

### Precision measurement with differential atom interferometry

#### Jesse Schelfhout, Kenneth Hughes, Thomas Hird, Chris Foot Department of Physics, University of Oxford

#### **Atom-light interaction**

- Rabi oscillation = rotation by  $\Omega t$  about x-axis on Bloch sphere
- $\Omega t = \pi/2 \equiv \square$
- $\Omega t = \pi \equiv \checkmark$
- $p^{\mu} = \hbar(\frac{\omega}{c}, \mathbf{k})$  transferred  $\Rightarrow$  states separate spatially

#### **Differential atom interferometry**

- Same laser pulses  $\Rightarrow$  same  $\Delta \phi_{\text{internal}} + \Delta \phi_{\text{laser}}$
- Difference in  $\Delta \phi_{\text{propagation}}$  remains
- Gravitational waves, ultralight dark matter  $\Rightarrow$  time-dependent differential phase

#### **AION** collaboration

- Atom Interferometer Observatory & Network
- Differential atom interferometry with ultracold Sr on clock transition
- AION-10: 10 m tower to be built @ Oxford







# An atom in two places at once







Correspondence: jesse.schelfhout@physics.ox.ac.uk

## is a nifty quantum sensor

 $\Delta \phi = \Delta \phi_{\text{propagation}} + \Delta \phi_{\text{internal}} + \Delta \phi_{\text{laser}}$ 









#### **Gravitational wave sensitivity**



#### Fine structure constant

| 2            | $2R_{\infty}$ |   | т                  |   | h              |
|--------------|---------------|---|--------------------|---|----------------|
| $\chi^{-} =$ |               | Х | $\overline{m_{a}}$ | Х | $\overline{m}$ |
|              | C             |   | '''e               |   | 11             |

- Highest precision test of QED
- Ramsey-Bordé scheme (left) measures recoil frequency to determine h/m

