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The ability to induce controlled transitions between atomic states through time-varying make use of the magnetic field generated in the proximity of conductors carrying microwave
electromagnetic fields is crucial if one is to use trapped ions for quantum information processing. currents. Our group has previously demonstrated high-fidelity microwave-driven quantum logic
While lasers have successfully been used before to implement high-fidelity single- and two-qubit [5, 6] and here we present the main features of our next-generation microwave trap with which
gates, other methods are available that have advantages over laser-driven gates [1, 2, 3, 4]. We we plan to increase two-qubit microwave gate fidelities above the fault-tolerant threshold.

Microwaves for quantum logic Previous results

Advantages compared to lasers: no errors due to spontaneous photon scattering; accurate 17
control over frequency, phase and amplitude easily achieved; better scalability through
integration of waveguides into trap; lower cost
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Single-qubit gates: global gates easily implemented for ground-level qubits by direct interaction
of electron spin with magnetic field; schemes exist for addressing of individual qubits
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Two-qubit gates: use indirect coupling between internal states of two qubits mediated by
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High-fidelity, fast two-qubit gates driven by microwaves require the component of the . % | | | |
magnetic field along the qubit polarisation at the position of the ion to be zero and to have N State preparation: Optical pumping with lasers
a strong gradient ™M followed by m.w. transfer pulses (purple)
Trap chip designed for m-polarised clock qubit at 28.8 mT: (F=4, M=+1)<—(3, +1)
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Fields have been simulated numerically with ANSYS HFSS software: CryOg e n IC Va Cu u I | l SySteI [
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Segmented electrode design to allow shuttling of ions between different zones:

Status and future directions
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1393 ot ‘/397 Raman - Trapped **Ca™ at room temperature

- Scaling up will require significantly reduced power dissipation and complex
multi-layer fabrication

- Superconducting electrodes will likely have to be used, but critical current too low in
most superconductors at microwave frequencies
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T er aman - Lower qubit frequency can be obtained by using spin-1/2 Zeeman qubits (*°Ca*
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854 - Superconducting magnets give excellent coherence even without clock qubit
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