Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Konstantin Beyer

Visitor

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Particle theory
  • Oxford Centre for High Energy Density Science (OxCHEDS)
konstantin.beyer@physics.ox.ac.uk
Telephone: 01865 273952
  • About
  • Publications

Axion detection through resonant photon-photon collisions

Physical Review D American Physical Society 101:9 (2020) 95018

Authors:

Ka Beyer, G Marocco, R Bingham, G Gregori

Abstract:

We investigate the prospect of an alternative laboratory-based search for the coupling of axions and axionlike particles to photons. Here, the collision of two laser beams resonantly produces axions, and a signal photon is detected after magnetic reconversion, as in light-shining-through-walls (LSW) experiments. Conventional searches, such as LSW or anomalous birefringence measurements, are most sensitive to axion masses for which substantial coherence can be achieved; this is usually well below optical energies. We find that using currently available high-power laser facilities, the bounds that can be achieved by our approach outperform traditional LSW at axion masses between 0.5–6 eV, set by the optical laser frequencies and collision angle. These bounds can be further improved through coherent scattering off laser substructures, probing axion-photon couplings down to gaγγ∼10−8GeV−1, comparable with existing CAST bounds. Assuming a day long measurement per angular step, the QCD axion band can be reached.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Axion-like-particle decay in strong electromagnetic backgrounds

Journal of High Energy Physics Springer 2019:12 (2019) 162

Authors:

B King, BM Dillon, K Beyer, Gianluca Gregori
More details from the publisher
Details from ORA
More details

Analytical estimates of proton acceleration in laser-produced turbulent plasmas

Journal of Plasma Physics Cambridge University Press 84:6 (2018) 905840608

Authors:

Konstantin Beyer, B Reville, Archie Bott, H-S Park, Subir Sarkar, Gianluca Gregori

Abstract:

With the advent of high power lasers, new opportunities have opened up for simulating astrophysical processes in the laboratory. We show that 2nd-order Fermi acceleration can be directly investigated at the National Ignition Facility, Livermore. This requires measuring the momentumspace diffusion of 3 MeV protons produced within a turbulent plasma generated by a laser. Treating Fermi acceleration as a biased diffusion process, we show analytically that a measurable broadening of the initial proton distribution is then expected for particles exiting the plasma.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Light-shining-through-wall axion detection experiments with a stimulating laser

Physical Review D - Particles, Fields, Gravitation and Cosmology American Physical Society 105 (2022) 035031

Abstract:

The collision of two real photons can result in the emission of axions. We investigate the performance of a modified light-shining-through-wall (LSW) axion search aiming to overcome the large signal suppression for axion masses ma ≥ 1 eV. We propose to utilize a third beam to stimulate the reconversion of axions into a measurable signal. We thereby find that with currently available high-power laser facilities we expect bounds at axion masses between 0.5–6 eV reaching gaγγ ≥ 10−7 GeV−1. Combining the use of optical lasers with currently operating x-ray free electron lasers, we extend the mass range to 10–100 eV.

More details from the publisher
Details from ORA

Stimulated Laser Light Shining Through Wall Search for Axion Detection

(2021)

Authors:

Ka Beyer, G Marocco, R Bingham, G Gregori

Abstract:

The collision of two real photons can result in the emission of axions. We investigate the performance of a modified light-shining-through-wall (LSW) axion search aiming to overcome the large signal suppression for axion masses $m_a\geq 1 \text{eV}$. We propose to utilise a third beam to stimulate the reconversion of axions into a measurable signal. We thereby find that with currently available high-power laser facilities we expect bounds at axion masses between $0.5-6\text{eV}$ reaching $g_{a\gamma\gamma}\geq 10^{-7}\text{GeV}^{-1}$. Combining the use of optical lasers with currently operating x-ray free electron lasers, we extend the mass range to $10-100\text{eV}$.
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet