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*Ca" and *“Ca’ qubits Experimental details Simulations
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For ®Ca’, it appears difficult to find experimental parameters which give
fluorescence rates more than ~30% that of “’Ca’. Efficient repumping from
D., requires large 866nm laser power; however, this gives rise to significant
heating effects due to dark resonances which at high power are very broad.
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Coherence of an actively-cooled qubit Mixed-species logic gate

We measure the coherence of a “logic” qubit stored in the hyperfine clock states of “’Ca” while it is being actively cooled
by a “’Ca” “refrigerator” ion in the same trap. The “’Ca’ ion cools the *Ca” ion sympathetically, through the Coulomb
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Readout: ““Ca’ optical qubit Readout: “Ca" hyperfine qubit

Detector Limitations: lon/background Optical qubit readout Qubit readout_by state-selective shelving with ~95% Rate equation predictions
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