High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit.
Physical review letters 113:22 (2014) 220501
Abstract:
We implement all single-qubit operations with fidelities significantly above the minimum threshold required for fault-tolerant quantum computing, using a trapped-ion qubit stored in hyperfine "atomic clock" states of ^{43}Ca^{+}. We measure a combined qubit state preparation and single-shot readout fidelity of 99.93%, a memory coherence time of T_{2}^{*}=50 sec, and an average single-qubit gate fidelity of 99.9999%. These results are achieved in a room-temperature microfabricated surface trap, without the use of magnetic field shielding or dynamic decoupling techniques to overcome technical noise.Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap
APPLIED PHYSICS B-LASERS AND OPTICS 114:1-2 (2014) 3-10
A microfabricated ion trap with integrated microwave circuitry
ArXiv 1210.3272 (2012)
Abstract:
We describe the design, fabrication and testing of a surface-electrode ion trap, which incorporates microwave waveguides, resonators and coupling elements for the manipulation of trapped ion qubits using near-field microwaves. The trap is optimised to give a large microwave field gradient to allow state-dependent manipulation of the ions' motional degrees of freedom, the key to multiqubit entanglement. The microwave field near the centre of the trap is characterised by driving hyperfine transitions in a single laser-cooled 43Ca+ ion.Background-free detection of trapped ions
Applied Physics B: Lasers and Optics 107:4 (2012) 1175-1180
Abstract:
We demonstrate a Doppler cooling and detection scheme for ions with low-lying D levels which almost entirely suppresses scattered laser light background, while retaining a high fluorescence signal and efficient cooling. We cool a single ion with a laser on the 2S1/2 ?2P1/2 transition as usual, but repump via the 2P3/2 level. By filtering out light on the cooling transition and detecting only the fluorescence from the 2P3/2 → 2S1/2 decays, we suppress the scattered laser light background count rate to 1 s-1 while maintaining a signal of 29000 s-1 with moderate saturation of the cooling transition. This scheme will be particularly useful for experiments where ions are trapped in close proximity to surfaces, such as the trap electrodes in microfabricated ion traps, which leads to high background scatter from the cooling beam.Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap
Applied Physics B: Lasers and Optics 107:4 (2012) 913-919