

<u>R K Hanley</u>, J Wolf, C M Löschnauer, M Weber, J F Goodwin, T P Harty, A M Steane, D M Lucas

Microwave-driven high-fidelity quantum logic in ⁴³Ca⁺

Ion Trap Quantum Computing Group - Department of Physics, University of Oxford

 $4P_{3/2}$

 $4P_{1/2}$

The ability to induce controlled transitions between atomic states through time-varying electromagnetic fields is crucial if one is to use trapped ions for quantum information processing. While lasers have successfully been used before to implement high-fidelity single- and two-qubit gates, other methods are available that have advantages over laser-driven gates [1, 2, 3, 4]. We

Microwaves for quantum logic

Advantages compared to lasers: no errors due to spontaneous photon scattering; accurate control over frequency, phase and amplitude easily achieved; better scalability through integration of waveguides into trap; lower cost

Single-qubit gates: global gates easily implemented for ground-level qubits by direct interaction of electron spin with magnetic field; schemes exist for addressing of individual qubits

Two-qubit gates: use indirect coupling between internal states of two qubits mediated by normal modes of motion in trap using a spin-dependent force

• Free-space microwave radiation not feasible for this due to negligible Lamb-Dicke

make use of the magnetic field generated in the proximity of conductors carrying microwave currents. Our group has previously demonstrated high-fidelity microwave-driven quantum logic [5, 6] and here we present the main features of our next-generation microwave trap with which we plan to increase two-qubit microwave gate fidelities above the fault-tolerant threshold.

Hyperfine ⁴³Ca⁺ "clock" qubit

We use a clock qubit [7] at 28.8 mT (green) in our new trap. Advantages for gate speed and fidelity compared to qubit used previously (blue) in this group:

- Linear m.w. polarisation couples more efficiently to π -polarised qubit
- Larger Zeeman shifts mean spectator transitions are detuned further

• Matrix element is higher for π -transition than σ -transition

Readout: Shelving one qubit state to 3D_{5/2}, then state-dependent fluorescence detection

State preparation error			
Single-shot readout error			
Single-qubit gate error			
Two-qubit "DDMS" gate error			
Single-qubit gate time			
Two-qubit "DDMS" gate time			

Microwaves

3.25 ms

Trap design

High-fidelity, fast two-qubit gates driven by microwaves require the component of the magnetic field along the qubit polarisation at the position of the ion to be zero and to have a strong gradient

Trap chip designed for π -polarised clock qubit at 28.8 mT: (F=4, M=+1) \leftrightarrow (3, +1)

Concept: "U"-shaped microwave conductors to null π -component of magnetic field on RF trap axis by geometry B_0

Segmented electrode design to allow

Cryogenic cooling to <20 K to reduce

Field gradient and null should facilitate a two-qubit gate which is both an order of magnitude faster and higher fidelity than the previous generation

temperature and off-resonance with the microwave

Parameter	Measured	Simulation	
dB _Z /dz	12 T/m	28 T/m	
Bz	2.5 µT	6 μΤ	
By	125 µT	300 µT	
Massuraments and simulation scaled to nominal 111/m w nower			

easurements and simulation scaled to nominal 1W m.W. power

Laser cooling at 288G is not trivial due to the large Zeeman splitting of all states

Address each hyperfine manifold using a 3.2 GHz

Polarisation of 397nm and 866nm chosen to drive only π and σ^+ transitions

Observe multiple dark resonances due to coherent interference

Use dark resonances for sub-Doppler cooling [10]

shuttling of ions between different zones:

anomalous heating:

Status and future directions

- Trapped ⁴³Ca⁺ at room temperature, and have operational clock qubit
- Operate trap at cryogenic temperatures
- Multi-species operation
- Two-qubit randomised benchmarking
- Scaling up will require significantly reduced power dissipation and complex multi-layer fabrication
- Superconducting electrodes will likely have to be used, but critical current too low in most superconductors at microwave frequencies
- Lower qubit frequency can be obtained by using spin-1/2 Zeeman qubits $(^{40}Ca^+)$
- Superconducting magnets give excellent coherence even without clock qubit

[1] C. Ospelkaus et al., Phys. Rev. Lett. 101, 090502 (2008) [2] C. Ospelkaus et al., Nature 476, 181 (2011) [3] F. Mintert et al., Phys. Rev. Lett. 87, 257904 (2001) [4] S. Weidt et al., Phys. Rev. Lett. 117, 220501 (2016) [5] T. P. Harty et al., Phys. Rev. Lett. 113, 220501 (2014)

[6] T. P. Harty et al., Phys. Rev. Lett. 117, 140501 (2016) [7] C. Langer et al., Phys. Rev. Lett. 95, 060502 (2005) [8] U. Warring et al., Phys. Rev. Lett. 110, 173002 (2016) [9] D. P. L. Aude Craik et al., Phys. Rev. A 95, 022337 (2017) [10] D. T. C. Allcock et al., NJP 18 023043 (2016)

www.physics.ox.ac.uk/users/iontrap

ryan.hanley@physics.ox.ac.uk

Clarendon Laboratory, Oxford, United Kingdom