Heating-Induced Long-Range η Pairing in the Hubbard Model
Physical Review Letters American Physical Society (APS) 123:3 (2019) 030603
Quantum synchronisation enabled by dynamical symmetries and dissipation
New Journal of Physics IOP Publishing 22 (2019) 013026
Abstract:
In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying symmetry-based conditions which, when satisfied, guarantee completely synchronous, entangled limit cycles between the individual constituents of a generic open quantum system - no restrictions are placed on its microscopic details. We describe these systems as posssessing a strong dynamical symmetry and we prove that, to first order, they are completely robust to symmetry-breaking perturbations. Using these ideas we identify two central examples where synchronisation arises via this qualitatively new mechanism: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases, due to their dynamical symmetries, perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their non-linear responses elicit long-lived signatures of both phase and frequency-locking.Non-stationary coherent quantum many-body dynamics through dissipation
Nature Communications Nature Research (part of Springer Nature)
Abstract:
The assumption that physical systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies. These have been studied for systems with a few degrees of freedom only. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationary dynamics typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time-crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.Photo-molecular high temperature superconductivity
Physical Review X American Physical Society 10 (2020) 031028
Abstract:
The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt κ−(BEDT−TTF)2 Cu[N(CN)2] Br induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature T∗≃50K, far higher than the equilibrium transition temperature TC=12.5K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity.Analytical solution for the steady states of the driven Hubbard model
Physical Review B American Physical Society 103:3 (2021) 35146