Axion detection through resonant photon-photon collisions
Physical Review D American Physical Society 101:9 (2020) 95018
Abstract:
We investigate the prospect of an alternative laboratory-based search for the coupling of axions and axionlike particles to photons. Here, the collision of two laser beams resonantly produces axions, and a signal photon is detected after magnetic reconversion, as in light-shining-through-walls (LSW) experiments. Conventional searches, such as LSW or anomalous birefringence measurements, are most sensitive to axion masses for which substantial coherence can be achieved; this is usually well below optical energies. We find that using currently available high-power laser facilities, the bounds that can be achieved by our approach outperform traditional LSW at axion masses between 0.5–6 eV, set by the optical laser frequencies and collision angle. These bounds can be further improved through coherent scattering off laser substructures, probing axion-photon couplings down to gaγγ∼10−8GeV−1, comparable with existing CAST bounds. Assuming a day long measurement per angular step, the QCD axion band can be reached.Axion-like-particle decay in strong electromagnetic backgrounds
Journal of High Energy Physics Springer 2019:12 (2019) 162
Analytical estimates of proton acceleration in laser-produced turbulent plasmas
Journal of Plasma Physics Cambridge University Press 84:6 (2018) 905840608
Abstract:
With the advent of high power lasers, new opportunities have opened up for simulating astrophysical processes in the laboratory. We show that 2nd-order Fermi acceleration can be directly investigated at the National Ignition Facility, Livermore. This requires measuring the momentumspace diffusion of 3 MeV protons produced within a turbulent plasma generated by a laser. Treating Fermi acceleration as a biased diffusion process, we show analytically that a measurable broadening of the initial proton distribution is then expected for particles exiting the plasma.Light-shining-through-wall axion detection experiments with a stimulating laser
Physical Review D - Particles, Fields, Gravitation and Cosmology American Physical Society 105 (2022) 035031
Abstract:
The collision of two real photons can result in the emission of axions. We investigate the performance of a modified light-shining-through-wall (LSW) axion search aiming to overcome the large signal suppression for axion masses ma ≥ 1 eV. We propose to utilize a third beam to stimulate the reconversion of axions into a measurable signal. We thereby find that with currently available high-power laser facilities we expect bounds at axion masses between 0.5–6 eV reaching gaγγ ≥ 10−7 GeV−1. Combining the use of optical lasers with currently operating x-ray free electron lasers, we extend the mass range to 10–100 eV.
Stimulated Laser Light Shining Through Wall Search for Axion Detection
(2021)