Oxford Ion Trap QIPC Group

Faculty:

Derek Stacey, Andrew Steane, David Lucas.

Post-docs:

Matt McDonnell, (Angel Ramos) (Marek Šašura).

Post-grads:

Jonathan Home, Simon Webster.

> Past students: J-P Stacey, Charles Donald, David Stevens.

Summary

- 1. Some issues for phase gate by pushing ions
- 2. Designing traps for fast ion displacement
- 3. Experiments:
 - 1. Spin-state detection
 - 2. Rabi flopping of the qubit
 - 3. Cooling to near the ground state of motion

Geometrical Argument

Phase acquired θ = area in phase space in rotating frame

Fidelity

Photon Scattering

Push

$$N \simeq \frac{\sqrt{3}\Gamma\omega_0}{8\eta_L \Delta\Omega_D} = \frac{\sqrt{3}\omega_0\Gamma}{4\eta_L^2\Omega_0^2}.$$

 $\sim 1/intensity$

Thermal

Non-uniform force

Debye-Waller factor

light

ion

Push

Wobble

The total thermal effect is $P \simeq (\bar{n}+1) \left(0.3\pi^2 \eta_L^4 \bar{n} + 1.6 \frac{\Omega_D^2}{\tilde{\omega}_0^2} \right)$ similar for the two cases:

M. Sasura and A. M. Steane, PRA 65, 062318 (2003); A. Sorensen and K. Molmer, PRA 62, 022311 (2000)

Discussion

- Wobble uses resonance to displace ions further for a given force \rightarrow requires less laser intensity (for given photon scattering N)
- Laser intensity noise typically falls with freq. \Rightarrow better to oscillate the force.

Designing traps for fast ion displacement

Bringing ions together

$$\omega_{\rm COM}^2 = (2\alpha_z + 3\beta d^2)q/m$$

$$\omega_{\rm stretch}^2 = \omega_{\rm COM}^2(1+\tilde{\epsilon})$$

where d = separation of the ions, and

$$\tilde{\epsilon} = \frac{q^2}{\pi \epsilon_0 m \omega_{\rm COM} d^3}$$

) To maintain ω large when α_z goes through 0, require large β .

Electric Octopole Potential

Require large β at small α_z) increase voltages ! get large $|\alpha_x|, |\alpha_y|, ?$! can't confine the ions) require $|\alpha_x|, |\alpha_y|, |\alpha_z|$ all small but with large β

) Electric octopole trap

(small) d.c. quadrupole + octopole

$$V(x, y, z, t) \simeq \alpha \left(z^2 - \frac{1}{2}(x^2 + y^2)\right) + \beta V_4(x, y, z) + Q_{\rm ac} \cos(\Omega t)(x^2 - y^2)$$

+ r.f. quadrupole for radial confinement

Geometric factors & electric field

$$V(x, y, z, t) \simeq \alpha \left(z^2 - \frac{1}{2} (x^2 + y^2) \right) + \beta V_4(x, y, z)$$

+
$$Q_{\rm ac} \cos(\Omega t) (x^2 - y^2)$$

Assume limited by electrical breakdown, i.e. there is a maximum allowed electric field at an electrode surface.

Then:

Geometric factors γ , μ defined by

Example structures

Scaling with mass and ρ

Experiments

Physical system: Calcium ions in a trap

Present	Future
lon:	
40 Ca	43 Ca
Qubit:	
M=+1/2, -1/2 spin state	Hyperfine levels
A single linear trap.	Multiple traps
v _{ion} ~ 1 MHz	
₹ 7.2 mm	

Apparatus summary

Spin-state detection (qubit readout)

Principle of spin detection

We want to detect: is the spin state |-> Or |+> ?

Cycling: $S_{1/2} \rightarrow P_{3/2}$?

but optical pumping \rightarrow only ~1 photon.

Problem:

No matter what type of transition, fluorescence is always accompanied by optical pumping between |-> and |+>

→ Spin state is caused to relax before a detectable signal is obtained.

Principle of spin detection

Experiment in calcium

Experiment in calcium

First step: transfer to shelf, using EIT for selectivity.

Second step: detect fluorescence using the cooling lasers.

EIT spin state readout: results

Rabi flopping of the qubit

Magnetic resonance

~10 mG magnetic field oscillating at the Larmor frequency drives Rabi oscillations of the spin state.

Rabi Oscillations

Rabi Oscillations with 50 Hz line trigger

Ramsey fringes

Cooling to near the ground state

Continuous Raman Sideband Cooling

Lindberg & Javanainen, JOSAB **3**,1008 (1986) G. Morigi et al. PRL **85**,4458 (2000)

Cooling rate and steady-state temperature

 \bullet Cooling rate (vib. quanta per second) is given by Rabi frequency on the red sideband $\Omega_{\rm rsb}$

For our Raman + repumping process,

Linewidth $\Gamma = \max(R, \Omega_{rsb}) \sim 100 \text{ kHz}$

• So we expect $\langle n \rangle \sim (100/812)^2 \sim 0.01$

Sideband cooling – Results

Sideband cooling – Results

Sideband cooling – Results

Interpretation

Sideband cooling conclusions

Data gives upper bound

<*n*> < 0.5

 \Rightarrow Ground state population P₀ > 0.7

And indirect evidence for $\langle n \rangle \sim 0.1$ \Rightarrow Ground state population P₀ ~ 0.9

Conclusions

- A really thorough grasp of the pushing methods is needed to aim for fidelity 0.9999, and is also a good starting point for understanding faster methods.
- Electrode designs : we would welcome discussion of this.
- Experimentally, we have preparation, readout, single-bit rotation and cooling
- → next stage is to diagnose the temperature better, and then entanglement.