Ramsey-Bordé interferometry with optical clock atoms in intermediate-scale atom interferometers AION

Jesse Schelfhout^{*}, Kenneth Hughes, Thomas Hird, Chris Foot

Department of Physics, University of Oxford, Parks Rd, Oxford OX1 3PU, UK

*jesse.schelfhout@physics.ox.ac.uk

Enhanced **Ramsey-Bordé** scheme

- Large-momentum-transfer (LMT) between $\pi/2$ -pulses
- N extra π -pulses per $\pi/2$ -

Atom interferometers can weigh atoms

Atomic mass constant $m_{\rm u} = \frac{m(^{12}{\rm C})}{12} = \frac{m({\rm X})}{A_{\rm r}({\rm X})}$

• m(X) via atom interferometry • $A_{\rm r}({\rm X})$ from Penning traps

Kasevich-Chu $\int \pi/2$ X $\int \pi/2$ π $\Delta \phi \propto k g T^2$

• Determines masses of many particles in kg, eV/c^2 , etc.

Fine-structure constant

- $\alpha^{2} = \frac{2R_{\infty}}{c} \times \frac{A_{\rm r}({\rm X})}{A_{\rm r}({\rm e})} \times \frac{h}{m({\rm X})}$
- Used in highest precision test of QED & Standard Model • Precision currently limited by
 - atom interferometry

Relative uncertainties of inputs

Ξ	$u_{ m r}(R_{\infty})$	$u_{\mathrm{r}}(A_{\mathrm{r}}(\mathrm{e}))$	$u_{\rm r}(A_{\rm r}(^{87}{\rm Rb}))$	$u_{\rm r}(m(^{87}{ m Rb}))$
	1.1×10^{-12}	1.8×10^{-11}	7.0×10^{-11}	1.5×10^{-10}

• Discrepancy between values for α using Rb and Cs is $> 5 \sigma$

F = mg

Optical clock atoms

• Differential schemes with single-photon transitions are simpler for longer baselines • Sr, Yb, & Cd have sufficiently long $|e\rangle$ lifetimes ($\gg 2$ s) • $A_{\rm r}(^{87}{
m Sr})$ & $A_{\rm r}(^{171,173}{
m Yb})$ are precise enough to improve α

Precision for 1 mrad resolution

ℓ (m)	$\Delta m({ m Sr})/m({ m Sr})$	$\Delta m({ m Yb})/m({ m Yb})$
1	2.2×10^{-10}	3.0×10^{-10}
2	2.1×10^{-11}	3.0×10^{-11}
3	7.2×10^{-12}	1.0×10^{-11}

Implementation in intermediate-scale instruments

- Optimise recoil-phase for instrument size and atomic species by adjusting N and M

Optimal trajectories for $\ell = 5 \,\mathrm{m}$ source separation and a 4.6 m magnetically-shielded interferometry region using Sr atoms

4	3.5×10^{-12}	5.0×10^{-12}
5	2.2×10^{-12}	3.1×10^{-12}
6	1.5×10^{-12}	2.1×10^{-12}
7	1.1×10^{-12}	1.5×10^{-12}
8	8.4×10^{-13}	1.2×10^{-12}
9	6.7×10^{-13}	9.1×10^{-13}
10	5.3×10^{-13}	7.2×10^{-13}
100	1.3×10^{-14}	1.6×10^{-14}

References & acknowledgements

Scan for more info

 φ