

<u>C M Löschnauer</u>, J Wolf, M Weber, T P Harty, R K Hanley, J F Goodwin, A M Steane, D M Lucas Microwave-driven high-fidelity quantum logic in ⁴³Ca⁺

Ion Trap Quantum Computing Group - Department of Physics, University of Oxford

The ability to induce controlled transitions between atomic states through time-varying electromagnetic fields is crucial if one is to use trapped ions for quantum information processing. While lasers have successfully been used before to implement high-fidelity single- and two-qubit gates, other methods are available that have advantages over laser-driven gates [1, 2, 3, 4]. We

Microwaves for quantum logic

Advantages compared to lasers: no errors due to spontaneous photon scattering; accurate control over frequency, phase and amplitude easily achieved; better scalability through integration of waveguides into trap; lower cost

Single-qubit gates: global gates easily implemented for ground-level qubits by direct interaction of electron spin with magnetic field; schemes exist for addressing of individual qubits

Two-qubit gates: use indirect coupling between internal states of two qubits mediated by normal modes of motion in trap using a spin-dependent force

• Free-space microwave radiation not feasible for this due to negligible Lamb-Dicke

make use of the magnetic field generated in the proximity of conductors carrying microwave currents. Our group has previously demonstrated high-fidelity microwave-driven quantum logic [5, 6] and here we present the main features of our next-generation microwave trap with which we plan to increase two-qubit microwave gate fidelities above the fault-tolerant threshold.

parameter:

• But a significantly higher microwave field gradient can be achieved in the near field of a current-carrying waveguide

Ions first displaced from RF null via DC field, microwave pulses are then resonant only with desired ion [8]; see also [9] for a different method of addressing

Trap design

High-fidelity, fast two-qubit gates driven by microwaves require the component of the magnetic field along the qubit polarisation at the position of the ion to be zero and to have

Measurement	Method	Result
Coherence time	Ramsey	$T_2^* \approx 50 s$
State preparation error	Lasers + microwaves	2 x 10 ⁻⁴
Single-shot readout error	Microwaves + lasers	5 x 10 ⁻⁴
Single-qubit gate error	Microwaves (benchmarked)	1×10^{-6}
Two-qubit "DDMS" gate error	Microwaves (tomography)	3 x 10 ⁻³
Single-qubit gate time	Microwaves	12 μ s (π /2-pulse)
Two-qubit "DDMS" gate time	Microwaves	3.25 ms

Hyperfine ⁴³Ca⁺ "clock" qubit

We use a clock qubit [7] at 28.8 mT (green) in our new trap. Advantages for gate speed and fidelity compared to qubit used previously (blue) in this group:

3D_{3/2}

- $4P_{3/2}$ $4P_{1/2}$ nm ШШ σ m
- Linear m.w. polarisation couples more efficiently to π -polarised qubit
- Larger Zeeman shifts mean spectator transitions are detuned further
 - Matrix element is higher for π -transition 3D_{5/2} than σ -transition

State preparation: Optical pumping with lasers followed by m.w. transfer pulses (purple)

- a strong gradient
- Trap chip designed for π -polarised clock qubit at 28.8 mT: (F=4, M=+1) \leftrightarrow (3, +1)
- Concept: "U"-shaped microwave conductors to null π -component of magnetic field on RF trap axis by geometry B₀

Fields have been simulated numerically with ANSYS HFSS software:

Estimates for field and gradient on RF trap axis for 1 W of microwave power:

Readout: Shelving one qubit state to 3D_{5/2}, then state-dependent fluorescence detection

Cryogenic vacuum system

- Trap chip consists of gold electrodes on sapphire substrate
- Cryogenic cooling to <20 K to reduce anomalous heating
- Extended lifetime of ions in trap as freeze-out lowers residual gas pressure
- Cold finger of cryostat thermally connected to pillbox with copper

 $B_y = 300 \,\mu T$ $B_z = 6 \,\mu T$

Segmented electrode design to allow shuttling of ions between different zones:

braid to minimise vibrational coupling

Stainless steel feet

Status and future directions

- Trapped ⁴³Ca⁺ at room temperature
- Scaling up will require significantly reduced power dissipation and complex multi-layer fabrication
- Superconducting electrodes will likely have to be used, but critical current too low in most superconductors at microwave frequencies
- Lower qubit frequency can be obtained by using spin-1/2 Zeeman qubits $(^{40}Ca^+)$
- Superconducting magnets give excellent coherence even without clock qubit

[1] C. Ospelkaus et al., Phys. Rev. Lett. 101, 090502 (2008) [2] C. Ospelkaus et al., Nature 476, 181 (2011) [3] F. Mintert et al., Phys. Rev. Lett. 87, 257904 (2001) [4] S. Weidt et al., Phys. Rev. Lett. 117, 220501 (2016) [5] T. P. Harty et al., Phys. Rev. Lett. 113, 220501 (2014)

[6] T. P. Harty et al., Phys. Rev. Lett. 117, 140501 (2016) [7] C. Langer et al., Phys. Rev. Lett. 95, 060502 (2005) [8] U. Warring et al., Phys. Rev. Lett. 110, 173002 (2016) [9] D. P. L. Aude Craik et al., Phys. Rev. A 95, 022337 (2017)

www.physics.ox.ac.uk/users/iontrap

clemens.loschnauer@physics.ox.ac.uk

Clarendon Laboratory, Oxford, United Kingdom