 2 + 5 + 8 \mod 9 = 6$
The Laughlin wave function: edge excitations

- One dimensional chiral mode with a linear dispersion relation $E \sim \frac{2\pi v}{L} n$
- The degeneracy of each many-body energy level E_t is given by the sequence $1, 1, 2, 3, 5, 7, \ldots$
The Laughlin wave function: edge excitations

- One dimensional chiral mode with a linear dispersion relation \(E \approx \frac{2\pi \nu}{L} n \)
- The degeneracy of each many-body energy level \(E_t \) is given by the sequence 1, 1, 2, 3, 5, 7,

Interacting case (Laughlin \(\nu = \frac{1}{3} \))

- (a) \(E_t = 0 \)
- (b) \(E_t = 1 \)
- (c) \(E_t = 1 \)
- (d) \(E_t = 2 \)
- (e) \(E_t = 2 \)
FQHE and Entanglement Spectrum
Orbital entanglement spectrum

- FQHE on a cylinder (Landau gauge): orbitals are labeled by k_y, rings at position $\frac{2\pi k_y}{L} l_B^2$
- Divide your orbitals into two groups A and B, keeping $N_{\text{orb},A}$ orbitals: orbital cut \sim real space cut (fuzzy cut)

![Diagram showingorbital entanglement spectrum](image)

- Fingerprint of the edge mode (edge mode counting) can be read from the ES. ES mimics the chiral edge mode spectrum.
- For FQH model states, nbr. levels is exp. lower than expected.
Different eigenvalues of ρ_A (shape of the ES) but the same number of non-zero eigenvalues (counting)

The counting IS the important feature. For model states in the FQHE, exponentially lower than expected
Away from model states

Groundstate of the Coulomb interaction at \(\nu = 1/3 \) for \(N = 12 \) on a sphere/thin annulus

\(\nu = 1/3 \) Laughlin state

- A low ent. energy structure identical to the Laughlin state.
- An entanglement gap that does not spread over the full spectrum but protects the region mimicking the edge mode.
- An additional structure in the high energy part related to the neutral excitations (quasihole-quasielectron pairs).
How to cut the system?

The system can be cut in different ways:
- real space
- orbital (or momentum) space
- particle space

Each way may provide different information about the system (ex: trivial in momentum space but not in real space)

- **Real space partitioning**: extracting the edge physics
- **Particle partitioning**: extracting the bulk physics
Particle entanglement spectrum

Ground state Ψ for N particles, remove $N - N_A$, keep N_A

$$\rho_A(x_1, \ldots, x_{N_A}; x'_1, \ldots, x'_{N_A}) = \int \cdots \int dx_{N_A+1} \cdots dx_N$$

$$\psi^*(x_1, \ldots, x_{N_A}, x_{N_A+1}, \ldots, x_N) \times \psi(x'_1, \ldots, x'_{N_A}, x_{N_A+1}, \ldots, x_N)$$

$\nu = 1/3$ Laughlin $N = 8$, $N_A = 4$

Coulomb GS at $\nu = 1/3$ on a torus

Counting is the number of quasihole states for N_A particles on the same geometry \rightarrow the fingerprint of the phase.
ES and Fractional Chern Insulators
A Chern insulator is a zero magnetic field version of the QHE (Haldane, 88).

Topological properties emerge from the band structure.

At least one band is a non-zero Chern number C, Hall conductance $\sigma_{xy} = \frac{e^2}{h} |C|$

What about the strong interacting regime? → Fractional Chern insulators.

Filling the lowest band $\nu = 1/3$ plus strong interaction, do we get a Laughlin-like state or a charge density wave?

Energy spectrum with similar features (3-fold degenerate groundstate) but a different entanglement spectrum.
Conclusion

- For many quantum phases, the ground state contains a surprisingly large amount of information about the excitations.
- The entanglement spectroscopy is a way to probe (or extract) this information.
- Seeing the bulk-edge correspondence.
- Different partitions give access to different types of excitations.
- Entanglement spectroscopy is a concrete tool, requiring only the ground state (example of the fractional Chern insulators).
- What is the meaning of the counting exponential reduction? Efficient description using a matrix product state representation (but this is another story...).
Counting is great!
Conclusion

Counting is great!
(you just have to be careful...)