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Basics of Thermodynamics





1. Introduction

Thermodynamics is the study of how heat moves around in ‘macroscopic’ objects. Through-
out these lectures, we will talk a lot about laws and models. Models are a simplified,
empirical description of a real system which generally develops overtime as our knowledge
progresses. In contrast, laws derive from fundamental principles of Physics and thus apply⇤
universally. Examples of laws are: the energy conservation law, Newton’s laws of motion,
but also quantum mechanics, special and general relativity, etc ... Examples of models
include: the ideal gas, the Bohr atom etc ...

One important thing to remember is that what looks obvious to the modern physicist,
was not so in the 18th and early 19th century, when Thermodynamics was developed!
For instance, the description of matter as made of atoms and molecules — although
an old philosophical idea — in terms of statistical mechanics was yet to be invented.
Quantum mechanics and special relativity did not exist. In short, there was no microscopic
underpinning of Thermodynamics. Even the concept of energy was blurry, with the French
chemist, Lavoisier, proposing the existence of a weightless conserved fluid called ‘caloric’
(a.k.a. ‘heat’ in modern language). Rumford had observed that cannons were heated by
friction during boring, which showed that mechanical work could be turned into heat,
but it was Joule who was the first to perform a careful experiment which determined the
mechanical equivalent of heat, using a paddle wheel apparatus.

⇤with caution ...





2. The zeroth law of Thermodynamics

2.1 Thermodynamical systems

Before we embark on deriving the laws of thermodynamics, it is necessary to define the
main vocabulary we will be using throughout these lectures.

Definition 2.1.1 — ‘Thermodynamical system’ (or ‘system’). Whatever “macroscopic”
part of the Universe we select for study.

“Macroscopic” here means made of a large number of particles, N , i.e. N � NA ' 6.02⇥1023,
with NA the Avogadro number. This is very important as some properties (eg. temperature)
do not apply for single particles.

As an isolated system is not a very realistic concept (apart if one studies the Universe
as a whole!), one is led to define the

Definition 2.1.2 — ‘Surroundings of a system’ (or ‘surroundings’). This is simply the
vicinity of a system.

Generally the surroundings will be much larger than the system itself, so will not be treated
in the same way. The system and its surroundings are separated from one another by a
boundary. Together, system and surroundings form what is called the

Definition 2.1.3 — ‘Total system’. This is a thermodynamical system which can be con-
sidered as isolated to a good approximation.

Graphically, one can summarise this definitions as follows:
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Figure 2.1: Schematic diagram of a thermodynamical system.

R There will exist multiple possible choices to define system and surroundings in any
given thermodynamical problem: choose wisely!

2.2 Thermodynamical (macro) versus micro states

When a theory or a measurement provides a complete description of a system, one says
that the system’s state is determined. For a thermodynamical (or macroscopic) system, all
there is to know about it can be summarised by four thermodynamical variables. Two of
these, the pressure, p, and the temperature, T , are called intensive variables as they do not
depend on the amount of material in the system. The other two, the volume, V , and the
number of particles, N , are extensive variables and depend on the amount of material in
the system.

Obviously, the micro states (positions and momenta of all the particles that compose
the system) are not determined by these four variables. However, any micro state which
gives rise to the same values for these four variables cannot be differentiated in terms of
thermodynamics (see example in Fig. 2.2).
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positions: ~xi
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Figure 2.2: Example of macrostates and microstates: inflatable balloon.

We will start these lectures by considering closed systems, i.e. systems with N = Cst,
for simplicity and come back to systems where the number of particles can vary after we
have discussed the fundamental laws of thermodynamics.

2.3 Thermodynamical equilibrium

One says that a system is in thermodynamical equilibrium if all its thermodynamical variables
(p, V , T ) are:
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• well defined (i.e. they have the same value throughout the system: see Fig. 2.3 for an
example)

• do not vary with time (i.e. if external factors do not change. and you look at the
system at two different time instants, p, V , T , will have the same values)

Note that the micro states of the system will be different, as particles are not “frozen
in place”, but their changes compensate. One therefore says that micro states are not
functions of state.

- - -

6
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Figure 2.3: Example of a system in and out of equilibrium: gas is enclosed in a container
whose top is a piston initially balanced by two identical weights. One of the weights is then
removed instantaneously.

One way to visualise this is to draw a p� V diagram (see Fig 2.4). We will be using
these a lot!

-

6

State 2rp2

V2

State 1rp1

V1

p

V0

Figure 2.4: p�V diagram for the gas enclosed in the container presented in Fig 2.3. Whilst
one can mark the two (well defined) macro states, it is impossible to draw the path taken
by the system to go from State 1 to State 2!

R Micro states are always well defined as one can always specify the positions and
momenta of all particles at any point in time, regardless of whether the system is in
equilibrium. It is the macro states which are only well defined when the system is in
thermodynamical equilibrium.

2.4 Equation of state

For systems in thermodynamical equilibrium, it has been established, both experimentally
(Boyle’s law for gases) and via Statistical Mechanics (as you will see later in this course),
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that only 2 of the 3 thermodynamical variables are independent. The third one can be
determined by using the equation of state which is a single equation involving all 3 variables,
and thus constrains their values.

⌅ Example 2.1 The ideal gas equation of state pV = nRT or pV = NkBT where n is
the amount of substance in moles, R = 8.314 J K�1 mol�1 the molar gas constant, and
kB = R/NA = 1.381⇥ 10�23 J K�1 the Boltzmann constant. ⌅

R The equation of state only applies to systems in thermodynamical equilibrium and
does not favour one thermodynamical variable over another: the choice is yours!

2.5 The zeroth law

Using both the definition of thermodynamical equilibrium and of the equation of state
previously given, one realises that there are essentially two ways for a system to be out of

equilibrium:
• p, V, T are well defined (they are the same throughout the system) but do not lie on

the equation of state⇤
• p or T vary from one point of the system to another

Whenever a system gets out of equilibrium, it undergoes a spontaneous macroscopic change
to reach a new thermodynamical equilibrium. Situation two (p and T differing in different
part of the system) is the most common in thermodynamical problems.

?

-

-

-

�

�

�

sub-system 2

p2, T2, V2

sub-system 1

p1, T1, V1

new system

Figure 2.5: Schematic diagram of two thermodynamical sub-systems which are brought into
contact (along the double arrows) and interact to form a new thermodynamical system.

Imagine two sub-systems each in a different thermodynamical equilibrium state initially,
say with p1, V1, T1 and p2, V2, T2 respectively, as illustrated in Fig 2.5. When these two
sub-systems are brought into contact and allowed to interact, they will form a single system
which is out of equilibrium, as per situation two. A spontaneous change will ensue, so that
the combined system achieves equilibrium. At this point, the sub-systems 1 and 2 will have
the same p, V , T throughout but with values different from both p1, V1, T1 and p2, V2, T2.

Now imagine that both sub-systems start with the same p, V , T values. When they
are brought into contact, nothing happens because the combined system is already in

⇤This is the case, for instance of (transient) non-equilibrium states of a system which are close enough
to the equilibrium state so that their pressure and temperature can be well defined, or of meta-stable
non-equilibrium states. Examples of these latter are water with below freezing temperature at standard
pressure, or diamond, which can co-exist at standard p, T alongside the true carbon equilibrium state in
these conditions: graphite. We will discuss such non-equilibrium states in more detail when we study the
liquid-gas phase transition at the end of these lectures.
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thermodynamical equilibrium with p, V , T the same throughout. We therefore say that
the sub-systems are in equilibrium with one another. This leads to:

Law 1 — The zeroth law of Thermodynamics. If A, B and C are different thermodynamical
systems and A is in thermodynamical equilibrium with B and B is in thermodynamical
equilibrium with C, then A is in thermodynamical equilibrium with C.

In other words, thermodynamical states exist and thermodynamics is macroscopically
complete as a theory. It also establishes why thermometers work and can be used to give a
definition of temperature.

How do we bring these sub-systems “into contact”†? It turns out that for closed systems
made of a pure substance in a single phase, there exists two kinds of contact, each associated
with a different kind of equilibrium and a different intensive thermodynamical variable.

1. Mechanical contact. Associated with p and mechanical equilibrium. To realise this
kind of contact, the wall which ends up separating the two sub-systems in Fig. 2.5
once they touch must be allowed to move (but not let particles go through). A typical
example is that of gas on two sides of a container with different pressures p1 > p2. The
pressure difference exerts a net macroscopic force, F = (p1 � p2)⇥ (area of thewall),
which pushes the wall towards side 2. So if the wall can move, then side 1 expands,
side 2 is compressed, and energy (volume) is transferred from side 1 to side 2 in the
form of work, until the pressures become equal on both sides.

2. Thermal contact. Associated with T and thermal equilibrium. That’s the one
relevant for thermometers! In this case, the wall between the two sides must be
diathermal (thermally conductive). If the two sub-systems in Fig. 2.5, with T1 > T2,
are brought in contact, energy in the form of heat flows from the hotter (side 1)to the
cooler one (side 2) until the temperatures become equal on both sides.

Note that most of the real world systems consist of more than one substance/phase (gas,
liquid or solid) and often are open (N is not constant). In that case, another form of contact
exists, called diffusive contact and associated with another intensive thermodynamical
variable, the chemical potential, µ. The equilibrium reached via diffusive contact is called
diffusive equilibrium and the wall separating the two sub-systems in that case must be
permeable, i.e. able to let particles through. The energy transferred between side 1 and side
2 is directly linked to the amount of material flowing through the wall: µ�N . If we start
from µ1 > µ2, this migration of particles from side 1 to side 2 will end when the chemical
potentials on both sides are equal. We will come back to this type in equilibrium in the
later part of the course, but it is something you should keep in the back of your mind.

R You can easily convince yourself that the number of particles, N , is an independent
thermodynamical variable, as you can change the macroscopic state of a system by
adding more material without changing either p or T . This is straightforward to see
when considering the ideal gas law pV = NkBT : changing N proportionally to V

leaves p and T unchanged, but obviously V (and N) have changed, so the macroscopic
state of the system has changed. This is impossible to achieve if N remains fixed, i.e.
the system is closed.

†“Contact” here is not to be taken literally, as for instance a sub-system could be irradiated by another
located at a great distance from it, like the Earth by the Sun, and we would still consider that these
sub-systems are in contact.





3. The first law of Thermodynamics

With the previous definitions in hand, we are now equipped to tackle the first law of
thermodynamics.

3.1 Thermodynamical change

Because thermodynamical systems are generally in mechanical and/or thermal contact
with their surroundings, nothing really happens until there is a change in external factors.
Generally, this gives rise to a change in thermodynamical state: at least one of the two
independent thermodynamical variables of the system will change its value. If we denote
the initial value of a thermodynamical quantity X (function of state) by the subscript i

and its final value by the subscript f , we will write the change �X = Xf �Xi. Note that
the function of state of the surroundings will also change.

One of the major reasons why thermodynamical processes are complicated in general
is that there are two independent variables⇤. So we need a description of what both
variables are doing to be complete. However, thermodynamical changes often occur under
the constraint that one variable is fixed. We will give a more mathematical description of
thermodynamical changes later in the course.

3.2 The first law

Law 2 — The first law of Thermodynamics. The internal energy of an isolated system is
conserved under any thermodynamical change.

R This is the macroscopic version of the familiar energy conservation law of physics.
This law applies to an isolated system, i.e. according to our previous definitions to the
total system constituted by the system plus its surroundings. In other words, whatever
internal energy is gained by the system itself must be lost by its surroundings and
vice-versa.

⇤This explains why we will often use p� V or p� T diagrams to mark states and path to states.
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We saw from the zeroth law that there are two kinds of energy that can be transferred
between a thermodynamical system and its surroundings:

1. work, W , by mechanical contact
2. heat, Q, by thermal contact

This leads us to rewrite the first law for any thermodynamical system (i.e. not necessarily
isolated), as:

Law 3 — The first law of Thermodynamics (bis). Under any thermodynamical change,
�U = Q+W

where U is the internal energy of the system (function of state), Q is the heat added to

the system and W the work done on the system†. According to the first law we thus
have Qsurr = �Q and Wsurr = �W , where the subscript ‘surr’ indicates the system’s
surroundings.

3.3 Internal energy

How to calculate the total amount of energy that a system contains? Here we will somewhat
‘cheat’ a bit and go back to the microscopic scale to develop an understanding of it.

The energy El of a particle l, according to the fundamental laws of physics, is either
in kinetic or potential form, which we will write El,K and El,P respectively. As we will be
discussing molecules in thermodynamics and statistical mechanics, it is also convenient to
introduce an internal state energy El,I (which is really composed of intra-molecular kinetic
and potential energies reflecting the structure of the molecule). El,K is associated with the
translational (centre of mass) motion of the molecule and El,P refers to the inter-molecular
interactions (between different molecules).

R For an ideal mono-atomic gas, we only have El,K as particles have no internal structure
and they do not collide/interact with one another by assumption!

So the total internal energy of a system is simply:

E =
X

l

(El,K + El,P + El,I)

This energy remains constant over time only if the system is isolated. This is not the
case for most thermodynamical systems which usually are in thermal/mechanical contact
with their surroundings, so energy flows in and out of the system even when this latter is
in thermodynamical equilibrium. So strictly speaking, E cannot be a thermodynamical
variable. However, for thermodynamical systems in equilibrium, energy fluctuations are
small and quick (you will qualify this statement in statistical mechanics), so that one can
define:

U = hE(t)i =
1

�t

Z �t

0
E(t) dt

as a true thermodynamical variable and call it the internal energy of the system (in the
sense of ‘the energy internal to the system’).

†You will sometimes encounter the first law written �U = Q�W , where W is the work done by the
system. It’s a convention. A mnemonic way to remember what the sign is, is that from the system’s
perspective, if work is done on it, its internal energy increases: you get a ‘+’ sign.
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3.4 Functions of state vs functions of path

U like the other thermodynamical quantities (V, p, T,N) is a function of state, in the sense
that it only depends on the thermodynamical state of the system. By contrast, Q and W

cannot be assigned to a state but only to thermodynamical processes, i.e. to changes of
state. For this reason they are called functions of path. It makes absolutely no sense
whatsoever to say that a system ‘has’ heat or work! A system exchanges heat or
does work but it does not store work or heat: they are energy in transit!

Mathematically, this means that for any function of state X, if the thermodynamical
variables (V, p, T,N) go from (Vi, pi, Ti, Ni) to (Vf , pf , Tf , Nf ), the change in X is:

�X =

Z
Vf ,pf ,Tf ,Nf

Vi,pi,Ti,Ni

dX = X(Vf , pf , Tf , Nf )�X(Vi, pi, Ti, Ni)

i.e. the change depends only on the end points, the initial and final states of the system and
not on the path the system took to get there. In other words, dX is an exact differential

and functions of state have exact differentials.

R X can be trivial: a simple thermodynamical variable like V, p, T,N .

Mathematical reminder: Let f1(x, y) dx+ f2(x, y) dy be the change undergone by a
function when its variables x and y change to x+dx and y+dy. This change is an exact

differential if it can be written as the differential of a differentiable single-valued function
f(x, y), i.e. f1(x, y) = (@f/@x)y and f2(x, y) = (@f/@y)x.

By contrast, a thermodynamical quantity X represented by an inexact differential will
be noted dX.

⌅ Example 3.1

• f(x, y) = xy ! df = d(xy) = x dy + y dx
• dg = y dx
Now consider a path going from (xi, yi) = (0, 0) to (xf , yf ) = (1, 1). The change in f is
given by

�f =

Z (1,1)

(0,0)
df =

Z (1,1)

(0,0)
d(xy) =


xy

�(1,1)

(0,0)

= 1

no matter which path you decided to consider. In the same way, we can write that the
change in g is

�g =

Z (1,1)

(0,0)
y dx.

However, in this case, let us consider path (i) which is the straight line connecting (0, 0) to
(1, 1), and path (ii) which first goes from (0, 0) to (1, 0) horizontally and then from (1, 0) to
(1, 1) vertically (see Fig 3.1). In the first case, we have:

�g
(i) =

Z 1

0
x dx =


x
2

2

�1

0

=
1

2

whilst in the second case,

�g
(ii) =

Z (1,0)

(0,0)
0 dx+

Z (1,1)

(1,0)
y dx = 0

since dx = 0 in the second integral, as x = 1 is fixed. ⌅
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Figure 3.1: Paths (i) and (ii) considered in Example 3.1

R If you replace x by V and y by p in the previous example you get dg = p dV = �dW .
This behaviour of functions of path will be extremely useful when we consider cycles
(loops in p� V diagrams), because Q and W will generally be non nil, which means
work/heat will be produced every time the system goes around the loop!

This property leads us to rewrite the first law in differential form:

Law 4 — The first law of Thermodynamics (differential form). Under an infinitesimally
small thermodynamical change,

dU = dQ+ dW

R Note that the term ‘infinitesimal change’ is only appropriate to describe what happens
to U , not Q or W , because, as we said previously, changes in heat and work have no
meaning! dQ and dW simply represent infinitesimal amounts of heat and work.

3.5 Definition of work & heat

According to the laws of mechanics, the infinitesimal amount of work done, when moving
a macroscopic object against an opposing force, ~F , is given by dW = ~F · ~dh, with ~dh
the infinitesimal displacement of the object. In Thermodynamics, ~F is imparted by the
system’s surroundings and the macroscopic object is the separating wall (which can be
set in motion if mechanical equilibrium is to be achieved). As pressure is force divided by
surface area of the mobile wall, and displacement becomes volume when multiplied by this
surface area, we obtain that dW = �psurr dV ‡.

R There exists other kinds of work (electrical, magnetic) where we will have to go back
to the previous, more general definition of dW = ~F · ~dh, but in Thermodynamics,
p dV work is the most common kind.

So for any thermodynamical process, we can define the (p dV or expansion) work as:

W ⌘

Z
Vf

Vi

�psurr(V ) dV

‡Note the sign: dW > 0 if the volume is reduced! Also note the use of psurr, rather than p, because psurr

is always well defined, unlike p (recall our example of the out-of-equilibrium cylinder when we removed one
of the weights holding the piston down).
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where psurr(V ) specifies the path taken by the system to go from the initial to the final
state. Note that this might be difficult to calculate!

R This definition of work means that there are two conditions to be met for pdV
work to be non-nil: the volume of the system must change and the pressure of the
surroundings must be non-zero! We will come back to this latter when we discuss the
Joule expansion.

Again we stress that other types of work exist which are isochoric (the volume of the system
does not change), like rubbing your hands against one another. We will also often encounter
specific thermodynamical processes which occur at mechanical equilibrium between system
and surroundings, i.e. where p = psurr, in which case the distinction between the two
pressures is useless and we will thus use p rather than psurr to calculate the work. However,
if in doubt, always come back to the original definition, which holds regardless of the
thermodynamical process considered.

As for heat, its preferred definition is from the first law of Thermodynamics and the
definition of work: Q = �U �W , i.e. whatever is left over when work is subtracted from
the internal energy change of the system. It is always well defined, since �U and W are
always well defined. It is also a practical definition: this is how you will calculate Q in
thermodynamical problems!

R This definition of heat is only valid if there are no other forms of energy transfer, i.e.
the system is closed.

3.6 Constructing new thermodynamical quantities

Following what we did for the definition of Q, we can derive new thermodynamical quantities
directly at the macroscopic level (unlike what we did for U). Most of these will be
partial derivatives of other functions of state, because of the existence of two independent
thermodynamic variables.

Mathematical reminder: Let any three variables x, y, z, satisfy a relation f(x, y, z) = 0.
We then have:

✓
@x

@y

◆

z

=
1

(@y/@x)z

which is called the reciprocal theorem and is valid for any pair of variables, and
✓
@x

@y

◆

z

✓
@y

@z

◆

x

✓
@z

@x

◆

y

= �1

which is called the reciprocity theorem.

Arguably the most important example of such new thermodynamical quantities is the heat

capacity
§, C. By definition, C, is the amount of heat that must be supplied to a system

to raise its temperature by dT [unit J K�1]. Mathematically, we write this definition as
C ⌘ dQ/dT .

§Note the ill-fitting name ‘capacity’, when we have repeatedly made the point that heat cannot be stored
by a system!
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R Obviously, the more of a substance you have, the more heat you will need, so a more
fundamental quantity than C is the specific heat capacity, c ⌘ C/m, which is the heat
capacity per unit mass. Also, given how we have defined heat, the definition of C is
ambiguous: the amount of heat you will need will depend on whether you are doing
work on the system, and if so, how much.

Plugging in the infinitesimal version of the first law in the definition of C, one gets:

C =
dU � dW

dT

Immediately, you see that even if U is a function of T alone (careful, this is not always the
case!) work can be anything, so C as well! In practice though, two circumstances are more
likely to arise than others:

1. no work is done on or by the system, i.e. dW = 0, which usually means that the
volume of the system does not change. In that case, C is called the heat capacity at

constant volume and denoted CV ⌘ (@U/@T )V .
2. the system expands and does work on its surroundings (this means dW < 0 and you

will need to add more heat to compensate for the energy lost as work, so C > CV ),
but psurr is constant. In that case, C is called the heat capacity at constant pressure

and denoted Cp.
If we assume the system remains in mechanical equilibrium with its surroundings, we can
then write:

Cp =
dU � (�pdV )

dT
=

✓
@U

@T

◆

p

+ p

✓
@V

@T

◆

p

(3.1)

R Note that in general (@U/@T )V 6= (@U/@T )p (see Exercise 3.1 below)!

Exercise 3.1 From the definition of dU/dT in terms of the two independent variables
(V, T ) and (p, T ) show that:

✓
@U

@T

◆

p

=

✓
@U

@T

◆

V

+

✓
@U

@V

◆

T

✓
@V

@T

◆

p

⌅

So we have that (using the result of Exercise 3.1):

Cp � CV =

✓
@U

@V

◆

T

+ p

�✓
@V

@T

◆

p

and
Cp

CV

= �

where � is called the adiabatic index (we’ll see its usefulness later).

⌅ Example 3.2 Let us calculate CV and Cp for an ideal gas.
In that case, the equation of state is pV = nRT and U(T ) is a function of T alone (you’ll
prove it in statistical mechanics). If this ideal gas is mono-atomic (no structure, no EI), then
U = 3/2nRT . We thus deduce straightforwardly that (@U/@V )T = 0 and (@V/@T )p =
nR/p. This, in turn, yields Cp � CV = nR and given that CV = (@U/@T )V = 3/2nR,
Cp = 5/2nR and � = 5/3. Note that one retrieves Cp > CV as expected. ⌅



4. Thermodynamical processes & Carnot engine

4.1 Quasi-static & reversible processes

Let us go back to our example of a thermodynamical system in and out of equilibrium
(Fig. 2.3). The removal of a large weight created an out of equilibrium situation where
macro states were ill-defined, and one could not draw the path followed by the system on a
p�V diagram. Let us now replace the weights by piles of very fine pebbles⇤ and proceed to
remove them one-by-one, as illustrated in Fig. 4.1. The piston moves up infinitesimally. This
is called a quasi-static process. It happens so slowly that the system stays in equilibrium
and the thermodynamical variables remain well defined at all times.

- - -
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Figure 4.1: Example of a system undergoing a quasi-static process: gas is enclosed in a
container whose top is a piston initially balanced by a given weight. Infinitesimal amounts
of weight are then removed gradually.

R Strictly speaking, if the system stayed in the same equilibrium, nothing would happen.
So this process is to be understood as the system going through a series of successive
equilibria which are very close but different. The slowness at which these equilibria
must take place can seem limiting (and certainly is) but if you consider the mechanical
equilibrium of a gas for instance, the relaxation time of the system is comparable to

⇤This is a thought experiment, so you can make these pebbles as fine as you like.
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the time it takes for sound waves to propagate across, and these are quite fast (⇠ 330
m/s for air in standard p, T conditions).

One can now draw the path followed by the system on a p� V diagram (see Fig. 4.2).
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State 1rp1

V1

p

V0

Figure 4.2: p� V diagram for the gas enclosed in the container presented in Fig 4.1. It is
now possible to draw the path taken by the system to go from State 1 to State 2, taking
infinitesimal steps which ultimately converge to the orange solid line as the step size goes
to zero!

Now if we further assume that during such a quasi-static process there is no hysteresis

of any kind (i.e. no friction of the piston on the walls of the canister as it goes up), when
one adds the pebbles that were removed back on top of the piston, the system will go back
to its original state. Such a process is then said to be reversible.

By contrast, if friction is involved, the system will not be able to retrace its exact steps
without extra external intervention, and the process is then irreversible. Note that this does
not mean that you cannot bring the system back to its original state. You can. Simply not
by the same path. In our example, one will have to add more pebbles than were removed.

From our previous definition of work, it is obvious that for a quasi-static process,
psurr = p, as the system is always in equilibrium with p well defined at all times. So the
work done by the expanding system when the pebbles are removed is dW = �pdV and the
total work along the path from the initial state (pebbles on) to the final state (pebbles off)
simply is the area under the curve (see Fig.4.3).
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Figure 4.3: Work done by the gas enclosed in the container presented in Fig 4.1 as it expands
when the pebbles are removed. The amount of work clearly is the area underneath the
orange curve. Note the arrows which mark the direction taken: if the process is reversible,
these will point in the other direction as the system is compressed going from State 2 to
State 1. As a result, only the sign of the work done will change in this case.
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Mathematically, this writes as:

W = �

X

pebbles

p dV = �

Z
Vf

Vi

p(V ) dV < 0

If the process is reversible, by the same arguments, adding the pebbles back one by one,
we will go back from the final state to the initial state along the same path (in the other
direction), compressing the gas, so:

W = �

X

pebbles

p (�dV ) = �

Z
Vi

Vf

p(V ) dV > 0

as expected, because work is done on the system. As a consequence, going back and forth
on the same path, no work is done!

Otherwise, if the path is not the same, the work done will be the area enclosed within
the loop (see Fig.4.4).
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Figure 4.4: Work done (orange hatched area) going from State 1 to State 2 and back to
State 1, if two different paths are taken to go back and forth (follow the arrows). This is
simply the difference between the areas under the forward path and the reverse path.

Note that �U = 0 no matter how many times you go back and forth, and no matter
which path is taken, as long as you go back to the original state of the system. This is
called a cycle and arguably the most famous and important one is named the Carnot cycle

after the French engineer who discovered it whilst looking to optimise steam engines in the
19th century.

4.2 The Carnot cycle

Let us go back to our piston and pebbles system depicted on Fig.4.1 and modify it as
described on Fig 4.5.
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Figure 4.5: Carnot cycle for an ideal gas (top part of the figure) together with its p� V

diagram representation (bottom part).

As the system is in thermal contact with a reservoir
† from State A to State B, its

temperature remains constant on that path, and TB = T1 = TA. It is called an isothermal

process and given the equation of state of the ideal gas, it describes a hyperbola in the
p� V diagram (red curve in bottom part of Fig. 4.5 which is called an isotherm). As one
is removing some pebbles on top of the piston, the gas expands, so that VB > VA and
pB < pA. We have previously established that the amount of work done by the gas is
the area under the path in the p � V diagram, WAB < 0. For an ideal gas, the internal
energy U is a function of the temperature alone, so the change in internal energy along
an isothermal path, �U = 0. Therefore, the first law allows us to write that the amount
of heat Q1 = �WAB > 0 (thick red arrow entering the cycle in Fig. 4.5). This is quite an
intuitive result: the system must draw heat from the reservoir to do work if it is to operate
at a constant temperature.

From State B to State C, one continues to remove pebbles, but this time from a container
which is thermally insulated rather than in contact with a reservoir. This means that
Q = 0 on this path, and the process is called adiathermal. If it is also reversible (as is our

†Basically this is a bath where one can dump/draw as much heat as one wants without changing its
temperature. Oftentimes, it is also called a thermostat and we will use both terms interchangeably in these
lectures.
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case here), then it is called adiabatic (black curve in the bottom part of Fig. 4.5, called
an adiabat

‡). Work is still being done by the gas as it expands (the area under the B !

C path is non nil), so VC > VB, pC < pB and WBC < 0. Applying the first law yields
�U = WBC < 0 and therefore, as for an ideal gas U / T , we have TC = T2 < T1: the gas
has cooled.

Now we start reversing processes to get back to the original state and complete the
cycle. From State C to State D, we place the system back in contact with a reservoir, but
this time a cold one, with temperature T2 = TC. We then put back some of the pebbles.
Reasoning in a similar manner than for the A ! B path, albeit in the reverse direction as
the system is now compressed, we conclude that TD = T2 = TC, VD < VC, pD > pC and
WCD > 0. �U = 0 along this isotherm therefore the first law tells us that Q2 = �WCD < 0
(thick blue arrow exiting the cycle in Fig. 4.5): the system has dumped heat in the reservoir.

Finally, we remove the reservoir, thermally insulate the system and put back the
remaining pebbles to go from State D back to the original State A. Similarly to what took
place on the B ! C path, Q = 0 on this adiabat (the other black curve in the bottom part
of Fig. 4.5) and as the gas is compressed further, VA < VD, pA > pD, WDA > 0. Applying
the first law, we deduce �U = WDA > 0 and thus TA = T1 > T2 for our ideal gas: it has
heated.

Summarising what happened along one entire Carnot cycle loop, we have �T = �U = 0
and Wtot = WAB +WBC +WCD +WDA < 0 (Wtot is the area within the cycle ABCD in
Fig. 4.5) so that Qtot = �Wtot = Q1 +Q2 > 0.

R When one talks about “released heat” or “work performed by the system”, one usually
assumes that these quantities are positive, i.e. equal to �Q2 and �Wtot with our
convention.

One can use this cycle to understand where the concept of entropy comes from, and this is
how we will approach it in these lectures. This is referred to as the Carnot engine.

4.3 The Carnot engine

R You would never implement a real engine this way!

• Principle: Heat is transferred from a hot to a cold reservoir, doing work in the process.

• Schematics:

&%
'$

-

?

?

@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@
T1

Q1
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Q2

C
W (area inside cycle loop)

(heat drawn from hot reservoir)

(heat dumped into cold reservoir)

-
convert heat
into work

Figure 4.6: Diagram of a (Carnot) engine, C.
‡We will see later why this black adiabat has been drawn steeper than the red isotherm on Fig. 4.5.
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R With the convention we have adopted, everything that flows into the engine is
positive, and everything that flow out of it is negative. So we have taken the absolute
values of all the quantities and are using the arrows to obtain their signs, i.e. in our
notation for the Carnot cycle, the quantities of Fig. 4.6 read as: W = |Wtot| = �Wtot,
Q1 = |Q1| = Q1 and Q2 = |Q2| = �Q2.

Keep going round the cycle doing more work every time. This is possible because Q and
W are not variables of state: you cannot tell at any point how much heat and work are in
the system!

• Question: How efficient is the Carnot engine?

To answer this question, we first need to define the efficiency, ⌘. Going back to the cycle
presented on Fig. 4.5, this is simply:

⌘ =
work done

energy given or heat in
=

�Wtot

Q1

so that

⌘ =
Q1 � |Q2|

Q1
= 1�

|Q2|

Q1
(4.1)

Carnot realised that the efficiency is maximised if all processes are reversible and later
showed that all reversible engines operating between the same temperatures T1 and T2 have
the same efficiency§.

R This can be understood as a formulation of the second law of Thermodynamics: ⌘ < 1
means you cannot break even, |Q2| has to be strictly positive! It is also related to
the absolute temperature scale (see calculation of efficiency for an ideal gas below).

So what is the efficiency of a Carnot engine for an ideal gas?

• From A ! B: T = T1 = Cst so dU = 0 and the first law yields dQ = �dW . The
process is reversible so p = psurr and dW = pdV , so dQ = pdV . Integrating:

Q1 =

Z
VB

VA

p(V )dV =

Z
VB

VA

nRT1

V
dV = nRT1 ln

✓
VB

VA

◆
> 0 since VB > VA

• From B ! C: dQ = 0 so the first law (+ reversible process) yields dU = dW = �pdV .
For a mono-atomic gas U = 3/2nRT , so dU = 3/2nRdT , and using the ideal gas equation
of state, one gets 3/2 dT = �TdV/V , so separating variables and integrating:

3

2

Z
T1

T2

dT

T
= �

Z
VC

VB

dV

V
!

3

2
ln

✓
T2

T1

◆
= ln

✓
VB

VC

◆
i.e.

T2

T1
=

✓
VB

VC

◆2/3

R This adiabatic expansion can be written in the more general form TV
��1 = Cst,

using the adiabatic index �, which is, as we have already seen equal to 5/3 for a
mono-atomic gas. Equivalently, one can use the alternative form pV

� = Cst, which
explains why the adiabat is steeper than the isotherm on Fig. 4.5 (5/3 > 1).

§We will prove it as well in the next section, where we introduce the second law of Thermodynamics!
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• From C ! D: Q2 = nRT2 ln (VD/VC) < 0 since VD < VC

• From D ! A: T1/T2 = (VD/VA)
2/3

From B ! C and D ! A, we conclude that VB/VC = VA/VD and therefore that
ln(VB/VA) = � ln(VD/VC), so that |Q2|/Q1 = T2/T1 and in turn:

⌘ = 1�
T2

T1
(4.2)

R • This expression makes it clear that there must exist an absolute temperature scale.
Otherwise if T2 < 0, we have ⌘ > 1 and one could extract more work from heat that
the amount one absorbs!
• We will show later that this expression is valid for all reversible engines.
• Note that Q1/T1 +Q2/T2 = 0 along the cycle ... Is this a new variable of state?
• It can be shown that the expression is also valid for non-ideal gases and other
substances.
• ⌘ depends only on the temperature ratio, and not on the properties of the engine
itself!





5. The second law of Thermodynamics

The concept of engine efficiency naturally leads to the second law of thermodynamics. The
first law was a generalisation of the principle of energy conservation. It told us which
processes were energetically possible, but not every process which is energetically possible
does actually occur in nature. For instance, you have never seen a hot stone spontaneously
cool down and use the thermal energy to jump in the air!

5.1 Statements of the second law

This leads us to postulate that there exists another fundamental guiding principle in nature
which defines an “arrow” of time, making energy flow in a certain direction, irreversibly,
in macroscopic systems even though on a microscopic scale the fundamental equations of
physics are time reversible. The thermodynamical property associated with this principle
is called entropy (term coined by Clausius), and can only be fully understood at the
microscopic level. You will see in the Statistical Mechanics part of this course how it is
linked to the fact that the most likely macro-state of a system is the one corresponding
to the largest number of micro-states, but to help you grasp the idea, let us look at the
following example.

⌅ Example 5.1 — System of 100 coins in a box. Consider a system composed of a hundred
true coins contained in a box. There are 2100 ' 1030 possible micro-states associated with
this system (each coin is either heads or tails). The macro-state of this system is the
total number of heads or tails. Now the macro-state with all 100 coins heads has only 1
micro-state associated with it, whereas the macro-state with 50 coins heads and 50 coins
tails has ⇠ 1027. Which one is the most likely to be realised if you shake the box? Imagine
a thermodynamical system which consists of NA coins instead of just 100! ⌅

In these Thermodynamics lectures, we will follow a chain of classical arguments which
lead to a definition of entropy which is equivalent to that you will derive in statistical
mechanics⇤ but starting from a more intuitive and practical standard. This is an assumption

⇤You can actually prove this equivalence quite easily for ideal gases, so I leave it to you as an exercise to
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about nature which is so well funded that it has become a law.

Law 5 — Clausius statement of the second law. No process is possible whose sole result

is the transfer of heat from a colder to a hotter body.

R Some of you might think: but what about fridges? Well, in a fridge, an engine has to
do work to perform such a heat transfer!

The previous remark leads us to another formulation of the second law:

Law 6 — Kelvin-Planck statement of the second law. No cyclic process is possible whose
sole result is the complete conversion of heat into work.

R The word “cyclic” is Planck’s only contribution to the statement, but it is key: one
can obviously convert all heat into work in a single step, but then the system will not
be back in the same state!

We will prove that these two statements are equivalent shortly, but note how Kelvin’s
statement is reminiscent of (Carnot) engines. It tells us that an engine efficiency cannot be
100%, but the real question is: how high can it be?

5.2 Carnot’s theorem

Theorem 5.2.1 — Carnot’s theorem. No engine operating between two given temperatures
can be more efficient than a Carnot engine.

• Proof: Imagine somebody claims to have built an engine E, which is more efficient
than Carnot’s. It means that for the same quantity of heat taken from the hot reservoir, it
produces slightly more work. Now consider a reverse Carnot engine, CR, which converts
work into a heat transfer from the cold reservoir to the hot reservoir (simply change the
direction of going around the Carnot cycle, which is reversible by definition). Use the work
provided by engine E to drive CR, as illustrated on the diagram below (Fig. 5.1):
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Figure 5.1: Schematic diagram of an engine E driving a reverse Carnot engine CR.

be done after you have seen the statistical mechanics definition of entropy.
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The diagram on Fig. 5.1 simplifies to:
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Figure 5.2: Simplified version of diagram on Fig. 5.1.

So you have obtained a simple heat transfer from the cold reservoir to the hot one,
which contradicts Clausius’ statement of the second law of thermodynamics. To be more
explicit this would mean that you could cool food in your fridge without having to plug
it in! Now that’s what I call cheap energy! We must therefore conclude that the Carnot
engine is the most efficient.

Corollary 5.2.2 — Carnot’s corollary. All reversible engines have the same efficiency as
the Carnot engine.

• Proof: Let R be a reversible engine, and use the Carnot engine, C, to drive it
backwards:
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Figure 5.3: Schematic diagram of a Carnot engine C driving a reverse engine R.

Now assume that the efficiency of the reversible engine is such that†

⌘R = 1�
Q

0
2

Q
0
1

< ⌘C = 1�
Q2

Q1

Since Q2 = Q1 �W and Q
0
2 = Q

0
1 �W , this implies that W/Q

0
1 < W/Q1 and simplifying

by W , that Q
0
1 > Q1. This means that heat must be flowing from the cold reservoir to the

hot one, in violation of Clausius’ statement of the second law. We must therefore conclude
that ⌘R = ⌘C .

†We have already proven that ⌘R cannot be larger than ⌘C
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5.3 Equivalence of Clausius’ & Kelvin’s statements

• Proof ad absurdum: Let us consider an hypothetical engine E which violates Kelvin’s
statement of the second law, and use it to drive a reverse Carnot engine CR:
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Figure 5.4: Schematic diagram of a hypothetical engine E which violates Kelvin’s statement
of the second law driving a reverse Carnot engine CR.

Applying the first law, we have W = Q
0
1 and Q1 = W + Q2 > W since Q2 > 0. So

Q2 = Q1 �Q
0
1 > 0 and heat is extracted from the cold reservoir and simply transferred to

the hot one, contradicting Clausius’ statement of the second law.
Now consider an hypothetical engine E’ which violates Clausius’ statement of the second

law and connect it to a Carnot engine C:
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Figure 5.5: Schematic diagram of a hypothetical engine E’ which violates Clausius’ statement
of the second law connected to a Carnot engine C.

The first law tells us that W = Q1 �Q2 > 0 so that all the heat is converted into work,
which violates Kelvin-Planck’s statement of the second law.

We therefore conclude that Kelvin’s and Clausius’ statements of the second law are
equivalent.

5.4 Engine driven backwards & real engines

We have already seen reverse engines in the previous section, but here we detail what is the
main difference between engines and reverse engines, namely the definition of efficiency.
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5.4.1 Refrigerator

This is a device that uses work to transfer heat from a low temperature reservoir to a high
temperature one.

⌅ Example 5.2 In a household refrigerator, work is done by an electrical compressor which
transfers heat from the food storage compartment (cold reservoir) to the kitchen (hot
reservoir). ⌅

If we assume that all the processes involved in the operation of a refrigerator are
reversible, then we have an ideal refrigerator: this is simply a Carnot engine running in
reverse. So the ideal refrigerator is called a Carnot refrigerator and can be schematically
depicted as follows:
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Figure 5.6: Schematic diagram of a refrigerator R.

The difference with the Carnot engine is that the efficiency of the Carnot refrigerator
is defined differently, as the amount of heat extracted from the cold reservoir for a given
amount of work. This efficiency is called the coefficient of performance (COP), ⌘, and
mathematically reads:

⌘ =
Q2

W
(5.1)

Obviously, the larger the COP, the more efficient the refrigerator is. Applying the first law
of Thermodynamics to the Carnot refrigerator, one gets W = Q1 �Q2 so that

⌘CR =
Q2

Q1 �Q2
=

T2

T1 � T2

where one uses the ideal gas in the same manner as for the Carnot engine to obtain the last
equality (left as an exercise). Note that ⌘CR can be > 1!

R An air conditioning device is the same as a refrigerator, except that in this case the
cold reservoir is the house and the hot reservoir the outside world!

5.4.2 Heat pump

It is basically also a refrigerator, but one which is used to pump heat from a cold reservoir
to a place where one wants to add heat (hot reservoir).

⌅ Example 5.3 The cold reservoir can be the ground several meters deep, and the reservoir
to “heat”, a house. ⌅
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The reason why a heat pump is not classified as a refrigerator once again has to do with
the definition of efficiency. Indeed, the goal for using a heat pump is to warm up the “hot”
reservoir rather than cool the “cold” one (although you can of course do both at the same
time). This means that the COP for a heat pump is defined as:

⌘ =
Q1

W
(5.2)

i.e. how much heat one can transfer to the hot reservoir for a given amount of work. Now
since Q1 > W , this means that ⌘ is always > 1! This is why heat pumps are attractive
(however mind the capital costs). In other words, it is always possible to turn work into
heat with 100% efficiency (e.g. an electric fire), but a heat pump will provide more heat
for the same amount of work. For the Carnot heat pump, one can easily show that
⌘CH = T1/(T1 � T2).

5.4.3 Real engines

So far, we have treated heat engines and refrigerators in an idealised way, deriving the
theoretical limits of their performances. These are very useful for two reasons:

• they tell us how the efficiency of an engine depends on its operating temperature
• they serve as a benchmark for the efficiency of a real engine

Consider a real steam engine operating between T1 = 373K (boiling point of water) and
T2 = 320K (condensing water above the engine). If you are getting a 14% efficiency
from this real engine, it is quite pointless to spend a lot of efforts to make is better, as
⌘C = 1� T2/T1 ' 15%!

Exercise 5.1 In an Otto engine, the working substance is a gas composed of air and
vaporised petrol. It is first injected in a cylinder of volume V1 and compressed adiabati-
cally by a piston to a smaller volume V2. A spark plug then ignites the mixture, raising
its temperature and pressure whilst the volume does not change (called an isochoric

process). The high pressure pushes back the piston and the gas expands adiabatically to
its original volume V1, producing mechanical work in the process. Finally the hot exhaust
gases are expelled and replaced by a fresh mix of air and petrol at lower temperature and
pressurea. Assuming that the gas mixture is an ideal gas with adiabatic index � = 7/5
and that all processes are reversible, draw the p � V diagram for the Otto cycle and
calculate its efficiency, ⌘O.
Ans: ⌘O = 1� (V2/V1)2/5. ⌅

aWe represent this latter step as a single step lowering p at constant V in the Otto cycle, but in
reality the piston pushes the exhaust gas through a valve whilst drawing the fresh mix through another,
expelling heat but doing no net work.

Obviously in a real engine, processes are not very reversible. For instance, in exercise 5.1,
we discuss an ideal combustion engine, but in practice, real car engines will experience
piston friction, heat loss and incomplete fuel combustion. This means that for a typical
engine compression ratio of V1/V2 ⇠ 8, i.e. with ⌘O = 0.56, the real engine only achieves
an efficiency ⌘ ⇠ 25%.

R • Note that there is no “hot” reservoir connected to the Otto engine. Instead the
thermal energy is produced internally by burning the fuel, which results in a high p

and T gas, as if this gas had absorbed heat from an external source!
• The obvious way to make the Otto cycle more efficient is to increase the compression
ratio. Unfortunately, if the gas mixture becomes too hot in the process, it will
pre-ignite spontaneously. This is avoided in a Diesel engine by only compressing the



5.5 Clausius’ theorem and entropy 37

air and injecting the fuel when the air is hot enough to ignite it. In this way, real
engines can reach an efficiency of ⌘ ⇠ 40%.

5.5 Clausius’ theorem and entropy

Let us go back to our Carnot cycle (bottom of Fig. 4.5). We know that Q is not a conserved
quantity along the cycle because it is a function of path, not state. In particular for one
cycle, we have Qtot = Q1 � |Q2| > 0, so for k cycles, Qk = kQtot.

However, we have added Q1 at high temperature T1 and removed Q2 at low temperature
T2. So what if we defined a new variable, S by taking the ratio of these two quantities,
such that �S = Q/T ? Along a full cycle (two isotherms and two adiabats) and for an ideal
gas, we would then have:
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In other words, our new variable, S, is conserved along the Carnot cycle: it is a legit state
variable! It turns out S is only valid as a state variable if all the processes involved are
reversible, as we will now demonstrate.

Theorem 5.5.1 — Clausius’ theorem. For any closed cycle:
I

dQ

T
 0 , with equality for reversible cycles.

• Proof: Let us consider the cycle ABCD drawn on Fig.5.7, where A!B is a general
thermodynamical process‡ (i.e. not necessarily reversible) but all the other processes in the
cycle, i.e. B!C, C!D and D!A are reversible.
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Figure 5.7: T � V diagram of a cycle with a general, albeit quasi-static, process (A!B).

Let us then divide this cycle into k infinitesimal elementary Carnot sub-cycles (as depicted
on Fig. 5.8), with dQi the infinitesimal amount of heat supplied to sub-cycle i by a hot

‡Strictly speaking we are not considering the most general process possible since we want to be able to
draw a path on a p�V (or as it turns out a T �V diagram), so this means we are considering a quasi-static
process. However the idea behind the demonstration is that if our reasoning is valid for any non-reversible
process for which we can draw a path, the results should also apply to any non-reversible process, regardless
of whether we can draw the path the system takes explicitly. See e.g. Thermodynamics by A. Steane
(section 8.3) for a more general version of this proof.
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reservoir at temperature Ti, and dQ
0
i
the infinitesimal amount of heat dumped into the cold

reservoir at temperature T0 by the very same i
th sub-cycle.
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Figure 5.8: T �V diagram of the Fig. 5.7 cycle, divided into infinitesimal elementary Carnot
sub-cycles.

We know from Carnot’s theorem that the efficiency of the general elementary sub-cycle will
be smaller than that of the corresponding (reversible) Carnot sub-cycle, i.e.
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since dQ
0
i
< 0. We also have demonstrated for an ideal gas (but this result holds for any

substance) that (dQ0
i
/dQi)rev = �T0/Ti and therefore, injecting this relation in the previous

inequality, we obtain that dQi/Ti  �dQ
0
i
/T0 for any process A!B. Now for the A!B

Carnot sub-processes, (dQi/Ti)rev = �dQ
0
i
/T0, so we conclude that for any general process

A!B, one has dQi/Ti  (dQi/Ti)rev.
Going around the full cycle ABCD on Fig. 5.8 thus yields:
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where we have replaced the discrete sum by a continuous integral, which is valid in the limit
where the size of the infinitesimal sub-cycles goes to zero, to retrieve Clausius’ theorem
result.

This leads us to define the new state function entropy, S, in terms of reversible
supply/rejection of heat at a given temperature. Indeed, since we have demonstrated thatH
(dQ/T )rev = 0, we have that

R B
A (dQ/T )rev is independent of path. Or in other words,

(dQ/T )rev is an exact differential, and we can therefore write:

dS ⌘

✓
dQ

T

◆

rev

(5.3)

which, in turn, implies that �S =
R B
A dS = S(B)� S(A), where S is the function of state

we call entropy.

R • It should be strange to you that we have to define entropy as a differential as it
implies that we can only predict entropy changes �S, not absolute entropy S!
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• This definition of entropy involves reversible processes, which is somewhat paradox-
ical when the most important application of entropy is the second law of thermody-
namics, which concerns irreversible processes.
• It also provides very little physical understanding of what entropy is. People
generally talk about “disorder” in the sense that an injection of extra heat at a given
temperature will increase the number of micro-states available to the system and
therefore its “disorder”, but this is very vague and ultimately unsatisfying.

Two important concepts emerge from the introduction of the function entropy:
1. We have already seen that for adiathermal reversible (a.k.a. adiabatic) changes,

dQrev = 0. Hence dS = 0 and S = Cst, so these changes are isentropic.
2. The maximum entropy principle.

Focussing on this latter, let us consider a loop in a p� V diagram made of an irreversible
process (A!B) and a reversible one (B!A), as indicated on Fig 5.9.
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Figure 5.9: p� V diagram of a cycle made of an irreversible process (A!B) followed by a
reversible one (B!A).

According to Clausius’ theorem,
H
dQ/T  0, so for the particular cycle of Fig. 5.9,R B

A dQ/T +
R A
B (dQ/T )rev  0 which can be re-written as

R B
A dQ/T 

R B
A (dQ/T )rev =

S(B)� S(A) = �S. Therefore, taking the infinitesimal limit of this latter expression, one
has dS = (dQ/T )rev � dQ/T for any process. This has for important consequence that for
a thermally isolated system, i.e. a system for which dQ = 0, whatever process it undergoes
(reversible, irreversible):

dS � 0 (5.4)

This is another statement of the second law which says that the entropy of a thermally
isolated system either stays the same (reversible case) or increases (irreversible case) under
a thermodynamical change. This yields a direction of energy flow, an “arrow of time” and
is referred to as the principle of maximum entropy as equation (5.4) can be stated as:
“ The entropy of a thermally isolated system tends to a maximum ” .

R Applying what we have seen so far of Thermodynamics to the entire Universe, which
can arguably be considered as the best example of a thermally isolated system, we
deduce that UUniv = Cst (first law: energy is conserved) and SUniv can only increase
(second law: principle of maximum entropy)! That is to say, (i) the Universe is out of
equilibrium and is relaxing towards an equilibrium state which maximises its entropy
and (ii) if the entropy decreases in some region of the Universe, it has to increase by
at least the same amount in another!
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5.6 Calculating entropy changes

So far things have been pretty abstract. In this section, we develop our intuition of entropy
by calculating entropy changes in very specific and practical cases.

5.6.1 Heat transfer from a reservoir R to a system S
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Figure 5.10: Transfer of heat between a system S, initially at temperature TS (State 1) and
a reservoir R at temperature TR.

Fig. 5.10 depicts the process of heat transfer from a system S (rectangular box), initially
at temperature TS to a reservoir R at temperature TR (hatched blue lines). This is an
irreversible process in the sense that if one breaks the thermal contact in State 2, the
temperature of the system will not in general revert to TS (unless the system is brought
in contact with another reservoir at temperature TS). This is because �T = TR � TS is
finite. However, the heat flow across the boundary of the reservoir, which occurs at constant
temperature, is itself reversible.

To see this, let us assume that TS > TR, and that we have 2 reservoirs, the first one at
temperature TR, and the second one at TS � (TS � TR)/2. Now let us bring the system in
contact first with this second reservoir at temperature TS � (TS � TR)/2 and then with the
reservoir at temperature TR, instead of performing the heat transfer in just one step. The
temperature T of the system has decreased from TS to TR and the system has given heat to
both reservoirs. Let us then reverse the process and bring the system back in contact with
the second reservoir at temperature TS � (TS � TR)/2. The temperature T of the system
has increased from TR to TS � (TS � TR)/2, and heat has been given to it by the second
reservoir.

In doing that, we have partially brought back the total system to its initial state: the
temperature T of the system is still cooler than TS and the reservoir at temperature TR

has received some heat from the system, but the reservoir at temperature TS � (TS � TR)/2
is back to its original state. Heat exchange with a reservoir is therefore reversible.
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Figure 5.11: Transfer of heat between a system S, initially at temperature TS (State 1) and
k reservoirs regularly spaced in temperature between TS and TR.

Now let us repeat this experiment using k reservoirs equally spaced in temperature
between TS and TR (see Fig. 5.11). Every time we reverse the thermal contacts, we bring
back all the reservoirs to their original states, except the last one and the system itself.
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In the limit k ! 1, we have thus achieved reversible heat transfer! In other words,
the condition for reversible heat transfer to take place between two bodies is that their
temperatures only differ by an infinitesimally small amount dT .

As we now have established that the heat transfer of a system from/to a reservoir is
reversible, we can calculate the changes in entropy involved in the process. Using the
definition of the heat capacity C, we have dQrev = CdT and so, if we assume that C is
independent of T (true for e.g. an ideal gas), we can write§:
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for the change in entropy of the reservoir and the system, �SR and �SS respectively. Note
that these changes in �SR and �SS can be either positive or negative depending on whether
you bring the system in contact with a hot or a cold reservoir. However, if we consider the
change of entropy of the total system consisting of system + reservoir (which we will call
the Universe to emphasise that it is thermally isolated), we have �SUniv � 0 no matter
what! Let us prove it. We have:

�SUniv = �SR +�SS = C


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Setting X = TS/TR and evaluating the derivative d(�SUniv)/dX = C(1� 1/X), we find
that it is nil for X = 1, which means that �SUniv has an extremum for this value of X.
Since the second derivative, d2(�SUniv)/dX2 = C/X

2
> 0 for X = 1, this extremum is

a minimum. As �SUniv(1) = 0, we therefore conclude that �SUniv(X) � 0 whatever the
value of X, in accordance with the principle of maximum entropy.

5.6.2 Joule expansion

In this second example, we consider a system consisting of 1 mole of ideal gas initially
enclosed in a thermally insulated container of volume xV , where 0 < x < 1. This gas is
prevented from filling an empty container of volume (1� x)V , also thermally insulated, by
a valve (see top diagram of Fig 5.12). The valve is then opened instantaneously, allowing
the gas to expand into the second container and fill the whole volume V , as illustrated
on the bottom diagram of Fig 5.12. This process, which is irreversible

¶, is called a Joule

expansion.

The question is: what is the change in entropy during this Joule expansion?

This is far from trivial a question to ask because, in the same way that our system
was thrown out of equilibrium when we removed the weight from the piston in Fig 2.3,

§Being careful that for the reservoir, the heat transferred is the opposite of that of the system. Indeed, if,
as we have assumed here, the system dumps heat into the reservoir then dQrev < 0 as the system has lost
heat, but from the point of view of the reservoir, this amount of heat is gained, and therefore �dQrev > 0
for the reservoir.

¶Once again this does not mean that you cannot bring back all the gas inside the first container. You
obviously can. But you are going to have to do work to get back to this state. For instance, if the back
wall of the second container is a mobile piston, you will need to use this piston to push the gas back into
the first container and then close the valve. It is not going to happen simply by closing the valve once the
gas has filled the second container!
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Figure 5.12: Joule expansion of 1 mole of gas initially enclosed in a container of volume xV

(with 0 < x < 1) into a container of volume V .

our gas is out of equilibrium immediately after we open the valve: we cannot define its
pressure, volume, temperature etc ... until it has reached its new equilibrium state, filling
both containers! In other words, we cannot draw the path taken by the system to go from
its initial equilibrium state to its final equilibrium state in a p� V diagram. So how do
proceed to calculate the entropy change? Well, we use a ‘trick’ which always works because
entropy is a function of state: we go from the initial to the final state along a fictitious

reversible path! Once again, we are completely allowed to proceed this way because the
entropy change does not depend on which path the system takes, but only on its end states.

Having said that, we still have to choose a convenient reversible path to link the initial
and final equilibrium states. Let us then examine the process in more detail. The gas
being ideal, we can write its equation of state in both equilibrium states as piVi = RTi and
pfVf = RTf (for 1 mole, ni = nf = 1). As the containers are thermally insulated, Q = 0.
No work is done on or by the gas as it expands (the second container is empty therefore
the gas is not pushing anything to fill it, this is a free expansion), so W = 0. The first law
then tells us that �U = 0 and since U can be expressed as a function solely of temperature
for the ideal gas, we conclude that �T = 0, i.e. Tf = Ti.

The Joule expansion of an ideal gas is therefore isothermal. Hence it makes sense for us
to use a reversible isotherm (exactly like the one we used to join State A and State B in the
Carnot cycle depicted on Fig 4.5) to connect the initial and final states of the Joule expansion
in a p�V diagram. Along that reversible isotherm, the first law yields dU = dQrev�pdV = 0,
so that �S ⌘

R
dQrev/Ti =

R Vf

Vi
p/Ti dV =

R Vf

Vi
R/V dV = R ln(1/x) > 0. Now what is

key is that this is also the change in entropy undergone by the ideal gas during the real
irreversible Joule expansion!

R • Obviously the heat Qrev absorbed by the system on the fictitious reversible isotherm
is different from the heat Q truly absorbed by the system during the Joule expansion
as Q = 0.
• So do not make the mistake to say Q = 0 for the Joule expansion therefore
�S = Q/T = 0! Remember: �S � Q/T for irreversible processes!
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What about the entropy change of the Universe, �SUniv? For the fictitious reversible
isotherm, we have �SUniv = �S+�Ssurr = R ln(1/x)�R ln(1/x) = 0, as the heat absorbed
by the system is given to it by its surroundings, which must therefore lose exactly the same
amount. For the Joule expansion, �SUniv = �S +�Ssurr = R ln(1/x) + 0 as the entropy
of the surroundings does not change since the system is thermally isolated: the initial and
final states of the surroundings are the same!

5.6.3 Gibbs paradox: the entropy of mixing
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Figure 5.13: Expansion of two different gases initially enclosed in two containers of volume
xV and (1� x)V respectively, into a single container of volume V .

Let us now consider a third example, very similar to the Joule expansion, but with
two different ideal gases (say gas 1 and gas 2) at the same pressure and temperature, pi
and Ti, in initially separated and thermally insulated containers of volume Vi,1 = xV and
Vi,2 = (1� x)V respectively, with 0 < x < 1 (see top diagram of Fig.5.13). When we open
the valve, the two gases will mix spontaneously (this is the third kind of thermodynamical
equilibrium, called diffusive equilibrium, which we will study in more detail later in these
lectures when we discuss open systems).

Once again, the question is: what is the entropy change associated with such a process?

This is called the entropy of mixing. To determine it, we proceed exactly as we did for
the Joule expansion and look at the process in more detail. As pi and Ti are initially the
same for both gases, writing the equation of state for each of them yields pi = N1kBTi/Vi,1

and pi = N2kBTi/Vi,2, from where we derive that N1 = xN and N2 = (1 � x)N with
N = N1 +N2 the total number of gas particles. Moreover, Tf = Ti (the gases already are
in thermal and mechanical equilibrium and the containers are thermally insulated), and so,
as we did in the case of the Joule expansion, we can imagine going to the final equilibrium
state where gas 1 and gas 2 are mixed homogeneously (see bottom diagram of Fig.5.13) via
a reversible isothermal expansion of gas 1 from volume Vi,1 = xV to Vf = V and of gas 2
from volume Vi,2 = (1� x)V to Vf = V . Along each of these two reversible paths, we will
then have dU = 0, so that dQrev = pdV and dS = pdV/T = NkBdV/V . The total entropy
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change is thus:

�S = xNkB

Z
V

xV

dV1

V1
+ (1� x)NkB

Z
V

(1�x)V

dV2

V2
= �NkB [x lnx+ (1� x) ln(1� x)]

As expected, if x = 0 or x = 1, i.e. only one gas is initially present and there is no expansion,
�S = 0. We also find (left as an exercise below) that the maximal entropy change occurs
when the two gases initially occupy the same volume.

Exercise 5.2 Show that �S is maximal for x = 1/2. ⌅

This result can be intuitively understood at the microscopic level. Indeed, if x=1/2, this
means that after mixing is completed, each gas particle can occupy twice the number of
microstates as before (the volume available to them has doubled), so the total number of
microstates has increased by a factor 2N when considering all the particles. Therefore S

must increase by a factor NkB ln 2 (S = kB ln⌦ as you will see in statistical mechanics,
with ⌦ the number of microstates). The relation of entropy to information theory is starting
to appear.

Let us dig a bit further and ask, after Gibbs, an apparently straightforward question:
what if x = 1/2 but the two gases are identical to begin with? When we open the valve, the
system already is in complete thermodynamical equilibrium (same pressure, temperature
and particle number density throughout the system): surely nothing should happen and
we should have �S = 0 in that case! So where did we go wrong? This is referred to as
Gibbs’ paradox : the ability to distinguish particles matters when counting the number of
microstates of a system and therefore when calculating entropy changes!

5.6.4 Maxwell’s daemon: the connection of entropy to information theory
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Figure 5.14: Maxwell’s intelligent daemon is operating the valve to let specific particles
through in order to violate the second law (see text for detail).

In this final example, we consider the same apparatus as in the Joule expansion again,
but this time the initial states are identical on each side of the valve (see Fig. 5.14). If we
open the valve, nothing happens, no work is done, there is no heat transfer, the process is
clearly reversible and thus �S = 0.

Now imagine an intelligent daemon is perched atop of the valve and opens and closes it
to let fast particles move into the container on the right hand side and slow ones into the
left hand side one. This creates a temperature difference (T is linked to the average kinetic
energy of the particle distribution as you will see in the kinetic theory lectures), which can
be used to run a reversible heat engine and produce useful work. Hence �S = �W/T  0
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and it looks like the daemon, simply by converting information (their knowledge of the
positions and velocities of the particles) into energy, has decreased the entropy of an
isolated system, without performing any work, i.e. in flagrant violation of the second law of
Thermodynamics!

This paradox took a long time to resolve (see e.g. Szilard (1929), Landauer (1961),
Bennett (1983) for detail). To cut a long (but fascinating) story short, the daemon, which
has to be included in the system, has to keep track (a memory) of all the positions and
velocities that they measure. Due to the connection of entropy to information, if the daemon
has to discard measurements at any point in time, they will create entropy (a minimal
amount of kBT ln 2 heat is generated per bit of information lost as reasoned by Landauer
and experimentally measured by Bérut et al (in Nature, 2012, 483, 187)) because it is an
irreversible process. So the daemon must store information but cannot store it indefinitely:
they must “write over” previous information at some point, generating at least as much
entropy than they extract from the system in the processk.

kA more quantitative resolution of this conundrum is discussed in Thermodynamics by A. Steane using
the Szilard engine (chapter 9.5.1).





6. “Practical” Thermodynamics & free energy

6.1 The first law revisited

Using S, as previously defined, it is possible to re-write the first law of Thermodynamics in
a much more elegant (and useful) way. Consider a reversible change, so that dU = dQ+dW
can be written as:

dU = TdS � p dV (6.1)

Even though we have explicitly assumed reversibility to write this equation, it only involves
functions of state, so is independent of path and therefore valid for any thermodynamical
process, be it reversible or not! This equation is sometimes referred to as the fundamental

law of Thermodynamics.

R For an irreversible process we have dQ < TdS and dW > �pdV , but when these
infinitesimal heat and work are added together, dU is the same as for a reversible
process, leading to an identical infinitesimal change in internal energy.

This begs for S to be treated as a fundamental thermodynamic variable like V, T and p, rather
than a mere thermodynamical quantity. Indeed, considering the internal energy U(S, V )
as a function of the two independent thermodynamic variables S and V , equation (6.1)
becomes a total differential for U . S and V are thus called natural variables for U . Looking
closer at equation (6.1), each of the four thermodynamic variables, T , V , p and S appears
once and by pair: T & S and p & V , one pair member intensive (T and p) and the other
extensive (S and V ). The variables in each pair are called conjugate variables, and their
product (TS or pV ) has the dimension of energy. In fact, mathematically, we can write:

dU =

✓
@U

@S

◆

V

dS +

✓
@U

@V

◆

S

dV

and identify T = (@U/@S)V and p = �(@U/@V )S using equation (6.1).
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6.2 Thermodynamical potentials

6.2.1 Definitions

Given that conjugate variables are constrained to appear together as a product with the
dimension of energy, there exists only four possible choices for the pairs of independent
thermodynamic variables, namely (S, V ), (S, p), (T , V ) and (T , p). It thus seems logical to
conclude that there will exist a ‘natural’ energy-like quantity associated with each of these
independent pair choices. These ‘natural’ energy-like quantities are called thermodynamical

potentials. To obtain them, the ‘trick’ is to multiply pairs of conjugate variables and add or
subtract them to U :

(S, V ) �! U : Internal energy

(S, p) �! H = U + pV : Enthalpy (6.2)
(T, V ) �! F = U � TS : Helmholtz free energy (6.3)
(T, p) �! G = U + pV � TS : Gibbs free energy (6.4)

Note that the choice of conjugate variable products to add or subtract to U is not unique. For
instance we could have decided to construct a thermodynamical potential as U+3pV �5TS.
So how did we decide on these four combinations? Simply by looking at their differential
forms. We know that dU = TdS � pdV (equation (6.1)), so that dU = 0 if its natural
variables S and V are fixed. We are thus naturally led to require that the same must
hold for H, i.e. if its natural variables S and p are fixed then dH = 0. This is verified
straightforwardly by taking the differential of equation (6.2): dH = dU + d(pV ) =
dU + pdV + V dp = TdS �

�
��pdV +

�
��pdV + V dp. As we did for U , we can write:

dH =

✓
@H

@S

◆

p

dS +

✓
@H

@p

◆

S

dp

and identify T = (@H/@S)p and V = (@H/@p)S from the differential form of H. A similar
reasoning applied to F (equation (6.3)) yields dF = dU � d(TS) = dU � TdS � SdT =
⇠⇠⇠TdS � pdV �⇠⇠⇠TdS � SdT , which is nil if its natural variables T and V are fixed. Writing

dF =

✓
@F

@T

◆

V

dT +

✓
@F

@V

◆

T

dV

we then identify p = �(@F/@V )T and S = �(@F/@T )V from the differential form of F .
Finally, for G (equation (6.4)), we get dG = dU + d(pV � TS) = ⇠⇠⇠TdS �H

HH
pdV +H

HH
pdV +

V dp�⇠⇠⇠TdS � SdT , which is equal to zero if T and p are fixed. Writing once again:

dG =

✓
@G

@T

◆

p

dT +

✓
@G

@p

◆

T

dp

we then identify V = (@G/@p)T and S = �(@G/@T )p from the differential form.

6.2.2 Physical meaning

• Enthalpy: the enthalpy of a system consists of its internal energy plus the work that
is needed to make room for it in an isobaric environment. That is to say, it is the
total energy that you would need to create the system out of nothing and place it in
such an environment (the initial volume is 0 in that case so �V = V ). Conversely,
H is the energy you would recover if you could annihilate the system: its internal
energy plus the work done by the atmosphere to fill the volume it occupied.
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Usually we deal with much less dramatic processes than creation or annihilation
and look at changes undergone by the system. In that case, dH = TdS ⌘ dQrev at
constant p, i.e. using independent variables T and p, dH = (@H/@T )p dT = Cp dT

and �H =
R Tf

Ti
Cp dT is the heat absorbed (reversibly) by the system in isobaric

conditions (if no other work is done). These are easy conditions to be in: an open
air system in the lab is usually at constant (atmospheric) pressure Patm. Example:
chemical reactions (exothermic if �H < 0 and endothermic if �H > 0).
Summarising, in an isobaric environment, �H = �U + p�V = Q +W + p�V =
Q�

�
�
�

p�V +Wother +�
�
�

p�V , with Q = T�S for a reversible process and Q < T�S

for an irreversible one. Wother stands for any non-pdV work (e.g. electrical).
• Helmholtz free energy: often we are not interested in the total amount of energy that

can be recovered from the annihilation of a system but simply in the amount of work
that can be recovered. Conversely, in an isothermal environment, the system can
extract heat for free so all we need to provide to create the system from nothing is the
extra work needed. So the Helmholtz free energy is the total energy needed to create
the system minus the heat you can get for free from the isothermal environment.
Equivalently, it is the amount of energy you can recover as work if you annihilate the
system, given that you have to dump some heat in the environment to get rid of the
system’s entropy.
Again, in practical situations, we deal with changes less dramatic than creation
ex nihilo and dF = �pdV for an isothermal reversible process. Therefore �F =

�
R Vf

Vi
pdV (> 0 if work is done on the system by its surroundings, and < 0 if work is

done by the system on its surroundings) and we have assumed that there is no other
work than pdV work. Note that if the change considered is irreversible, new entropy
will be generated in the process and �F < W .
Summarising, in an isothermal environment, �F = �U � T�S = Q +W � T�S

where W = pdV work +Wother and Q = T�S for a reversible process or Q < T�S

for an irreversible one.
• Gibbs free energy: the work we talked about for F consisted of all work, including

that done on the system by its surroundings. If a system is placed in an isobaric and

isothermal environment, then the non-pdV work you need to do to create it, or that
you can recover by annihilating it is given by G.
Once again, focussing on practical changes, dG = 0 for a reversible, isothermal and
isobaric process, assuming no other work than pdV . So G is conserved for phase
transitions which take place at constant T and p and will thus be very useful to
describe them (and chemical reactions as well).
Summarising, in an isothermal and isobaric environment, �G = �U �T�S+p�V =
Q+W � T�S + p�V = Q�

�
�
�

p�V +Wother � T�S +
�
�
�

p�V where Q = T�S for a
reversible process or Q < T�S for an irreversible one.

• Internal energy: We already gave its definition but if we consider its physical meaning
in a similar manner than the three other thermodynamical potentials, focussing
on a practical thermodynamical change, we have dU = TdS ⌘ dQrev at constant
V , i.e. using independent variables T and V , dU = (@U/@T )V dT = CV dT . Thus
�U =

R Tf

Ti
CV dT is the heat absorbed (reversibly) by the system in isochoric conditions

(if no other work is done). Note that this is not very practical a change to measure,
as in practice substances tend to expand when heated!
Summarising, in an isochoric environment, �U = Q+Wother, with Q = T�S for a
reversible process or Q < T�S for an irreversible one.
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6.3 General conditions for thermodynamic equilibrium

Let us take stock and summarise what we have learned so far by updating the first diagram
we drew (Fig 2.1).

-
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Figure 6.1: Updated schematic diagram of a thermodynamical system.

In the most general case, the system will be placed in thermodynamical contact (i.e. it
will be able to exchange heat with / do work on) its surroundings. The question we want
to ask is: what happens to this system when such transfers of energy take place? What
equilibrium state will it reach?

To answer that question, let us first apply the first law to the total system. Its internal
energy, Utot, must be conserved as it is isolated, so any infinitesimal change dUtot = 0. In
other words, any amount of internal energy gained by the surroundings must be lost by the
system and vice-versa, which we write dUsurr = �dU = T0 dSsurr� p0 (�dV )⇤. Rearranging
this expression, we obtain dSsurr = �(dU + p0 dV )/T0.

The second law then tells us that the entropy of the total system, Stot, can only increase.
So any infinitesimal change dStot = dSsurr + dS � 0. Multiplying this inequality by T0 and
using the expression for dSsurr obtained through the first law then yields: �(dU + p0 dV �

T0 dS) � 0. Finally, as p0 and T0 are constant, we obtain dA = d(U + p0V � T0S)  0,
where A is called the availability of the system. This means that as the system settles
down to equilibrium, any change will result in a decrease of A: the equilibrium state is thus
reached when A is minimum.

R The form of A is strangely reminiscent of that of the Gibbs free energy ...

Now, the type of equilibrium that the system will be able to reach depends on the
constraints applied to it (the type of contacts it is allowed to have with its surroundings).
So A will play the role of each of our four thermodynamical potentials in turn, depending
on what these constraints are. More specifically if:

1. the system is thermally insulated and has a fixed volume (no thermal nor mechanical
contact with the surroundings), we have dS = 0 and dV = 0. Therefore dA = dU  0
and the system reaches equilibrium when its internal energy, U , is minimal.

2. the system is thermally insulated and has a fixed pressure (no thermal contact but
mechanical contact with the surroundings is permitted), we have dS = 0 and dp = 0.
Therefore dA = dU + p0 dV = dH  0 and the system reaches equilibrium when its
enthalpy, H, is minimal.

⇤We applied the fundamental form of the first law to the surroundings, hence the sign reversal for the
infinitesimal volume: in the same way that whatever amount of internal energy gained by the surroundings
must be lost by the system, any amount of volume dV gained by the surroundings must be lost by the
system.
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3. the system has a fixed temperature and volume (thermal contact with the surroundings
is allowed, but not mechanical contact), we have dT = 0 and dV = 0. Therefore
dA = dU � T0 dS = dF  0 and the system reaches equilibrium when its Helmholtz
free energy, F , is minimal.

4. the system has a fixed temperature and pressure (both thermal and mechanical
contact with the surroundings are authorised), we have dT = 0 and dp = 0. Therefore
dA = dU + p0 dV � T0 dS = dG  0 and the system reaches equilibrium when its
Gibbs free energy, G, is minimal.

6.4 Maxwell’s relations

These are very useful for essentially two reasons:
1. They relate partial derivatives representing quantities which are difficult to measure

experimentally to partial derivatives which are easier to measure.
2. Taken as a whole, the set of them describe the constraints imposed on the four

thermodynamical variables, T , S, V , p, owing to the fact that only two of them are
independent. In that sense they play a role similar to that of an equation of state!

The mathematical idea behind these relations is that if f(x, y) is a function of state, then

df =

✓
@f

@x

◆

y

dx+

✓
@f

@y

◆

x

dy

is an exact differential and therefore (@(@f/@x)y/@y)x = (@(@f/@y)x/@x)y, i.e. the order
of differentiation w.r.t. x or y does not matter. Let us apply this property to each of the
four thermodynamical potentials in turn.

Starting with f = U , x = S, y = V we have dU = TdS � pdV with T = (@U/@S)V ,
p = �(@U/@V )S so that the second derivatives yield the following equality:

✓
@T

@V

◆

S

= �

✓
@p

@S

◆

V

(6.5)

Next, let us consider f = H, x = S and y = p. We have dH = TdS + V dp with
T = (@H/@S)p, V = (@H/@p)S so that:

✓
@T

@p

◆

S

=

✓
@V

@S

◆

p

(6.6)

For f = F , x = T and y = V , dF = �SdT � pdV along with S = �(@F/@T )V ,
p = �(@F/@V )T , which yields:

✓
@S

@V

◆

T

=

✓
@p

@T

◆

V

(6.7)

Exercise 6.1 Show that the last Maxwell relation, associated with the Gibbs free energy,
G, writes:

✓
@S

@p

◆

T

= �

✓
@V

@T

◆

p

(6.8)

⌅
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6.5 Thermodynamical coefficients

The main idea of this section is to illustrate that one can calculate the physical properties of a
system (its thermodynamical coefficients) in terms of other experimentally known quantities,
using the mathematical relations that link partial derivatives together (Maxwell relations,
reciprocity and reciprocal theorems). We have already seen some of these coefficients, the
heat capacities:

CV =

✓
@U

@T

◆

V

= T

✓
@S

@T

◆

V

(use dU = TdS � p dV divide by dT and hold V constant)

Cp =

✓
@H

@T

◆

p

= T

✓
@S

@T

◆

p

(use dH = TdS + V dp divide by dT and hold p constant)

which play a special role in thermodynamics. These are well measured quantities for gas,
liquids and solids (units [J K�1 mol�1]).

Here, we will use them to calculate the compressibility of a system, . First, let us define
what we mean by compressibility. It is the fractional change in volume of the system when
we apply pressure to it. V and p are therefore the two thermodynamical quantities that
will vary. As we have four thermodynamical variables, there will be two ways to vary them
(two different constraints): either at fixed T (isothermally), or at fixed S (adiabatically).
Mathematically we will write:

T = �
1

V

✓
@V

@p

◆

T

S = �
1

V

✓
@V

@p

◆

S

for the isothermal compressibility and the adiabatic compressibility respectively.
The ratio of these two compressibilities is:
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where we have successively applied the reciprocity theorem to both numerator and de-
nominator; Maxwell’s relations associated with F (first term) and G (second term) to the
numerator and Maxwell’s relations associated with U (first term) and H (second term) to
the denominator; the reciprocal theorem to the first term of the numerator and the second
term of the denominator; and finally the reciprocity theorem once more to both numerator
and denominator.

To go one step further and explicitly calculate each compressibility, we need to specify
the equation of state of the system. This is done in example 6.1 for the case of an ideal gas.

⌅ Example 6.1 Explicit calculation of the compressibility of an ideal gas.
• Isothermal compressibility: dT = 0, so d(pV ) = 0 ! p dV + V dp = 0 and �V dp/dV = p.
Therefore T = 1/p.
• Adiabatic compressibility: dS = 0, so d(pV �) = 0 ! �V

��1
pdV + V

�dp = 0 and
�V dp/dV = �p. Therefore S = 1/(�p). ⌅

6.6 Generalisation to open systems

So far, we have, for simplicity, ignored the fact that the amount of substance is a ther-
modynamic variable, and considered it fixed. Even in the case of the entropy of mixing,
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where we had two different ideal gases initially enclosed in thermally insulated containers
that were then allowed to mix (see Fig 5.13), the total number of particles of the system,
N = N1 +N2, was fixed.

This approach is fine to describe simple processes such as the expansion of a gas,
but most thermodynamical systems are not so simple in reality: they can undergo phase
transitions, or some chemical reactions may occur that lead to a change in N . Such systems
will be called open systems. The question we then have to ask is: how does this affect the
results we have derived so far?

To answer it, we have to establish whether N is independent of the other thermodynam-
ical variables. As we have previously hinted, the answer to that question is that is clearly
is: you can change the state of the system by adding new particles to it without changing
its temperature or pressure. Convince yourself by considering the example of the ideal gas.
The ideal gas equation of state is pV = NkBT , so if I change N proportionally to V , p and
T remain constant, but since V has changed, the state of the system has changed! This
would, of course, be impossible if I had only two independent variables.

Therefore, we have to conclude that, for an open system consisting of a pure
† substance

in a single phase
‡, there exist three independent variables.

In this context, N can only change as a result of diffusion, i.e. the migration of random
particles in and out of the system. We will talk about diffusive thermodynamical contact
between the system and its surroundings, which will have to be separated by a permeable

§

boundary to be able to reach diffusive equilibrium.

R Note that strictly speaking, even after a open system has come to diffuse equilibrium,
particles continue to drift randomly. In other words, N is not constant over time
but fluctuates, exactly like the true internal energy of the system, E. This means
that, in the same way that we had to define the thermodynamic internal energy as
U = hE(t)i, we have to define N = hN(t)i as our thermodynamic number of particles.
In practice, for very large systems (N ⇠ NA), N and its average over time are very
nearly identical.

Now recall that an equilibrium for a different type of contact corresponds to a different
intensive thermodynamic variable which is the same for the system and its surroundings (p for
mechanical contact, T for thermal contact). Another way to say this is that thermodynamic
variables come in conjugate pairs (p and V , T and S). So what is the conjugate variable of
N? It’s called the chemical potential, and is noted µ. We can easily deduce its properties: it
must be intensive since N is extensive and must have the dimension of energy per particle
since N is a number of particles and the product of two conjugate variables, like µN , must
have the dimension of energy.

The energy transferred through diffusive contact, i.e. the analog of Q for thermal
contact and W for mechanical contact is simply µ�N , where �N is the net number of
particles transferred to or from the system. For this reason, even though any of the two
variable can be chosen as the natural variable from each of the three pairs of conjugate
variables, it is almost always N which is used for the (µ,N) pair¶. This means that we will

†Otherwise we would have to introduce multiple Ni, where the index i indicates the substance.
‡Otherwise different phases could exchange particles even if the system was closed.
§This word is to be understood in the sense of a wall that lets particles go through but does not

necessarily move or let heat in or out.
¶The one exception worth mentioning is the Grand potential, ⌦(T, V, µ) = F � µN , which will be useful

to describe general open systems, and whose total differential form will then be d⌦ = �SdT � p dV �Ndµ.
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generalise our total differentials for the four thermodynamical potentials as:

U(S, V,N) ! dU = TdS � p dV + µ dN

H(S, p,N) ! dH = TdS + V dp+ µ dN

F (T, V,N) ! dF = �SdT � p dV + µ dN

G(T, p,N) ! dG = �SdT + V dp+ µ dN

The physical meaning of the chemical potential now appears a bit more clear: it measures
the change in Gibbs free energy with respect to a change in N at constant T and p:
µ ⌘ (@G/@N)T, p.

R • We could have used any of the thermodynamical potentials to define µ but G is
more useful because the variables which are held constant, T and p, are the intensive
variables which correspond to the other two equilibria, thermal and mechanical.
• Since G is extensive, G(T, p,N) = NGN=1(T, p), so why didn’t we simply define
µ ⌘ GN=1(T, p) and dispense with µ altogether? The reason is that this would only
work for a pure substance in a single phase: in more general situations µ 6= GN=1(T, p).

The role that µ plays for diffusive contact can be understood in perfect analogy with that
of T for thermal contact or p for mechanical contact. If µ 6= µsurr, the system is out of
diffusive equilibrium and this will lead to a net flow of particles crossing the permeable
boundary with the surroundings, from the high µ to the low µ region, until µ = µsurr, at
which point diffusive equilibrium is reached.

We have seen that this process, like for the two other types of equilibrium, can be
interpreted in terms of entropy (information). As we saw in the section where we discussed
the general conditions for thermodynamical equilibrium, allowing for diffusive contact
removes a macroscopic constraint on the system: it is no longer closed. The system will
‘take advantage’ of this new freedom by exploring the increased range of microstates available
to it: particles will migrate between system and surroundings. This results in a macroscopic
change of state for the system, i.e. a change in N . This change stops when the entropy
of the total system is maximised, at which point thermodynamical equilibrium is restored.
This is the classic story of thermodynamics!

6.7 Thermodynamics beyond expansion work

The examples that we have studied in these lectures (Carnot cycle, Joule expansion,
etc...) all involved systems consisting of ideal gases. This might have given you the (false)
impression that thermodynamics only apply to gases. Even though gas systems are without
doubt very important thermodynamical systems, I thus want to conclude the first part
of these lectures by dispelling such an impression. Indeed, the general thermodynamical
concepts we have introduced can describe virtually any macroscopic system, whatever this
system is made of.

The main idea is that “heat is heat” because it is related to temperature and entropy,
which are generic properties of the system, in the sense that they can be defined and
measured in the same way, whatever the system is made of.

By contrast, work can take a different form from pdV , depending on the properties
of the system. For example, we have already mentioned electrical or magnetic work. In
general, we will write the work in differential form as dW = Fdh, where F is a kind of
intensive generalised force (like p for the gas), and h is a kind of extensive generalised
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internal
k displacement (like V for the gas).

To be more specific, we can come up with the following (non-exhaustive) list of examples
of thermodynamical systems:

• fluid: dW = p dV with p the pressure and V the volume.
• elastic rod: dW = t dL with t the tension and L the length.
• liquid film: dW = � dA with � the surface tension and A the area.
• dielectric material: dW = ~E · d~pE with ~E the electric field and ~pE the electric dipole

moment.
• magnetic material: dW = ~B · d~m with ~B the magnetic field and ~m the magnetic

dipole moment.

R Not only do the electric and magnetic work involve a dot product between vectors, but
a different differential form to that we have just defined will be used in most problems.
This is due to the fact that the system (dielectric or magnetic material) will generally
be plunged in an external (vacuum) field, and that we will only be interested in the
work that is associated with changing the polarization/magnetization of the material
rather than in the work associated with the change in the external field that such a
change in polarization/magnetization will necessarily entail⇤⇤. In other words, for
uniform external fields, we will write the electric work as dW = �~pE · d ~Eext, where
~Eext is the electric field that would be present in the absence of the dielectric material
but if the charge remained the same, and the magnetic work as dW = �~m · d ~Bext

where ~Bext is the magnetic field that would be present in the absence of the magnetic
material but if the magnetic flux remained the same.

You will encounter other specific examples of such systems in the problem sheet, but in
this lecture I want to focus on the thermodynamics of the elastic rod.

Let us then consider a rod with a cross section A and length L. This rod can be made
of any material: metal, rubber, etc... We then exert an infinitesimal tension dt on it, so
that it elongates by an infinitesimal amount dL, as represented on Fig 6.2.

6

-�

-�-�

dt dt
LdL

A

Figure 6.2: Diagram of an elastic rod of initial cross-section A and length L, stretched
under infinitesimal tension dt.

First, let us define the physical properties of the system using thermodynamical coeffi-
cients. The ratio of the stress, � ⌘ dt/A, to the strain, ✏ ⌘ dL/L, exerted on the rod is
called Young’s modulus, and if the stretching takes place at constant temperature, T , it
is equal to ET ⌘ �/✏ = L/A (@t/@L)T . As � and ✏ always have the same sign, ET > 0.
Another relevant thermodynamical coefficient is the linear expansivity of the rod at constant
tension, i.e. its fractional change in length with temperature: ↵t = 1/L (@L/@T )t. This
coefficient will be positive if the rod extends when heated (e.g. a metal rod) and negative if

kIn these lectures, we always (and always will) place ourselves in the reference frame where the system
of interest is at rest with respect to the observer. In other words, the systems we study do not move: this
means that the displacements we measure must be internal to these systems.

⇤⇤For an in depth discussion of the subtleties of properly defining electric and magnetic work, see e.g.
Thermodynamics by A. Steane (chap 14.5) or, for magnetic work, the footnote in the second part of these
lectures devoted to paramagnets.
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it contracts (e.g. a rubber band). Armed with these two coefficients, we can now ask how
the tension of a rod held at constant length will change with temperature. Mathematically,
this writes as (@t/@T )L = �(@t/@L)T (@L/@T )t = �AET↵t, where the first equality is
obtained using the reciprocity theorem. So the tension will go down as a metal rod is
heated but it will increase for a rubber band.

The first law in fundamental form reads dU = SdT + t dL and the Helmoltz free energy
dF = �SdT + t dL, so we can define the rod’s entropy as S = �(@F/@T )L and its tension
as t = (@F/@L)T . We can measure how the entropy of the rod will change when its length
changes at constant T by measuring how the tension changes as a function of temperature
when its length is held constant: (@S/@L)T = �(@t/@T )L = AET↵t (the first equality is
the Maxwell relation associated with F for the rod). As A is assumed to stay constant,
stretching the rod increases its entropy if ↵t > 0, i.e. in the case of the metal, but entropy
will decrease for the rubber band. This can be understood by analogy with the ideal gas.
Extending the rod isothermally and reversibly by dL is analogous to the isothermal gas
expansion in the Carnot cycle: an amount of heat dQrev = TdS = ATET↵tdL will be
absorbed by the rod if ↵t > 0 or released if ↵t < 0. Microscopically, for the metal, its
crystalline structure is distorted and S increases (each atom can occupy more volume)
and heat is absorbed, whereas for the rubber band, the stretching uncoils disordered chain
segments and aligns them more with the applied tension: entropy decreases and heat is
released.

Let us conclude this study by asking how the internal energy of the rod, U , changes under
such an isothermal extension. This will serve, I hope, to highlight the pitfalls of thinking that
all systems have an internal energy with similar properties to that of an ideal gas. Indeed,
for an ideal gas, the answer to this question would be trivial: as its internal energy can be
written as a function of temperature alone, an isothermal process cannot change its value.
Not so for the rod. Applying the first law, we get (@U/@L)T = T (@S/@L)T+t = ATET↵t+t

which will not be equal to zero in general!
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7. Introduction

Up to now, everything you have done was:
• fairly general and abstract: you talked about systems, maximisation of entropy under

constraints, or
• applied to pV systems (ideal gas).

The goal of these lectures on simple systems is to show you how powerful the Statistical
Mechanics approach is by applying it to (relatively) simple (but still very useful), non-pV
systems

The systems in question will conserve number of particles N and volume V (fixed
external parameters) but will be in thermal contact with a thermostat (or heat bath) at
fixed temperature T , with which they can exchange energy. In other words, the natural
starting point to study them will be the canonical ensemble partition function:

Z(�) =
X

↵

exp(��✏↵) with � =
1

kBT
(7.1)

which we interpret as the number of micro-states available to a system at a given temperature.
Why is the partition function of a system so important? Well, it contains all the

information about the energy of the micro-states of the system, and you have seen that all
thermodynamical equilibrium properties of the system can be derived from it, i.e. all the
usual functions of state, including the equation of state, and heat capacity!

Why is this Statistical Mechanics approach so powerful? Well, if I give you the equation
of state of one mole of ideal gas, pV = RT , and ask you what the heat capacity of the gas
is at constant V , what would you answer? 3R/2? That would be correct for a mono-atomic
gas, but how do you know that the gas is mono-atomic? Its equation of state says nothing
about that, but Z does!

Is it surprising? Well, not really. To construct Z, you need to know all the quantum
energy levels of a system. And what else is there to know? In general solving Shrödinger’s
equation for a complex system and getting its complete energy level spectrum is impossible,
but one can do it for useful simple systems, and that is the subject of the next three
lectures.
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The path we will systematically follow to study these simple systems consists of three
steps:

1. derive the single-particle partition function, Z1, being careful about any level degen-

eracy

2. combine the single-particle partition functions together to get the total partition
function of the system, Z, being careful as to whether the particles are distinguishable

or not and can be considered as independent or not

3. derive the thermodynamical properties of the system from Z



8. Paramagnetic solid

Consider a crystal of N identical atoms (or ions), each in a particular position, in equilibrium
with a heat bath at temperature T . Since the atoms are localised, we can apply the statistics
of distinguishable particles, even though these atoms are of the same kind. When no external
magnetic field is present, virtually all the atoms of the crystal are in their fundamental
state⇤.

Let us call ~J the total angular momentum of an atom, i.e. the sum of the total orbital

angular momentum, ~L, and total spin, ~S, of all its electrons, in its fundamental state.
From your Quantum Mechanics lectures, you know that to this total angular momentum is
associated a magnetic moment†:

~µ = �gJµB
~J (8.1)

where

gJ =
3J(J + 1) + S(S + 1)� L(L+ 1)

2J(J + 1)
(8.2)

is called the Landé factor
‡, J can take integer or half-integer values and µB = e~/(2me) is

the Bohr magneton, with e the elementary charge, ~ = h/(2⇡) the reduced Planck constant

and me the rest mass of the electron. From this expression, it is clear that if J 6= 0, each
atom possesses a permanent magnetic moment§. Again, from your Quantum Mechanics

⇤To excite the electrons, e�, of an atom, you need energies kBT ⇠ 1 eV, i.e. temperatures around 104

K, so the probability of finding an excited atom at room temperature is negligible.
†If you prefer, think of the classical picture of the e

� “orbiting” the nucleus and thus creating a mini
current loop which in turns creates the magnetic moment.

‡Although you will only study the spin-orbit coupling in detail when you take Atomic Physics or
Condensed Matter in the 3rd year, you can already understand how such a factor comes about from your
2nd year Quantum Mechanics lectures, in particular the ones devoted to the resolution of the Stern-Gerlach
experiment puzzle.

§Note that this is not the case for most materials. What exists in all materials (including those for which
J = 0) is a diamagnetic effect (part of the 3rd year Condensed Matter course), where the e

� re-organise
in an attempt to cancel the external magnetic field ~Bext (when present), but this effect is generally small.
This is also referred to as Lenz’s law.
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lectures, this means that e.g. the z�component of ~J , Jz, can take 2J + 1 eigenvalues
between �J and +J . In other words, the fundamental energy level of the atom is 2J + 1
degenerate.

In the absence of an external magnetic field, all the states with different Jz will share
the same energy level, and are thus equally likely to be populated. As the magnetic moment
of each atom is proportional to Jz, the net magnetic moment of the crystal is nil. However,
if we plunge our crystal in a uniform

¶ external magnetic field, ~Bext 6= ~0 aligned with the
z�axis and pointing up, each atom is subject to the Hamiltonian:

H = �~µ · ~Bext = gJµB JzBext (8.3)

This lifts the degeneracy of the atoms fundamental state by splitting them into 2J + 1
regularly spaced energy sub-levels, between energies �gJµB JBext and +gJµB JBext.

If the atoms in the crystal are sufficiently far from one another, the interaction between
their magnetic momenta are negligible and they can be considered as independent. In that
case, the magnetic properties of the crystal can be calculated from the model Hamiltonian:

H =
NX

i=1

Hi = �

NX

i=1

~µi ·
~Bext =

NX

i=1

gJµB J
(i)
z Bext (8.4)

which is simply the sum of the individual atom Hamiltonians given by equation (8.3). The
crystal thus exhibits a magnetic moment which is aligned with the external field ~Bext, hence
the name paramagnetism.

8.1 Spin
1
2 paramagnet

This is the special case where J = S = 1/2 and L = 0. This yields gJ = 2, so that the
fundamental level of the atoms is split into two sub-levels with energies ✏ = ±µBBext in
the presence of the external magnetic field ~Bext (see Fig. 8.1). So, taking the first step in
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Figure 8.1: Sub-levels of energy split as a function of the external field strength, Bext, with
the blue line corresponding to magnetic dipoles pointing in the same direction as the field,
and the orange line to dipoles pointing in the opposite direction. The zero point energy
corresponds to the fundamental level in the absence of the field.

¶In order to avoid complicating our life by having to evaluate potentially nasty integrals to obtain the
average magnetic field present in the volume occupied by the crystal.
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our three step procedure, we calculate the single-particle partition function of the system
by summing these two non-degenerate energy sub-levels:

Z1 = exp(��µBBext) + exp(+�µBBext) = 2 cosh

✓
µBBext

kBT

◆
(8.5)

For the second step, recall that the atoms are distinguishable (because they are localised)
and independent, so that the partition function of the system simply is the product of all
the single-particle partition functions:

Z = (Z1)
N (8.6)

The third and final step consists in deriving the thermodynamical properties of the system
from Z. Let us start with the internal energy:

U = �
@ lnZ

@�
= �NµBBext tanh

✓
µBBext

kBT

◆
(8.7)

U is plotted in Fig. 8.2 both as a function of T (left panel) and Bext (right panel), arguably
the main conclusion we can draw is that the internal energy of the crystal increases when
it is plunged in an external magnetic field (right panel).
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Figure 8.2: Internal energy of the paramagnet as a function of temperature T (left panel)
at fixed Bext and of the external field strength, Bext at fixed T (right panel).

R We have not accounted for the internal energy contribution coming from other
processes undergone by atoms in the crystal, such as vibrations. This will be the
subject of the next lecture, and is only emphasised here to draw your attention on
the arbitrariness of the energy zero point. We have chosen the internal energy of
the crystal in the absence of an external field as zero, but of course the crystal has
a non-nil internal energy in that case! In other words, only the difference in energy
matters to study independent processes as the corresponding partition functions will
simply multiply and the energies add up.

Looking at the left panel of Fig. 8.2 shows that at very low temperature and fixed Bext 6= 0,
U = �NµBBext. This is exactly was we expect, the external field splits the level into two
sub-levels, but at low T all the atoms must be in the ground state, i.e. their lowest energy
level �µBBext, which directly leads to U = �NµBBext. As the system is heated and its T

rises, some e
� are excited to the upper energy level +µBBext and U therefore increases. In

the high temperature regime when T � µBBext/kB , the two sub-levels become very nearly
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equally populated and the internal energy goes back to the original U = 0, i.e. to its value
in the absence of the external magnetic field.

Now, at fixed T (right panel of Fig. 8.2), for large Bext, tanh(�µBBext) ! 1 and so
U / Bext. Again, this behaviour is expected: when Bext is large, the energy gap between
sub-levels is so large that very few atoms can populate the upper energy sub-level, even
though the system has a finite T , and so U = �NµBBext again. For weaker Bext, the
situation is a bit more complicated, as some e� are going to be thermally excited to the upper
energy sub-level. However, in the regime Bext ⌧ kBT/µB , tanh(�µBBext) ! �µBBext and
we expect U / �B

2
ext.

What about the heat capacityk?

CBext =

✓
@U

@T

◆

Bext

= NkB

✓
µBBext

kBT

◆2 1

cosh2
�
µBBext/(kBT )

� (8.8)

Looking at the high temperature regime, T ! +1 and for a fixed Bext, we can derive a
limit for CBext ' NkB

�
µBBext/(kBT )

�2
! 0. In the same way, the low temperature regime

T ! 0, yields CBext ' NkB

�
2µBBext/(kBT )

�2
exp

�
� 2µBBext/(kBT )

�
! 0. We therefore

predict a peak in the heat capacity of a paramagnet (see exercise 8.1 and Fig. 8.3 for
detail)! Such a peak is actually observed in real systems: it is called the Schottky anomaly.
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Figure 8.3: Heat capacity at constant external magnetic field for a spin half paramagnet.
Note the presence of a peak centred on a specific temperature.

Exercise 8.1 Estimate the temperature, Tmax, and the heat capacity, Cmax
Bext

of a spin half
paramagnet plunged in an external magnetic field Bext.
Ans: Tmax ' 0.83µBBext/kB, Cmax

Bext
' 0.44NkB ⌅

R What is the order of magnitude for the temperature at the peak? For this you need
to know that it is difficult to manufacture magnets capable of producing a magnetic
field much stronger than Bext ⇠ 10 Tesla, so as the magnitude of µB and kB are
similar, Tmax ⇠ 10 K. The use of the Schottky anomaly plays an important role for
cooling material at extremely low temperatures: if one can lower Bext without heat

kNote that the volume of the crystal is fixed, so we are talking about heat capacity at constant Bext

rather than constant V .
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entering into the system, then T has to decrease proportionally for the magnetisation
to remain constant. In this way, you can go down from 10 K to the mK level and
even lower with nuclear dipoles as you gain a factor ⇠ 2000 in mass when replacing
me in the Bohr magneton by mp!

In general, the Helmholtz free energy will be more useful than any of the other thermody-
namic potentials, because as you have already seen for the mono-atomic ideal gas and we
will see time and again for other systems, it provides a direct route to their equation of
state. The paramagnet is no different. Its Helmholtz free energy is:

F = �kBT lnZ

= �NkBT ln

✓
2 cosh

✓
µBBext

kBT

◆◆
(8.9)

Now to the equation of state. For an ideal gas, it would be obtained by taking the partial
derivative of F with respect to the volume at constant temperature, as dF = �S dT � p dV .
For a paramagnet, its total magnetic moment, ~m ⌘

P
N

i=1 ~µi, will play the role of p and (as
we have already noted for the heat capacity), ~Bext will play the role of V , even though given
the intensive and extensive nature of these variables, one would naively have expected the
reverse. In other words, we will write⇤⇤ dF = �S dT �m dBext, so that its magnetisation

⇤⇤As we have seen in the Basic Thermodynamics lectures, “heat is heat but work differs”. However, for
magnetic systems, there is always some confusion about writing the work as � ~m ·d ~Bext or + ~Bext ·d~m. This
confusion arises because the total magnetic field, ~B, is the sum of the external field and the one induced in
the paramagnet, i.e. ~B = ~Bext + ~Bind. These fields are generated by current densities ~J = ~Jext + ~Jind and
all three (total, external (free) and induced (bound)), obey Ampère’s law, ~r⇥ ~B = µ0

~J , where µ0 is the
magnetic permeability in vacuum. To figure out the amount of work done by the crystal, we need to remove
the contribution of the external field from the Hamiltonian of the system. Unfortunately, this task is not
straightforward because Faraday’s law requires that a back-electromotive force be generated in the device
producing the external field when the total magnetic field of the system changes. In other words, work needs
to be done to maintain the external current and field. This work, dW = �dt

R
~Jext ·

~E d3
x, integrates to

W = µ
�1
0

R
~Bext ·

~B d3
x when the total field increases from ~0 to ~B, with the integrals performed over all space

and using Maxwell-Faraday’s equation ~r⇥ ~E = �@ ~B/@t to turn the electromotive force into a magnetic field.
As such work maintains the external current, it is an energy which pertains to the surroundings and not to
the paramagnet itself, so it should be subtracted from the total magnetic energy which permeates the crystal:
1/(2µ0)

R
~B
2 d3

x. By virtue of the same reasoning, we should also subtract the magnetic energy present in the
crystal which is entirely due to the presence of the external field, i.e. 1/(2µ0)

R
~B
2
ext d

3
x and �µ

�1
0

R
~B
2
ext d

3
x,

where the second term corrects for our inclusion of the external field work to maintain the external current
in W . So the net effect of the presence of an external field is to add 1/(2µ0)

R
~B
2
ext d

3
x to the internal energy

of the paramagnet, and therefore the magnetic (free) energy which should appear in the Hamiltonian of this
latter is Fmag = 1/(2µ0)

R
( ~B2

� 2 ~Bext ·
~B + ~B

2
ext) d

3
x = 1/(2µ0)

R
( ~B � ~Bext)

2 d3
x = 1/(2µ0)

R
~B
2
ind d

3
x.

On the other hand, it is customary to describe the response of a paramagnet to the presence of an
external magnetic field by its magnetisation ~M , such that ~r⇥ ~M = ~Jind, and to introduce an auxiliary
field ~H = ~B/µ0 � ~M , for which ~r ⇥ ~H = ~Jext. These quantities are therefore linked to the induced
and external magnetic fields by ~M

? = ~Bind/µ0 and ~H
? = ~Bext/µ0 respectively, where the subscript ?

denotes the transverse component of the vector fields, with zero divergence (the curl free longitudinal
components of ~M and ~H are generally not specified, unless ~M is a local function of ~B). Now let the
external magnetic field vary by d ~Bext. Although the charged particles in the crystal (and therefore the
total field ~B) will respond to such a change, at first order, the variation in the paramagnet energy comes
entirely from its dependence on ~Bext (the crystal sits at a stable energy minimum in the external field so
the other terms are of higher order). The magnetic energy term in the Hamiltonian of the crystal that
we previously derived thus varies by dFmag = �µ

�1
0

R
( ~B � ~Bext) · d ~Bext d

3
x to first order. Skipping over

the transverse component subtlety and identifying ~M with ~Bind/µ0 inside the crystal, we then obtain
dFmag = �

R
V

~M · d ~Bext d
3
x = � ~m · d ~Bext. However, another possible choice is to consider the cross

term ~Bind · ~Bext as part of the internal energy of the crystal (i.e. to remove the external field magnetic
energy 1/(2µ0)

R
~B
2
ext d

3
x from the paramagnet internal energy but regard the work done by the external

current to maintain the field as part of it), thus writing the magnetic energy part in the Hamiltonian as
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is given by††:

M = �
1

V

✓
@F

@Bext

◆

T

=
NµB

V
tanh

✓
µBBext

kBT

◆
(8.10)

In the limit of small external magnetic fields (or high temperatures), i.e. µBBext ⌧ kBT ,
this equation of state linking variables M,Bext and T in a similar way as the ideal gas
equation of state links P, V and T , yields what is known as

Law 7 — Curie’s law of paramagnetism.

M =
Nµ

2
B
Bext

V kBT
(8.11)

On the other hand, for large magnetic fields (or low temperatures), µBBext � kBT , all e�
will be in the ground state with magnetic moments parallel to and pointing in the direction
of the external magnetic field so that the magnetisation will saturate at M = NµB.

Another quantity often used to describe materials is their magnetic susceptibility, �. It
is a measure of the degree of magnetisation that the material will acquire when plunged in
an external magnetic field. Magnetic susceptibility is a dimensionless quantity defined as:

� ⌘ µ0

✓
@M

@Bext

◆

T

=
µ0Nµ

2
B

V kBT
sech2

✓
µBBext

kBT

◆
(8.12)

In the paramagnet case, we then have � > 0 and, as we have already seen, the induced
magnetisation increases the magnetic field in the crystal‡‡. Moreover, in the case of small
external fields, � = µ0Nµ

2
B
/(V kBT ), so it is inversely proportional to the temperature

only, i.e. it does not depend on Bext. Therefore, in this regime, where magnetisation is a
linear function of the applied magnetic field (see equation (8.11)), one can rewrite the total

field present in the crystal as ~B = ~Bext (1 + �).
Finally, the entropy of the spin half paramagnet is given by:

S =
U � F

T
= �

NµBBext

T
tanh

✓
µBBext

kBT

◆
+NkB ln

✓
2 cosh

✓
µBBext

kBT

◆◆
(8.13)

At high temperatures, kBT � µBBext, we have S ! NkB ln 2 and in the regime of low
temperatures, i.e. kBT ⌧ µBBext, S ! 0. This is what we expect (from the arguably more
intuitive microcanonical view of entropy), because at low T , all the e

� should be in the
lowest energy state and there is only one way for them to do so (1 micro-state associated),
whilst at high T , each of the two individual states is equally likely to be populated (and
thus there are 2N possible ways of achieving this situation).

F
0
mag = 1/(2µ0)

R
( ~B2

� ~B
2
ext) d

3
x = 1/(2µ0)

R
( ~B2

ind+2 ~Bind ·
~Bext) d

3
x instead of Fmag = 1/(2µ0)

R
~B
2
ind d

3
x.

In this case, one arrives at the other result: dF 0
mag = +

R
V

~Bext · d ~M d3
x = + ~Bext · d~m. Both expressions

for dFmag and dF 0
mag are correct, they simply depend on one’s definition of the paramagnet internal energy:

you now understand the source of the confusion for defining infinitesimal magnetic work! Note that we will
use dFmag in these lectures, as it is easier in practice to vary an external magnetic field than to control
the magnetisation of a crystal. We will also drop the vector notation, thus implicitly assuming that the
magnetic dipoles fully align with the external field.

††Strictly speaking, as we established in the previous footnote, the magnetisation is the magnetic moment
of the paramagnet per unit volume, so we should define it as ~M ⌘ d~m/d3

x, where d~m represents the
infinitesimal magnetic moment contained in the infinitesimal volume element d3

x. However, as the system
is assumed homogeneous, we simply write ~M = ~m/V , with V the volume of the crystal.

‡‡Alternatively, if � < 0, the material will be called diamagnetic and the magnetic field permeating the
material will be weakened by the induced magnetisation.
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Figure 8.4: Entropy of a paramagnet as a function of internal energy for a fixed value of
the external magnetic field. The temperature, T = (@U/@S)Bext , is given by the tangent to
the curve at any point (orange, red and green lines). Note that this means T is negative in
the quadrant where U > 0 (green line see text for detail).

R From the thermodynamic definition of internal energy, dU = TdS �MdBext, one
readily obtains the temperature of the paramagnet as T = (@U/@S)Bext . Paramagnet
entropy is plotted as a function of internal energy in Fig 8.4 for a system with N

magnetic dipoles. Starting from the system in its minimal internal energy state
(U = �N µBBext) and progressively increasing its temperature whilst maintaining a
constant external magnetic field, one reaches U = 0 only for an infinite temperature
(horizontal tangent in red). However, if one starts with the system in its maximal

energy state, with all the dipoles parallel to the external field but pointing in the other
direction, i.e. U = +N µBBext, one realises that the system will spontaneously evolve
towards U = 0 and infinite temperature, despite its temperature remaining negative

(see slope of the green tangent to the curve in Fig 8.4) throughout the process! There
is nothing wrong with this behaviour, which is in fact typical of systems with a capped

internal energy. In such systems, the multiplicity of microstates decreases as one
approaches the maximum internal energy allowed, so their entropy decreases as well.
This underlines that the fundamental physical quantity is the entropy, governed by
the second law of Thermodynamics, not the temperature which merely reflects the
“willingness” of a system to give away energy: in that sense a system with negative
temperature is simply hotter than a system with infinite positive T ! A concrete
example of a system for which negative temperatures have been measured is nuclear
paramagnets which are prepared in the lowest internal energy state initially (strong
external magnetic field, low positive temperature regime), before the applied magnetic
field is “instantaneously” reversed (see Purcell E. & Pound R., Physical Review, 81,
p279 (1951)).

8.2 General case paramagnet

In general, a paramagnet will have a total angular momentum J > 1/2, and therefore a
different number of energy levels than the spin half paramagnet. For instance, if J = 2,
then Jz = �2,�1, 0, 1, 2 and we have five levels of energy instead of two. Apart from this,
the calculation of the thermodynamical properties of a general paramagnet follows the
same exact route we have taken for the particular case of the spin half paramagnet. Its
single-particle partition function is obtained by summing over all the non-degenerate energy
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sub-levels:

Z1 =
+JX

Jz=�J

exp

✓
�
gJ Jz µBBext

kBT

◆
=

sinh
�
(J + 1/2)R

�

sinh(R/2)
(8.14)

where the last equality results from evaluating the finite sum of terms of a geometric
progression with common ratio R = gJ µBBext/(kBT ).

The atoms of the general paramagnet are distinguishable (because they are localised)
and independent, so that, once again, the partition function of the system simply is the
product of all the single-particle partition functions:

Z = (Z1)
N (8.15)

Exercise 8.2 Following what was done for the spin half paramagnet, derive U,CBext and
S from the partition function of the general paramagnet.
Ans:

U = �NgJJµBBext

✓
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2J
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✓
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2J sinh
�
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2J + 1

2J
coth
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1

2J
coth

✓
R
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+NkB ln
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�
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�

sinh(R/2)

!

⌅

Leaving the calculation of the other thermodynamic properties of the general paramagnet
as an exercise (8.2), we directly jump to its magnetisation:

M = �
1

V

✓
@F

@Bext

◆

T

=
kBT

V

✓
@ lnZ

@Bext

◆

T

=
gJµB

V

✓
@ lnZ

@R

◆

T

=
NgJJµB

V
BJ(RJ) (8.16)

where

BJ(x) =
2J + 1

2J
coth

✓
(2J + 1)x

2J

◆
�

1

2J
coth

✓
x

2J

◆
(8.17)

is called the Brillouin function of order J and is plotted for various values of J in Fig 8.5.
Note that for J = 1/2, the Brillouin function reduces to an hyperbolic tangent and we
recover our spin half paramagnet result. Beyond this, in the large magnetic field/low
temperature regime, R � 1, BJ ! 1 and the magnetisation saturates as all the magnetic
dipoles align with ~Bext. Conversely, for small external magnetic fields/high temperatures,
R ⌧ 1 and BJ ' (J + 1)R/3 and we recover Curie’s law:

M =
N g

2
J
J(J + 1)µ2

B
Bext

3V kBT
(8.18)
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Figure 8.5: Brillouin function of various orders J as a function of the external magnetic
field to temperature ratio, R. J = 1/2 in blue, J = 2 in orange and J = 1 in green.

It turns out that BJ functions have been measured in the lab for crystals containing Cr3+,
Fe3+ and Gd3+ ions (see Henry W., Physical Review, 88, p559 (1952)). Note that these
experiments are generally done at low temperatures as it is difficult to generate a strong
external field to study the convergence to magnetisation saturation.

R • B1(x) = cothx� 1/x is called the Langevin function, after french physicist Paul
Langevin who explained paramagnetism (and diamagnetism) in 1905 before the
emergence of Quantum Mechanics. This seems weird as one can actually prove
(so called Bohr-van Leeuwen theorem) that no classical material can actually be
magnetised (whether we are talking about para or diamagnetisation does not matter)!
It turns out that Langevin got to the correct result because he had implicitly made
the assumption that atoms were behaving like the Bohr atom in his derivation.
Magnetisation is purely a quantum mechanical phenomenon.
• You will also hear about another kind of magnetism called ferromagnetism (and study
it in the third year Condensed Matter course). This is the kind you are more likely
to be familiar with, as it is “permanent”, in the sense that ferromagnetic material
continues to be magnetised after the applied external field has vanished. These
ferromagnets include the common “fridge magnets”. Essentially (restricting oneself to
one domain/zone of the crystal where the magnetic field is aligned), ferromagnetism
arises through the coupling of the spin of an atom with that of its neighbours: contrary
to what we have seen for the paramagnet, the atoms cannot be considered independent.
This coupling is generally modelled using a complicated Heisenberg Hamiltonian and
it is customary to perform a mean field approximation (examples of which we will
study in these lectures) to obtain a self-consistent implicit formula for the ferromagnet
magnetisation: M = NgJµB tanh(gJµBBe↵/(2kBT ))/(2V ) with Be↵ = Bext + �M .





9. Simple harmonic oscillators

The goal of this lecture is to model the vibrations of atoms in a crystal. As for the
paramagnet in the previous lecture, let us consider a crystal made of N localised particles,
so they are distinguishable even though they all are of the same kind. This crystal of
fixed volume V is in thermal equilibrium with a thermostat at temperature T , so that the
canonical ensemble is the natural choice to derive its thermodynamical properties.

In the simplest model, also known as Einstein’s model, all the atoms of the crystal are
assumed to be vibrating as independent simple harmonic oscillators at the same frequency in
all three spatial dimensions (see Fig. 9.1). It should seem a strange model, as interactions

Figure 9.1: Schematic diagram of the three-dimensional vibrations (indicated by red arrows
along the axes of symmetry) of atoms in a regular crystal.

between atoms never are negligible in solids. So why does the independent simple harmonic
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oscillator model work at all? It is thanks to an approximation which is very commonly
used in Statistical Mechanics: the mean field approximation.

To figure out how this approximation works, consider an atom that is part of the crystal.
At zeroth order, it feels the N � 1 other atoms globally, through a mean potential energy,
Umean(~r), which depends on its own position in the crystal, ~r, but not on the position of
the other atoms. Let us then define the position of this specific atom, ~r, with respect to its
equilibrium position in the crystal and let us assume (to simplify things) that the mean
potential it sits in is isotropic, i.e. Umean is only a function of the distance to equilibrium,
r. As the atom will not stray very far from its equilibrium position in the crystal, let us
expand Umean(r) around r = 0. This must be a minimum of the mean potential (necessary
for the equilibrium to be stable), so we have:

dUmean(0)

dr
= 0 and

d2Umean(0)

dr2
⌘  > 0 (9.1)

At lowest order in r, we can thus write:

Umean(r) = �U0 +


2
r
2 (9.2)

where U0 is the (positive) binding energy per atom in the crystal. Under such an approxi-
mation, each atom constitutes an independent simple harmonic oscillator since its energy is:

" =
~p
2

2m
� U0 +



2
r
2 =

1

2m
(p2x + p

2
y + p

2
z) +



2
(x2 + y

2 + z
2)� U0 (9.3)

where m is the mass of the atom and ~p its momentum. The crystal is thus composed of N
such independent simple harmonic oscillators with the same angular frequency ! =

p
/m.

9.1 The 1-D case

Before we embark upon the quest to solve the full three-dimensional case, let us assume
that our simple harmonic oscillators can only oscillate in one dimension, say along the
z�axis. We know from our Quantum Mechanics lectures that the solution of Schrödinger’s
equation in this case leads to the following spectrum of energy levels:

✏n = �U
(1D)
0 +

✓
n+

1

2

◆
~! (9.4)

where n 2 Z+ is the level number, and ~ = h/(2⇡) the reduced Planck constant. Note that
the superscript (1D) indicates that the potential minimum is different from that of the full
three-dimensional case. In contrast to the paramagnet, you will notice that there is an
infinite number of energy levels for the crystal. However, just like for a paramagnet, these
energy levels are equally spaced which makes matters easier from a mathematical point of
view.

Applying our now standard three step approach, we first derive the single-particle
partition function of the crystal:

Z1 =
+1X

n=0

exp
⇣
�
�
U

(1D)
0 � (n+ 1/2)~!

�⌘
(9.5)

which is a geometric progression with an infinite number of terms so

Z1 = exp
�
�U

(1D)
0

� exp(��~!/2)
1� exp(��~!) (9.6)
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Since the atoms in the crystal are distinguishable (localised) and independent, its partition
function then reads:

Z = (Z1)
N = exp

�
N�U

(1D)
0

�
 

1

2 sinh
�
� �~!/2

�
!
N

(9.7)

Finally the third step consists in deriving the thermodynamical properties of the crystal.
Its internal energy is:

U = �
@ lnZ

@�

= N

 
�U

(1D)
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~!
2

+
~!

exp
�
~!/(kBT )

�
� 1

!
(9.8)

So when kBT � ~!, exp
�
~!/(kBT )

�
' 1 + ~!/(kBT ) and U ' NkBT , i.e. U is indepen-

dent of the properties of the oscillators! This is a consequence of the classical theorem of

equipartition of energy, which we will state and demonstrate right now: when kBT � ~!,
our quantum harmonic oscillators behave like classical harmonic oscillators.

Theorem 9.1.1 — Classical theorem of equipartition of energy. If the energy of a classical
system is the sum of N quadratic terms, and the system is in contact with a heat reservoir
at temperature T , then the mean energy of the system is hEi = NkBT/2.

Proof. Consider a system whose energy has a quadratic dependence on some variable and
is interacting with a heat reservoir at temperature T . This system is thus able to borrow
energy from its surroundings and give it back. What mean thermal energy hEi does it
have? Mathematically, this means that the energy of the system has the form E(x) = Ax

2,
where A is a positive constant, and x is the variable⇤. Let us assume that x can take any
continuous value. As previously derived in the Statistical Mechanics lectures, the probability
p(x) of the system having a particular energy Ax

2 under the constraint of constant mean
energy is given by:

p(x) =
exp(��Ax

2)
R +1
�1 exp(��Ax2) dx

(9.9)

so that the mean energy of the system is:

hEi =

Z +1

�1
E(x)p(x) dx

=

R +1
�1 Ax

2 exp(��Ax
2) dx

R +1
�1 exp(��Ax2) dx

=
1

2�
=

kBT

2
(9.10)

where we have integrated by parts the numerator and then simplified away the denominator
in the resulting expression. This is a remarkable result: the mean energy of the system is
independent of the constant A and simply proportional to T ! We leave it as an exercise to
finish the proof, extending it to N quadratic terms (also called modes or degrees of freedom)
by writing the energy of the system as E =

P
N

i=1Aix
2
i
. ⌅

⇤This is a very common situation in Physics, where x could be the velocity v, in which case the energy
would be kinetic, or x could be the displacement of a mass attached to a spring, etc ...
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Back to our one dimensional simple harmonic oscillator, we can now calculate its heat
capacity at constant volume:

CV =

✓
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@T

◆

V

= NkB

✓
~!
kBT

◆2 exp
�
~!/(kBT )

�
⇣
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�
~!/(kBT )

�
� 1
⌘2 (9.11)

R • Note the similarity of the heat capacity of the crystal with that of the paramagnet:
the + sign in the term at the denominator for the paramagnet has become a � sign
here for the crystal, but otherwise the expressions are the same, provided you replace
2µBBext by ~!.

• In a real system, the heat capacities due to magnetisation and oscillations will
add up as they are independent from each other! This is also true for their internal
energies. We will see how this additivity property works in more detail when we
discuss the polyatomic gas.

9.2 The 3-D case

As each of the three directions of oscillation is independent, we can simply write the energy
level spectrum of the crystal as:
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2

◆
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2
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2
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with nx, ny and nz 2 Z+ and independent of one another. So the three-dimensional
single-particle partition function reads:

Z
(3D)
1 = Z1(x)Z1(y)Z1(z) =

⇣
Z

(1D)
1

⌘3
(9.13)

and similarly, the three-dimensional partition function is equal to

Z
(3D) =

⇣
Z

(1D)
⌘3

(9.14)

Furthermore, as all thermodynamical potentials are functions of lnZ, we can directly write:
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Defining the Einstein temperature, TE ⌘ ~!/kB, one can see that it depends on the
properties of the crystal through the angular frequency ! ⌘

p
/m, i.e. it decreases with

the mass of the atoms and increases with the “spring constant” .

R Note that  ⌘ d2
Umean(0)/dr2 ⇠ U0/d

2, where d is the distance between two
neighbouring atoms. This distance is constant (up to a factor 2-3) for all materials,
so  is essentially a function of U0, the depth of the potential well in which the atom
is moving.
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This leads to re-writing the three-dimensional heat capacity of the crystal as:

CV = 3NkB

✓
TE

2T

◆2 1

sinh2
�
TE/(2T )

� (9.16)

where we have dropped the (3D) superscript for the sake of notation simplicity. Focussing
on the high temperature regime, T � TE , we get CV ' 3NkB, which is independent of
both temperature and the nature of the crystal considered! This is the so-called Dulong

& Petit law discovered in 1819, and which we now know is a consequence of the classical
theorem of equipartition of energy. In the low temperature regime, T ⌧ TE , we have that
CV ' 3NkB(TE/T )2 exp(�TE/T ) and limT!0 CV = 0.

These considerations lead to the plot of CV as a function of T displayed in Fig. 9.2.
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Figure 9.2: Heat capacity of a three-dimensional crystal due to atom vibrations, as a
function of temperature.

R • The importance of this simple Einstein model of a crystal cannot be underestimated.
Indeed, it explicitly shows that the decrease in the heat capacity of solids at low
temperature is purely a quantum phenomenon, like magnetisation!

• If you adjust the Einstein temperature for each crystal, it approximately reproduces
the change in heat capacity as a function of temperature for real solids (see Einstein
A., Annalen der Physik, 22, p87 (1907)).

A few things are worth emphasising about the limitations of this simple crystal model.
For those of you who are (rightly) worried about the infinite number of energy levels, it must
be noted that at very high temperatures, T � U

(3D)
0 /kB , the thermal energy overcomes the

binding energy of the crystal and this latter melts. However, even before this catastrophic
outcomes takes place, at lower thermal energies, the quadratic expansion of the potential
will no longer be a valid approximation, and we will need to take into account higher order
terms to provide an adequate description of the atom motion. So why sum over an infinity
of energy levels even when the temperature is reasonable then? The reason is that the
infinite sum converges very rapidly. Indeed, you can easily convince yourself that any energy
level with an energy > kBT has a very low probability of being excited, so using the full
infinite sum is an excellent approximation of the physically correct truncated sum.
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At the other end of the temperature range, the Einstein model, while qualitatively
correct, is quantitatively wrong at low temperatures. Experiments show that the heat
capacity of solids goes to zero as CV / T

3 rather than exponentially. As previously
remarked, this exponential decay is a direct consequence of the existence of a minimal
excitation quantum ~!, which is non-nil for the simple harmonic oscillator. This is the
subject of the exercise below.

Exercise 9.1 Show that CV / exp(�TE/T ) is an inevitable conclusion of the simple
harmonic quantum oscillator model if ~! 6= 0. [ hint: write the first two lowest energy
levels of the system, ✏0 and ✏1, which are, by definition, such that ✏1 � ✏0 = ~! and use
them to calculate Z in the very low T limit.]
Ans: CV ' g1/g0

�
~!/(kBT )

�2
exp

�
� ~!/(kBT )

�
when T ⌧ ~!/kB, with g0 and g1

the degeneracy coefficients of levels 0 and 1 respectively. ⌅

In other words, one can only hope to reproduce the experimental power law behaviour of
the heat capacity at low temperatures if the energy level spectrum in the neighbourhood
of the fundamental level, ✏0, is almost continuous. The solution of this conundrum is to
realise, as Debye did, that the existence of a unique frequency of oscillation, !, is linked to
the assumption of independence of the oscillators. If one takes into account coupling terms,
eigenfrequencies will differ from their initially identical values†.

†Intuitively and physically, when an atom wanders away from its equilibrium position, it exerts a force
on its neighbours, repelling those it is getting close to and attracting those it moves away from. These
neighbours then act on their own neighbours and so on and so forth. So crystal vibrations are collective
rather than individual at low temperature.



10. Polyatomic ideal gases

You have derived, in another part of the course, the partition function (and hence the
thermodynamical properties) of the mono-atomic perfect gases. In this lecture, we will
study the modifications that we need to introduce to describe an ideal gas composed of
poly-atomic molecules⇤. Essentially, this means that we are going to take into account
the internal structure of the gas particles instead of treating them as an ensemble of
mathematical points. In other words, we will have to consider the extra degrees of freedom
associated with the possibility that these particles/molecules can also vibrate and rotate ...

10.1 General case

Let us consider a gas of N identical, non-interacting molecules of mass m, enclosed in
a recipient of fixed volume V , in contact with a thermostat at temperature T . We will
assume that N is sufficiently large (so that the thermodynamic limit is reached), and that
T is sufficiently large† and N/V sufficiently low (so that the mean occupation number of a
single particle micro-state is low (⌧ 1)).

R This last assumption is also sometimes called the Maxwell-Boltzmann approximation

as it yields the same partition function for bosons and fermions. The gas is therefore
classical in the sense of non-degenerate.

We can then write the partition function of the gas as:

Z =
1

N !
Z

N

1 (10.1)

where the factorial of N term accounts for the fact that particles are indistinguishable and
Z1 is the single-particle partition function. Up to this point, this is identical to what you
have seen for the mono-atomic gas.

⇤In truth, most of the lecture will focus on diatomic molecules for simplicity, but the way to generalise
the results to molecules composed of more atoms will be outlined.

†Albeit lower than the ionization temperature of the gas (T < 104K).
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Let us follow our three-step procedure and start with the first step of calculating Z1.
As for the mono-atomic gas, the single particle Hamiltonian has a kinetic energy part,
H0 = ~p

2
/(2m), where ~p is the momentum of the particle, but also, and this is specific to

poly-atomic gases, an internal structure part, which we won’t make explicit for the moment
and simply write as Hint

‡. In other words, we will write the single particle Hamiltonian as

H = H0 +Hint =
~p
2

2m
+Hint (10.2)

The internal degrees of freedom associated with Hint are independent of the translational
motion degrees of freedom associated with H0

§.

R Physically, you can understand this easily: it is only when molecules collide that
a fraction of their translational kinetic energy can be transferred to rotational or
vibrational internal motions (so called inelastic collisions). For ideal gases where
collisions between particles are, by definition, ignored (non-interacting particles), such
a coupling is thus neglected.

This means that a single-particle state, �, will be defined by a monochromatic wave function
with wave vector ~k = ~p/~ which describes the eigenstates of H0, as in the mono-atomic
gas case, and the quantum numbers describing the eigenstates of Hint, i.e. the internal
structure of the particle (including spin). In other words, if we label ⌧ the ensemble of these
internal structure quantum numbers, we have � = {~k, ⌧}, and the corresponding energy
levels are:

"� =
~2~k2
2m

+ ✏⌧ (10.3)

i.e. the sum of an eigenvalue of H0 and an eigenvalue of Hint (called ⌘⌧ here). So we have,
using the usual notation � = 1/(kBT ):

Z1 =
X

�

exp(��"�)

=
X

~k

X

⌧

exp

 
��

 
~2~k2
2m

+ ✏⌧

!!

=
V

(2⇡)3

Z X

⌧

exp

 
��

 
~2~k2
2m

+ ✏⌧

!!
d3k

=
V

(2⇡)3

Z
exp

 
��

~2~k2
2m

!
d3k ⇥

 
X

⌧

exp(��✏⌧ )

!

= V

✓
m

2⇡~2�

◆3/2
⇥ ⇠(�) (10.4)

where ⇠(�) is the single-particle partition function associated with the internal structure
of the particle and we have taken advantage of the high enough temperature to replace
the discrete sum over ~k by a continuous integral. In what follows, we will evaluate it
explicitly for a diatomic molecule composed of two different atoms, but notice that ⇠(�) is
independent of V .

‡We proceed this way because, as you will see, it will allow us to derive important results regarding the
thermodynamical properties of a polyatomic gas which hold regardless of the gas specific composition.

§If you prefer, in Quantum Mechanics parlance, the operators Hint and H0 commute.
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Having obtained Z1, we proceed to the second step of our procedure and calculate the
partition function using equation (10.1):

Z =
V

N

N !

✓
mkBT

2⇡~2

◆3N/2

⇠
N (T ) (10.5)

Finally, in the third step, we derive thermodynamical quantities from Z. As usual, we
start with the Helmholtz free energy:

F = �kBT lnZ

= �NkBT

✓
ln

V

N
+

3

2
ln

mkBT

2⇡~2 + 1 + ln ⇠(T )

◆
(10.6)

where the final equality made use of the Stirling formula, lnN ! ' N lnN �N .

R If you replace ⇠ by 2s+1, you recover the mono-atomic case, as the spin s is the only
internal degree of freedom of an atom.

F for a polyatomic gas has the same dependency on V than the mono-atomic gas F so

p = �

✓
@F

@V

◆

T

=
NkBT

V
(10.7)

meaning the ideal gas equation of state is valid no matter the internal structure of the
molecules that compose it! However, the internal energy,

U = �
@ lnZ

@�

= NkBT

✓
3

2
+

T

⇠

d⇠(T )

dT

◆
(10.8)

is the sum of two terms: one always equal to 3NkBT/2 which corresponds to the translational
degrees of freedom of the gas, and the other which corresponds to the internal degrees of
freedom, which is decoupled from the other. So the heat capacity of ideal polyatomic gases
at constant volume is different from that of ideal mono-atomic gases and in general will
depend on temperature (but not on V ). Indeed we have:

CV =

✓
@U

@T

◆

V

= NkB

✓
3

2
+

✓
2�

T

⇠

◆
T

⇠

d⇠(T )

dT
+

T
2

⇠

d2⇠(T )

dT 2

◆
(10.9)

Exercise 10.1 Calculate the entropy, S, of a polyatomic gas. Does S ! 0 when T ! 0?
Is this behaviour surprising?
Ans: S = NkB

⇣
ln
�
V/N

�
+ 3 ln

�
mkBT/(2⇡~2)

�
/2 + 5/2 + ln

�
⇠
�
+ T/⇠ d⇠/dT

⌘
. S

does not go to zero when T does, because the classical gas approximation fails at low
temperature, where quantum effects become important. ⌅



80 Chapter 10. Polyatomic ideal gases

10.2 Freezing of internal degrees of freedom

Before we start explicitly calculating Hint terms, let us look at the low T behaviour of the
contribution of the internal degrees of freedom to the gas properties.

In order to do this, we call ✏0 the lowest level of all the ✏⌧ possible energy levels (i.e.
✏0 is the fundamental level of internal structure), ✏1 the level just above it (i.e. ✏1 is the
first excited level of internal structure), and define g0 as the degree of degeneracy of ✏0
(i.e. g0 is the number of independent quantum states with the same energy ✏0). If T is
sufficiently low, i.e. kBT ⌧ ✏1 � ✏0, all the terms in ⇠(�) =

P
⌧
exp(��✏⌧ ) are negligible

in front of the g0 first ones with energy ✏0, so that the internal structure single-particle
partition function becomes ⇠(�) ' g0 exp(��✏0), and its logarithm ln ⇠ ' ��✏0 + ln g0.
This means that at low T , all molecules are in the fundamental level of internal structure
and as a consequence, all the properties of the polyatomic ideal gas reduce, by and large,
to those of a mono-atomic ideal gas. The internal energy, U , is simply offset by a constant
N✏0, but the heat capacity at constant volume, CV is the same.

When this happens, one says that the internal degrees of freedom are frozen (or blocked).
It is a pure quantum phenomenon, where the excitation of an internal mode is only possible
if kBT is comparable or greater to the minimal excitation energy of that mode. By contrast,
in a classical gas, any excitation energy is permitted.

10.3 Internal structure of polyatomic molecules

To a good approximation, the internal structure Hamiltonian is the sum of three independent
terms:

Hint = He +Hv +Hr (10.10)

where He is the Hamiltonian of the electrons of the molecule, Hv describes the vibrations
of its atoms with respect to one another and Hr its rotational motion in space.

R We should add to this list a 4th term which describes the internal structure of the
nuclei of the atoms which compose the molecule. However, the excitation energy of
these nuclei are on the order of the MeV (or equivalently T ⇠ 1010K). So the degrees
of freedom associated with the nuclei are frozen and we neglect them in what follows.

10.3.1 He

Even individual atoms possess an internal structure associated with discrete energy levels.
However, the excitation energies of e� in atoms and molecules are of the order of as few eV,
i.e. several 10,000 K. So it is only at very high temperatures that the internal structure of
atoms may play a role. Until the temperature reaches a few 1000 K, the degrees of freedom
associated with e

� are frozen, so they are generally ignored.

R • Exceptions exist, like the fine structure of the fundamental level of atoms and
molecules. Remember the paramagnet lecture, and consider an atom/molecule with
~L and ~S, the total orbital angular momentum and total spin of its e

� respectively,
which both have non-nil values in the fundamental state. This is not common, but if it
occurs the fundamental level is split into fine structure sub-levels due to the coupling
between ~L and ~S. The number of these sub-levels is equal to the number of different
possible values for the total angular momentum ~J : j = l+ s, l+ s� 1, · · · , |l� s|. The
energy difference between these sub-levels generally are around a few 10�2 eV, i.e.
Te ⇠ a few 100 K, so when the temperature of the thermostat is of that order, one has
to account for the fine structure when calculating Z1 (e.g. for the molecule N-O with
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0.015 eV or Te ' 175 K). If T � Te, one can consider all the fine structure sub-levels
as degenerate, and so the e

� degrees of freedom are frozen but with degeneracy factor
g0 = (2l + 1)(2s+ 1).

• Finally, note that the fundamental level of atoms/molecules can also have a hyperfine

structure due to the coupling between nuclei spin and the angular momentum of e�.
However the differences in energy between hyperfine levels (6⇥10�6 eV or equivalently
7⇥ 10�2 K for the Hydrogen atom, and higher for other atoms but never above 1.5
K). One therefore “neglects” hyperfine structure and considers all hyperfine sub-levels
as degenerate. For atoms with nuclei spin sn, Z1 is multiplied by (2sn + 1), and for
molecules by (2sni + 1) where ni, with i 2 Z+ are the nuclei of the atoms which
compose the molecule.

10.3.2 Hv

– Vibration of a diatomic molecule

Let us first consider a molecule composed of only two atoms. To study its structure we will
use what is known as the Born-Oppenheimer approximation: we will assume that its nuclei,
much more massive than the e

� are separated by a fixed distance, r. We then calculate
the lowest energy value for the e

� corresponding to this spacing r between nuclei using
Quantum Mechanics.

The energy of the system composed of the two nuclei and the e
� is a function u(r) of

the distance r, which, if the atoms can form a stable molecule, will possess a deep enough
minimum for bound states to exist (see Fig. 10.1). The equilibrium distance, d, between

� �� �� ��

-��

0

��

���

�

�(
�)

Figure 10.1: Potential energy of a diatomic molecule as a function of the distance r, between
the two nuclei. Note the electrostatic repulsion (sharp rise) at short distances.

the two nuclei corresponds to this minimum, as indicated on the figure. However, the
nuclei can vibrate with respect to one another, so their separation distance r oscillates
around d. This vibration is equivalent to the motion of a fictitious particle with reduced
mass mr = m1m2/(m1 +m2), where m1 and m2 are the masses of the two nuclei, in the
potential drawn on Fig 10.1.

In the limit of small oscillations (or if you prefer in the limit of small extensions
to the quantum wave function), from the lecture on the solid crystal, we recognize a
one-dimensional harmonic oscillator with angular frequency ! =

p
/mr where  is the

curvature of u(r) at its minimum u0, i.e. for the equilibrium distance d. So the vibration
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energy levels from the minimum u0 are given by

✏n =

✓
n+

1

2

◆
~! with n 2 Z+ (10.11)

and the level ✏n is non-degenerate, i.e. it corresponds to a unique quantum state of vibration.
In this case, the single-particle partition function writes:

⇠v(�) =
+1X

n=0

exp
�
� �(n+ 1/2)~!

�
(10.12)

and the associated internal energy:

Uv = �N
d ln ⇠v
d�

= N~!
✓
1

2
+

1

exp(�~!)� 1

◆
(10.13)

The extra heat capacity of the gas due to molecule vibration thus reads:

C
(v)
V

= NkB

�
~!/(2kBT )

�2

sinh2
�
~!/(2kBT )

� = NkB

�
Tv/(2T )

�2

sinh2
�
Tv/(2T )

� (10.14)

where we have defined the characteristic vibrational temperature as Tv ⌘ ~!/kB. We can
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Figure 10.2: Heat capacity of a diatomic molecule due to vibration, as a function of
temperature.

see that for T ⌧ Tv, we have C
(v)
V

! 0 like NkB(Tv/T )2 exp(�Tv/T ). On the other hand,
for T � Tv, C

(v)
V

' NkB, i.e. is independent of temperature, in line with the classical
theorem of equipartition of energy applied to the one dimensional harmonic oscillator.
These considerations lead to the diagram 10.2.

R Tv increases when the inter-atomic forces increase, but varies between a few hundred
K (463 K for the molecule Br2) to a few 1000 K (6215 K for H2).
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– Vibration of a polyatomic molecule

If the molecules are composed of q 2 {3, 4, · · · ,+1} atoms, the number of degrees of
freedom for vibrations qv, i.e. the number of variables necessary to characterise the relative
positions of their q nuclei, is qv = 3q� 6. Indeed, one has to account for the positions of all
nuclei of the molecule and remove the coordinates of its centre of mass (3 degrees of freedom
corresponding to the translational motion), along with the 3 Euler angles¶ necessary to
describe the orientation of the molecule in space (associated with the degrees of freedom of
rotational motion as we will see later on).

The potential energy u(r) becomes u(ri) where the index i 2 {qv} and the nuclei are
located at equilibrium distances di. We are thus dealing with a system of qv coupled
harmonic oscillators, which can be shown to be equivalent to a fictitious system of qv

one-dimensional independent harmonic oscillators. So the generalisation from the diatomic
molecule heat capacity to that of the polyatomic molecule is quite straightforward:

C
(v)
V

= NkB

qvX

i=1

�
Tv,i/(2T )

�2

sinh2
�
Tv,i/(2T )

� (10.15)

where Tv,i ⌘ ~!i/kB represents the different characteristic vibrational temperatures of the
polyatomic molecule.

10.3.3 Hr

Molecules also possess rotational excitation modes which correspond to their rotational
kinetic energy in three-dimensional space. We will assume in what follows that distances
between nuclei remain constant during the rotation of the molecule, i.e. the molecule
behaves as a rigid rotator

k.

– Rotation of a diatomic molecule

Figure 10.3: Schematic diagram of a diatomic molecule showing its orientation in three-
dimensional space. The origin of the coordinate system is located at the centre of mass
of the molecule. Distances r1 and r2 separate the origin from the nuclei of the molecule’s
atoms. The distance d = r1 + r2 separating the two nuclei is the length of the green rod.

¶Unless the molecule is linear, in which case 2 Euler angles are enough and qv = 3q � 5 in this case.
kIn other words we neglect the centrifugal force felt by the nuclei during rotation.
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As is clear from the diagram 10.3, the position of the centre of mass of the molecule is
already accounted for in the degrees of freedom associated with the translational motion of
the molecule, so its orientation in space is simply given by two Euler angles # and '.

The rotational kinetic energy of such a molecule, is, according to your Classical Mechanics
lectures,

✏r =
I

2

 ✓
d#

dt

◆2
+

✓
d'

dt

◆2
sin2 #

!
=

~L
2

2I
(10.16)

where ~L is the angular momentum of the molecule and I the moment of inertia with
respect to its centre of mass, i.e. w.r.t. any axis going through the centre of mass and
perpendicular to the molecule axis. For a diatomic molecule, we have⇤⇤ I = mr d

2, keeping
the notation for the reduced mass mr and equilibrium separation d that we introduced for
these molecules in the lecture on vibrations.

So the Quantum Mechanics Hamiltonian associated to the rotation of such linear
molecules is:

Hr =
~L
2

2I
(10.17)

where ~L is the orbital angular momentum operator. From your Quantum Mechanics lectures,
you know the stationary states of rotation. The corresponding wave functions are the
so-called spherical harmonics Y

m

l
(#,'), where l 2 Z+ and m 2 {�l, · · · , l}. The energy

levels associated to these states depend only on l, not on m, i.e. these levels are 2l + 1
degenerate:

✏l,m =
~2
2I

l(l + 1) (10.18)

and following what we did for vibrations, we introduce a characteristic rotational temperature

Tr ⌘ ~2/(2IkB).

R For light molecules with small I, Tr can be quite high (85 K for H2). However for the
vast majority of molecules Tr is much lower, around a few K. So except for molecular
hydrogen, one is practically always in the case where T � Tr, and the rotational
degrees of freedom of the molecule are not frozen and can be treated classically (i.e.
considered as continuous).

Let us consider a molecule made of two different atoms, like HCl. Its single-particle partition
function is:

⇠r(�) =
+1X

l=0

+lX

m=�l

exp(��✏l,m)

=
+1X

l=0

(2l + 1) exp

✓
��

~2
2I

l(l + 1)

◆

= 1 + 3 exp(�2Tr/T ) + 5 exp(�6Tr/T ) + 7 exp(�12Tr/T ) + · · · (10.19)

There is no simple method to evaluate this infinite sum exactly, however two important
remarks can be made. First, in the infrequent case where T  Tr, one should remember

⇤⇤Note that we neglect any rotation around the molecule axis because the moment of inertia in that
case would be due to the e

� instead of the nuclei and therefore about 2000 times smaller given the mass
difference.
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that the terms of the sum decay rapidly, so that a good approximation can be obtained by
considering only the first few ones and neglecting the rest. Second, in the most likely case
where T � Tr, two consecutive terms are “close enough” to allow us to approximate the
discrete sum over l by a continuous integral, thus writing:

⇠r(�) '

Z +1

l=0
(2l + 1) exp

✓
��

~2
2I

l(l + 1)

◆
dl (10.20)

which, after the change of variable y = l(l + 1) yields

⇠r(T ) '
T

Tr

(10.21)

The associated internal energy for T � Tr thus reads:

Ur = �N
d ln ⇠r
d�

= NkBT (10.22)

as expected from the classical equipartition of energy theorem since we have summed two
quadratic terms (in the kinetic energy of rotation of the molecule, see equation (10.16)). In
this high temperature regime, the extra heat capacity of the gas due to molecule rotation is
thus simply:

C
(r)
V

= NkB (10.23)

Exercise 10.2 Estimate C
(r)
V

in the low temperature regime (T  Tr) by assuming that
all the other terms in the sum (10.19) are negligible in front of the first two. What is
the limit of C(r)

V
when T ! 0?

Ans: C
(r)
V

= 12kB(Tr/T )2 exp(�2Tr/T )/
�
1 + 3 exp(�2Tr/T )

�2, so limT!0 C
(r)
V

= 0. ⌅

Numerically evaluating the sum (10.19) (and given the limits at low and high T that we
have previously estimated), we arrive to the following graph for the heat capacity of a
diatomic molecule:
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Figure 10.4: Heat capacity of a diatomic molecule due to rotation, as a function of
temperature.

What if the two atoms constituting the molecule are identical, like H2, O2, N2? In
this case, one has to take into account the quantum principle of symmetrisation to count
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its states. The only states allowed are those which are symmetrical when the two nuclei
are swapped if these nuclei are bosons with integer spin, or anti-symmetrical if the nuclei
are fermions with half-integer spin. You can see that that while the translational motions
can safely ignore this constraint as they deal with the motion of the centre of mass of the
molecule and not the relative position of the two nuclei††, this is not the case for rotations
which can swap nuclei positions (e.g. # ! ⇡ � # and ' ! ⇡ + '). One can show that (left
as an exercise), in that case, whether for bosons or fermions, if T � Tr, the single-particle
partition function is:

⇠r(T ) ' (2sn + 1)2
T

2Tr

(10.24)

where sn is the nuclear spin. Therefore both Ur and C
(r)
V

are the same as for a molecule
with two different atoms.

– Rotation of a polyatomic molecule

What about if the molecule is composed of more atoms than just two? Well, we have to
distinguish between two cases. First, and most simple, is the case where the molecule
is linear. Then we can develop arguments like those we used for the diatomic molecule,
leading to

⇠r(T ) '
1

�

T

Tr

(10.25)

where � is called the symmetry factor and has values of 1 for non-symmetric molecules such
as N2O (N-N-O) or 2 for symmetric molecules such as CO2 (O-C-O)‡‡. As a consequence,
both Ur and C

(r)
V

are the same as for a diatomic molecule.
The second case is that of a non-linear molecule. It thus possesses three degrees of

rotational freedom. Consider that it is rotating like a rigid block so we can apply the
classical results of solid kinematics: we have to define three moments of inertia I1, I2 and
I3 with respect to its principal axes of inertia. We need three Euler angles to characterise
the rotation, and three characteristic rotational temperatures (one per moment of inertia)
Tr,p ⌘ ~2/(2kBIp) with p 2 {1, 2, 3}. In practice, we almost always have T � Tr,p and
therefore have:

⇠r(T ) '

p
⇡

�

s
T

Tr,1

s
T

Tr,2

s
T

Tr,3
(10.26)

where � is a symmetry factor exactly like in the case of a linear molecule, except its
values are not limited to 1 or 2. For instance, the benzene molecule, C6H6 has � = 12.
More importantly however, this leads to Ur = 3NkBT/2 and C

(r)
V

= 3NkB/2 in the high
temperature regime, again in agreement with the classical theorem of equipartition of
energy.

10.3.4 Putting CV all together

As translational, rotational and vibrational motions are considered independent of one
another, the total heat capacity at constant volume of the molecular gas, CV is simply the

††The same is true for vibrations which only depend on the distance r between nuclei and are therefore
invariant upon the permutation of these latter.

‡‡You can understand this intuitively: if the molecule is symmetric, you do not change the single-particle
partition function by swapping the symmetric nuclei, so you have to divide the total number of states by 2.
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Figure 10.5: Total heat capacity of the HCl diatomic molecule (Tr = 15.2K and Tv = 4303K
indicated by vertical green and orange dashed lines respectively) due to translational,
rotational and vibrational motions, as a function of temperature. The blue vertical dashed
line represents a typical lab temperature of 293K, and is given for reference.

sum of all the contributions. This yields in the high temperature regime (T � Tr,p):

CV = C
(t)
V

+ C
(r)
V

+ C
(v)
V

(10.27)

=
3

2
NkB +

⇢
NkB (linear molecule)
3
2NkB (non� linear molecule)

+NkB

qvX

i=1

�
Tv,i/(2T )

�2

sinh2
�
Tv,i/(2T )

�

where the different characteristic vibrational temperatures, Tv,i are associated with the
different vibrational modes which will be excited in turn as T increases. So some of them
will be in the classical limit while others are still frozen! Finally, for a diatomic molecule, this
sum of terms simplifies to NkB

�
Tv/(2T )

�2
/ sinh2

�
Tv/(2T )

�
and contributes accordingly to

the total CV plotted in Fig. 10.5.
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11. Electromagnetic waves & photons

We will consider here a system of photons, i.e. of the massless particles which are the
quanta associated with the electro-magnetic field. The behaviour of such photon “gases” in
thermal equilibrium can be analysed experimentally by measuring the thermodynamical
properties of the electro-magnetic radiation.

R • This is a very intuitive process: everybody knows that when you heat e.g. steel to
make a sword, the metal radiates in the visible part of the electro-magnetic spectrum
... it glows red!
• As we will see, photons are special bosons: their number is not conserved, which
gives them a very peculiar statistical behaviour: their chemical potential is nil.

Definition 11.0.1 We call blackbody a closed cavity which contains a photon gas in thermal
equilibrium with a thermostat.

R • It is easy to make a blackbody in practice. All one needs to do is to take a container
of volume V and keep it at constant temperature T . A system of electro-magnetic
waves is spontaneously created within the container, i.e. in Quantum Mechanical
parlance, a system of photons. The physical quantities associated with this system
can be measured by poking a hole of negligible size in one of the container walls and
observe the characteristics of the radiation emitted through it⇤.
• The characteristics of this radiation have been well known since the end of the 19th
century, and their analysis led Planck in 1900 to formulate the “quantum hypothesis”,
starting point of the scientific revolution which led to the discovery of Quantum
Mechanics†.

⇤Also called blackbody radiation or thermal radiation.
†This is sometimes referred to as the ”ultra-violet” catastrophe because as we will see, in the classical

formulation of Maxwell’s, each electro-magnetic wave behaves like an independent harmonic oscillator, and
so an infinite number of them implies infinite energy, which is contributed mostly from short wavelengths,
hence the ultra-violet name. This issue is resolved in Quantum Mechanics because quantum harmonic
oscillators cannot take any continuous energy value.
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11.1 Electro-magnetic eigenmodes of a container

Our starting point will be the classical theory of electro-magnetism, with the goal to use
it to determine the individual quantum states that the system of photons can occupy. In
other words we will follow in Planck’s footsteps.

Let us consider, without loss of generality, an empty cubic container of size L. From a
classical point of view, the most general electro-magnetic field that can exist inside this
container is given by Maxwell’s equations. Since these equations are linear, their general
solution is a linear superposition of monochromatic elementary solutions that fulfil the
boundary conditions imposed by the container walls. These monochromatic solutions are
called the eigenmodes of the cavity.

Let us derive them. Consider the case were the walls of the cavity are perfectly reflecting‡:
this enforces strict boundary conditions, in the sense that both the tangential component
of the electric field, ~E, and the normal component of the magnetic field, ~B, must vanish at
the walls§. Such boundary conditions allow to use simple progressive monochromatic plane
waves to describe the spatial and temporal and dependence of all ~E and ~B field components,
i.e. these two fields will be a sum of terms of the form exp

�
i(~k · ~r � !t)

�
, where ~k is the

wave vector, ~r is the position vector and ! is the angular frequency. Maxwell’s equations
in vacuum enforce k~kk ⌘ k = !/c with c the speed of light. The boundary conditions
restrict the values of ~k to kx = nx 2⇡/L, ky = ny 2⇡/L, kz = nz 2⇡/L, where nx, ny and
nz 2 Z¶. Maxwell’s equations also imply that for each ~k, the ~E and ~B fields of that wave
are perpendicular to ~k and perpendicular to one another: this allows two independent
polarization states in the plane perpendicular to ~k.

In summary, an electro-magnetic eigenmode of our cubic cavity is characterized by an
eigenvector ~k such that its components obey kx = nx 2⇡/L, ky = ny 2⇡/L, kz = nz 2⇡/L
and a polarization state. Its angular frequency is given by k = !/c and the most general
electro-magnetic field that can exist in the cavity is a linear combination of eigenmodes thus
defined. For macroscopic applications we want to know the number of eigenmodes, g(!) d!,
whose angular frequencies are comprised in the interval [!,! + d!]. We can calculate this
number by counting the number of eigenmodes whose wave vector ~k has a modulus between
[k, k + dk]. This number is 2⇥

�
L/(2⇡)

�3
⇥ 4⇡k2 dk, where the three multiplicative factors

represent the number of polarization states, the inverse volume of an elementary cell and
the volume of a spherical shell in k�space respectively. Replacing k by !/c and dk by
d!/c, we obtain the classical spectral density of eigenmodes:

g(!) =
L
3
!
2

⇡2c3
=

V !
2

⇡2c3
(11.1)

11.2 Quantification of eigenmodes: photons

If we remained in the classical world, the amplitude of each eigenmode (i.e. of the
corresponding ~E and ~B fields) and consequently its energy, could take any continuous value

‡This is the case where the container is made of a perfect conductor.
§As usual, real life boundary conditions are more complex than that, but it is not necessary to know

them perfectly to determine the macroscopic behaviour of the system. In other words, we can choose
“perfect” boundary conditions, as long as the size of the box L is much larger than the particle de Broglie
wavelength, �B ⌘ h/p, where p is the momentum of the particles, they will not affect the behaviour of the
system.

¶This calculation is very similar to the one you have already seen for the wave function of an ideal gas
in a box. Note that the eigenmode nx = ny = nz = 0, i.e. ~k = ~0 and ! = 0 must, in general, be set aside.
It exists whatever the size of the cavity and corresponds to a constant electro-magnetic field, but given our
specific choice of boundary conditions its amplitude is equal to zero.
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in [0,+1]. In reality, the energy of the electro-magnetic field, as that of a material system
is quantified.

More precisely, to an electro-magnetic wave with wave vector ~k and angular frequency
!, we can associate particles called photons whose momentum ~p and energy ✏ are given
by the Planck-Einstein relations ~p = ~~k and ✏ = ~!k. From k = !/c, we thus get that
✏ = k~pkc ⌘ pc for photons. If one compares this relation between energy and momentum
to that of a particle of mass m given by special relativity, ✏ =

p
p2c2 +m2c4, one deduces

that photons must be massless particles. The two possible polarization states of the electro-
magnetic wave with wave vector ~k translate into two independent spin states⇤⇤ for the
corresponding photons with momentum ~p = ~~k. So a classical eigenmode characterized by
~k and a polarization state appears as a possible individual state for photons trapped in the
cavity††.

From the classical spectral density of eigenmodes (11.1) (and using ! = ✏/~ and
d! = d✏/~), we therefore deduce the following individual density of state for photons:

g(✏) =
V ✏

2

⇡2~3c3 (11.2)

11.3 Statistical properties of photons

11.3.1 Peculiarities of photons

• As their spin is an integer, they are bosons.
• They do not interact with one another, but only with the cavity walls which is how the
system reaches thermal equilibrium, so they constitute an ideal gas.

R Truly speaking, this last statement is not correct, as you will see when you study
Quantum Electro Dynamics (the theory of quantification of the electro-magnetic field
which accounts for its coupling to charged particles). Pairs of photons can interact to
momentarily produce an e

�
e
+ pair for instance. However this effect scales like ↵

2

times the coupling between matter and radiation which thermalises, where ↵ ⌘ 1/137
is the fine structure constant, so it is negligible for our blackbody study.

• Their number is not conserved. This is a new situation. To better understand what
it means, let us look more closely at how the electro-magnetic field, i.e. the photon gas,
arises in the cavity and reaches thermal equilibrium. As the walls are kept at constant
temperature T , thermal agitation sets the charged particles they contain (essentially the e

�)
in motion. These random motions create (classically) random electro-magnetic fields which
propagate freely inside the cavity and in turn induce motions of the charged particles in its
walls. So a (quite) weak coupling (for a macroscopic cavity) exists between the photon gas
and the matter that makes the walls. This drives the system to thermal equilibrium.

R One could think that since walls are made of atoms, emission lines specific to these
atoms would preferentially appear in the blackbody radiation spectrum, which would

kThis means that the energy of the wave with angular frequency ! is N! ~! where N! is the number of
photons the wave is made of.

⇤⇤This does not mean, however that the photon is a fermion with spin s = 1/2. A more careful study
shows that photons are bosons with spin s = 1, and the reason why the spin can only be ±1 and not 0 is
that for massless particles, the momentum ~p can never be ~0 since their speed must remain equal to c no
matter the reference frame chosen. Choosing ~p as the quantification axis, the only two possible states are
therefore ± s~ for the projected value of the spin along this axis. These correspond to the left and right
circular polarization of the corresponding electro-magnetic wave.

††Note that we naturally excluded the classical mode ~k = ~0 in this quantification.
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then be expected to depend on the nature of the walls. However, this does not happen:
the structure of the walls is sufficiently rich that all frequencies are coupled to the
thermostat (vibration of atoms, impurities, defects, etc ...). So at equilibrium, the
number of photons of a given frequency solely depends on the temperature T of the
thermostat.

The coupling thus described looks similar to what happens with paramagnets or molecules:
the photons exchange energy with the thermostat to reach thermal equilibrium and the
total energy is conserved in these exchanges. However, the fundamental difference with
these other systems is that the interaction between matter and radiation occurs through
the absorption or emission of photons, so that their total number does not remain constant.
This is not a situation where the number of particles can fluctuate by exchanging some with
a reservoir, so that the total number of particles (gas + reservoir) remains constant either.
This is a completely different physical problem in which the total number of particles is not

conserved.

11.3.2 Photon distribution function

So how do we resolve this issue? In the same way you derived the Bose-Einstein statistics,
but realizing that the constraint of fixed mean number of particles does not apply, so that
the Lagrange multiplier ��µ, or equivalently the chemical potential of the photons, µ (since
�� = �1/(kBT ) is fixed), must be nil

‡‡. This immediately yields the following mean
occupation number of a single-particle state i for photons:

n̄i =
1

exp
�
✏i/(kBT )

�
� 1

(11.3)

R • ✏i = 0 is naturally excluded as it corresponds to ~k = ~0, which, as we have seen, is
impossible for photons. So the divergence of n̄i when ✏i ! 0 is irrelevant.
• Bose-Einstein condensation cannot happen for photons: one cannot fix the total
number of particles, it is µ which stays constant instead!

‡‡In other words, the grand canonical ensemble is the natural choice here as the number of particles
varies, but the mean number of particles, N̄ , is not constrained, so its associated Lagrange multiplier must
be nil.



12. Blackbody radiation laws

12.1 Planck’s law

This is the fundamental law from which one can deduce all the others. It concerns the
spectral electro-magnetic energy density u(!, T ) of the blackbody. Max Planck discovered
it empirically before demonstrating it from the notion of quantification⇤.

Within a cavity of macroscopic volume V as defined in the previous chapter, individual
possible energies for photons can practically be considered as continuous, and when thermal
equilibrium with the thermostat at temperature T is reached, the mean occupation number
n̄ of an individual state with energy ✏

† thus reads:

n̄(✏, T ) =
1

exp
�
✏/(kBT )

�
� 1

(12.1)

Assume that the system considered is sufficiently large so that one can neglect fluctuations
(i.e. we are in the thermodynamical limit). The number of photons dN(✏, T ) which have
individual energy in the range [✏, ✏+ d✏] at temperature T is obtained by multiplying the
number of photons occupying each of the individual states (12.1) by the number of such
states, g(✏) d✏:

dN(✏, T ) = n̄(✏, T )g(✏) d✏ (12.2)

As each of them has energy ✏ (with error d✏), plugging in equation (11.2) for g(✏), the total
energy dU(✏, T ) of this system of photons is:

dU(✏, T ) = ✏ dN(✏, T ) =
✏

exp
�
✏/(kBT )

�
� 1

✓
V ✏

2

⇡2~3c3

◆
d✏ (12.3)

and since ✏ = ~! for a photon, we get dU(✏, T ) = V u(!, T ) d!, with
⇤We will discuss more in detail later in this chapter why the mathematical form of u for the blackbody

contradicts the classical theory of electromagnetism.
†Note that we have dropped the subscripts i for n̄ and ✏ in equation (11.3) in order to simplify notation.
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Law 8 — Planck’s law.

u(!, T ) =
~!3

⇡2c3

1

exp
�
~!/(kBT )

�
� 1

(12.4)

R The Planck law is only valid in the case where the radiation is in thermal equilibrium
with a thermostat. This constitute an important restriction, as in practice most
emission/absorption of photons takes place out of equilibrium. Arguably the most
common example is lighting by an electric lamp which irreversibly transforms electric
energy into radiation.

12.2 How does it look like?

Let us draw u as a function of ! for a fixed T . As usual, we identify the function main
features (asymptotic behaviour, extrema) to do so:

• At low frequencies, when ~! ⌧ kBT , we can expand the exponential term to obtain
u(!, T ) ' kBT!

2
/(⇡2

c
3), which is called the Rayleigh-Jeans formula. So the spectral

energy density is a parabola when ! ! 0.
• At high frequencies, when ~! � kBT , we get u(!, T ) ' ~!3 exp

�
�~!/(kBT )

�
/(⇡2

c
3),

which is the so-called Wien’s law. So the spectral energy density decreases exponen-
tially when ! ! +1.

• The maximum of u, !max, can be derived from the calculation of the logarithmic
derivative u

�1(@u/@!)T , which yields a simple transcendental equation which one
can easily solve numerically. We leave it as an exercise to show that this procedure
yields to Wien’s displacement law !max = 2.821 kBT/~, where the maximum angular
frequency is proportional to the temperature, T .

These considerations lead to the graph below (Fig. 12.1).
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Figure 12.1: Planck’s law (equation (12.4)) plot for several temperatures: 3000K in blue,
4000K in orange, 5000K in green and 6000K (approximate temperature of the Sun surface)
in red. The band shaded in light purple indicates the visible light frequency range.

R • While the peak in frequency, !max shifts to higher frequencies proportionally to T

as T increases, the total energy (area under the u curve in Fig. 12.1) grows like T
4.

• Also note that the number of photons N(!, T ) has a similar shape to u(!, T ) with
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only the power law index of ! reduced by one. This means that the photon number
increases dramatically with T !

12.3 Why classical theory fails

In the classical wave theory of electro-magnetism, each of the eigenmodes of the cavity
behaves like a simple harmonic oscillator with the same angular frequency. Indeed, taking
the curl of Maxwell’s curl equations for the electric and magnetic fields and eliminating ~B

from the equation for ~E yields the standard wave equation:

r
2 ~E(~r, t)�

1

c2

@
2 ~E(~r, t)

@t2
= ~0 (12.5)

As previously discussed, we can write the electric field as a linear combination of all the
eigenmodes of the cavity, which upon explicitly separating the time and spatial dependence
of the progressive monochromatic plane waves reads‡:

~E(~r, t) =
X

~k,�

A~k,�
(t) ~E~k,�

(~r)

Injecting this in the wave equation (12.5) gives:

X

~k,�

 
d2A~k,�

(t)

dt2
+ c

2
k
2
A~k,�

(t)

!
~E~k,�

(~r) = ~0 (12.6)

where the term in between brackets must vanish for each combination of (~k,�) in order for a
non-nil ~E to obey Maxwell’s equations. This term has the well-known form of a sum of one
dimensional simple harmonic oscillators, and we know from the classical equipartition of
energy theorem (see 9.1.1) that when they are in contact with a thermostat at temperature
T , the mean energy of each one of these is kBT . So classical theory predicts a spectral
energy density, using the spectral density of eigenmodes (11.1):

uclass(!, T ) = kBTg(!)/V = kBT!
2
/(⇡2

c
3) (12.7)

which dramatically fails to reproduce Wien’s experimental results (high frequency exponen-
tial decrease and maximum which shifts linearly with temperature). Furthermore, upon
integrating uclass(!, T ) over the whole range of frequency ! 2 [0,+1[, one finds that the
total energy density uclass(T ) diverges! This is the so-called “ultra-violet” catastrophe as
the energy divergence comes from short wavelengths, i.e. large !.

12.4 Thermodynamical quantities

12.4.1 Total energy: towards Stefan-Boltzmann’s law

On the other hand, integrating equation (12.4) over the entire range of possible frequencies
! 2 [0,+1[ and multiplying by the volume, V , one obtains the total energy

U(T, V ) =
V ~
⇡2c3

Z +1

0

!
3

exp
�
~!/(kBT )

�
� 1

d! (12.8)

‡The summation over � includes the possible different polarization states.



98 Chapter 12. Blackbody radiation laws

which, contrary to the classical result, does converge§! Let us calculate it. A change of
variable x = ~!/(kBT ) gives

U(T, V ) =
V ~
⇡2c3

✓
kBT

~

◆4 Z +1

0

x
3

exp(x)� 1
dx

| {z }

=
V ~
⇡2c3

✓
kBT

~

◆4
⇡
4

15
(12.9)

as the integral in the first equality is a known combination of Gamma functions which
equals to ⇡

4
/15. So we finally get:

U(T, V ) = V u(T ) = V
⇡
2
k
4
B

15 ~3c3T
4
⌘ aV T

4 (12.10)

where the constant a = ⇡
2
k
4
B
/(15 ~3c3) is not the Stefan-Boltzmann constant, �, which

appears in front of the power emitted per unit surface rather than the energy. We will
derive it in the next chapter. However, the scaling of the total energy in T

4 is identical to
that of the power emitted per unit surface, which hints that Stefan-Boltzmann’s law, as we
will see later, is a consequence of Planck’s.

12.4.2 Grand potential, pressure and entropy

The grand potential of the photon system, by definition is:

� = �kBT

X

i

ln(1 + n̄i)

= �kBT

Z +1

0
g(✏) ln(1 + n̄(✏, T )) d✏

= �kBT
V

⇡2~3c3

Z +1

0
✏
2 ln

 
1 +

1

exp
�
✏/(kBT )

�
� 1

!
d✏

= �
V

⇡2~3c3

Z +1

0

✏
3

3

1

exp
�
✏/(kBT )

�
� 1

d✏

= �
1

3
U(T, V ) (12.11)

where the intermediate step of calculating the integral over the logarithm function is
performed using an integration by parts. This naturally yields the equation of state of the

§Strictly speaking, we are faced with a consistency problem: we should be able to derive the total
energy of the photon gas from a purely quantised point of view, rather than the semi-classical approach
we have followed in these notes. In other words, we should be able to use the average energy of a simple
quantum harmonic oscillator (equation (9.8) divided by N and with U

(1D)
0 = 0), representing a particular

field eigenmode, to write:

U(T, V ) =

Z +1

0

g(!)

 
~!
2

+
~!

exp
�
~!/(kBT )

�
� 1

!
d! =

V

⇡2c3

Z +1

0

 
~!3

2
+

~!3

exp
�
~!/(kBT )

�
� 1

!
d!

However, whilst the second term in the integral does yield the same result as equation (12.8) there also
appears a first term ~!3

/2 which diverges when integrated over the whole range of possible ! values. This
term arises because the energy of the fundamental level of a quantum harmonic oscillator is not zero (as can
be seen by setting the quantum number n, interpreted here as the number of photons in the field eigenmode
(earlier defined as N!), to n = 0 in equation (9.4)). This energy of the quantised electro-magnetic field
which is present even in the absence of photons is referred to as vacuum energy or zero-point energy and
(more or less) happily renormalised away, but this is another (long and very involved) story!
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photon gas by calculating the pressure:

p = �

✓
@�

@V

◆

T

=
1

3
u(T ) (12.12)

which is the classical radiation pressure traditionally derived for isotropic radiation.

R • As µ = 0 for the photon gas, there are only two variables, T & V .
• As the number of photons N is not fixed, the equation of state cannot be a function
of the volume because V is the only extensive variable left! So this “extensiveness”
cannot be compensated to make the pressure intensive, as is the case for an ideal
gas where one can multiply by N to get the intensive factor N/V in front of the
temperature dependence. As a consequence, the photon gas pressure is a function of
temperature alone.

As for the entropy, we have

S = �

✓
@�

@T

◆

V

=
4

3

U(T, V )

T
(12.13)

which goes to zero when T ! 0 in the same way that fermions and massive bosons do.





13. Absorption & emission of radiation

Experiment shows that a sufficiently heated body emits light, e.g. the filament of a lamp,
hot iron etc ... This thermal radiation emission is the subject of this section and we will
show that it is intrinsically linked to the ability of the body to absorb radiation externally
emitted.

13.1 Definitions

Let the power radiated by an infinitesimal surface element dS, centred on point M of a
body B, in an infinitesimal solid angle d⌦ around the direction defined by unit vector k̂

and in an infinitesimal band of angular frequency [!,! + d!] be:

dP ⌘ ⌘(!, k̂,M, T ) d! d⌦ dS (13.1)

This relation defines the emissivity, ⌘, of the body B. It has the dimension of an energy
per unit surface [J m�2] and depends on the nature of the body B, the point M chosen
on its surface, the temperature T at which the body is heated, the angular frequency !

at which the emitted radiation is observed as well as the direction k̂ along which this
latter propagates⇤. If we call # and ' (0  #  ⇡ ; 0  '  2⇡) the angles which mark
the direction of k̂ with respect to the normal to dS in M and an axis perpendicular to
this normal which serves as origin for ', we then have, as usual for a spherical coordinate
system, d⌦ = sin# d# d'.

Suppose now that B receives electro-magnetic radiation emitted by external sources.
By analogy with what we just did for emission, let us write the power received at the same
point M by the same surface element dS, but in the angular frequency range [!0

,!
0 + d!0]

and which arrives within the solid angle d⌦0 around the direction defined by the unit vector
k̂
0 as:

dP ⌘ $(!0
, k̂

0
,M) d!0 d⌦0 dS (13.2)

⇤To be complete, in some cases it also depends on the polarization state of the emitted radiation, but
we will neglect this in these lectures.
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Quite clearly, the quantity $ has the same dimension as the emissivity ⌘. In the most
general case, part of this power dP is absorbed by B, and the rest is sent back, whether by
reflection or diffusion†. We then define the absorptivity, ↵ of the body B at point M as
the fraction of the received power that is absorbed. This is a dimensionless number that
depends on the nature of the body B, the point M chosen on its surface, the temperature
T at which the body is heated, but also on the angular frequency !

0 and the direction k̂
0 of

the incident radiation. In other words, ↵ = ↵(!0
, k̂

0
,M, T ).

13.2 The case of the blackbody

We (would like to) call “blackbody” , a body B whose absorptivity verifies:

↵(!0
, k̂

0
,M, T ) = 1 , 8(!0

, k̂
0)

That is to say, a blackbody is a body which absorbs all the power of the incident radiation
it receives at point M , regardless of its wavelength and direction. It is called that way
because if you illuminate it with any radiation, it does not reflect or diffuse any component
of this radiation, which makes it look black.

R • It is possible for a body to be a blackbody only in a certain range of temperature.
• As we have already seen, a black body emits radiation, so it will only appear black
to the eye if its temperature is not too high, because in that case its emission at visible
wavelengths is negligible. If you shine visible light on it, it will absorb it entirely and
therefore does not send back any colour!

Figure 13.1: Schematics of the closest practical realisation of a true blackbody. A light ray
(red line with arrows) is trapped inside a spherical cavity.

A surface plastered with soot is an approximative blackbody (at least for radiation at
visible and near-visible wavelengths), but the practical realisation that is closest to a true

†We assume that B is sufficiently thick and opaque that no radiation can go through it.
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blackbody consists in poking a small hole in a closed container (see Fig. 13.1). Indeed, any
radiation directed towards this hole under any angle will be trapped in the cavity with
almost no chance of coming out of it. It is because we always refer to this prototype that
we say the blackbody.

R • The link with the previous chapter definition of the blackbody as a gas of photons
in thermal equilibrium in a cavity should be straightforward: if you poke a hole in
the said cavity, you find yourself in the same situation as in Fig. 13.1!
• Sometimes you will hear people talk about “white body” for a body with ↵ = 0, or
“grey body” for intermediate cases.

13.3 Kirschoff’s law

13.3.1 Statistical equilibrium

Let us put a body B in thermal equilibrium with a photon gas at temperature T , i.e. let us
place B in a closed container in contact with a thermostat at temperature T and wait for
the equilibrium to be established. In such an equilibrium situation, the total power emitted
and absorbed by B are equal.

Having picked a unit vector k̂, we consider the radiation emitted in that direction and
the radiation received in the same direction, i.e. along a unit vector �k̂, to mathematically
write this equilibrium condition as:

Z h
⌘(!, k̂,M, T )� ↵(!,�k̂,M, T )$(!,�k̂,M, T )

i
d! d⌦ dS = 0 (13.3)

However, this cancellation is not only global, it must also happen locally at each point of
B and for each ! and k̂. Indeed, should there exist a contribution (⌘ � ↵$) > 0 over a
small domain �1(!,#,',M) of the body B, it should then be compensated by a negative
contribution on another domain �2(!0

,#
0
,'

0
,M

0) since the integral must vanish. As we can
change ⌘ and ↵ for �2 without altering �1, by e.g. sticking a piece of opaque screen on
the surface element dS2 to prevent exchanges between this surface element and the gas of
photons in the container, this would destroy the global cancellation without affecting the
equilibrium between B and the radiation. We must therefore conclude that:

⌘(!, k̂,M, T ) = ↵(!,�k̂,M, T )$(!,�k̂,M, T ) (13.4)

Now we can calculate $(!,�k̂,M, T ) in this situation, because we know that the photon
gas at equilibrium must follow the Planck law derived in the previous chapter! The number
of photons dN(~k0, T ) with wave vectors in the range [~k0, ~k0+d~k0] at temperature T therefore
is:

dN(~k0, T ) = 2
V

(2⇡)3
d3k0

exp
�
~!0/(kBT )

�
� 1

(13.5)

All these photons have a speed c in the direction ~k0 and an energy ~!0 = ~ck0. Those which
hit the surface element, dS, of B, centred at M , during the time interval [t, t + dt], are
contained in a cylinder of base dS and axis of length c dt parallel to ~k0. This allows us to
write the energy received by dS during dt as:

$(!0
, k̂0,M, T ) dt dS d⌦0 d!0 = ~!0 dN(~k0, T )

c cos# dt dS

V
(13.6)

where # is the angle between �~k0 and the normal to dS at M (see Fig. 13.2).
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Figure 13.2: Geometrical view of photons in the cavity hitting the body B.

Given that d3k0 = k
02dk0 d⌦0 = !

02
/c

3d!0 d⌦0, we can inject equation (13.5) into (13.6) to
get:

$(!0
, k̂0,M, T ) =

~!03

4⇡3c2

cos#

exp
�
~!0/(kBT )

�
� 1

=
c

4⇡
u(!0

, T ) cos# (13.7)

where, as expected, the spectral energy density of Planck’s law, u(!0
, T ), given by equation

(12.4), appears. Going back to our cancellation equation (13.4), we are thus able to
derive:

Law 9 — Kirschoff’s law.

⌘(!, k̂,M, T )

↵(!,�k̂,M, T )
=

c

4⇡
u(!, T ) cos# (13.8)

R • The left hand side term in Kirschoff’s law only involves intrinsic properties of
the body studied, i.e., both ⌘ and ↵ are independent of the conditions in which B

is placed: they remain the same even when the body emits/absorbs radiation in a
non-equilibrium situation!
• The right hand side term, on the contrary, is a universal function of T , ! and
direction only.

In other words, Kirschoff’s law states that the ratio between emissivity and absorptivity is
independent of the body considered and of the point chosen on its surface. Another way to
state this is that “good absorbers are good emitters” and vice-versa.

13.3.2 Application to the blackbody: Stefan-Boltzmann’s law

In the case of the blackbody, as we have seen, the absorptivity is by definition ↵B(!,�k̂,M, T ) =
1 and so its emissivity, ⌘B(!, k̂,M, T ) = c/(4⇡)u(!, T ) cos# , is independent of its nature.



13.3 Kirschoff’s law 105

It thus serves as a reference, as it is simply proportional to cos#, where # is the angle
between the direction of observation and the normal to the surface of the blackbody. This
dependence on direction is referred to as Lambert’s law. Integrating over all directions we
obtain the power emitted in the angular frequency band [!,! + d!] by the surface element
dS:

PB(!, T ) d! dS = d! dS

Z
⌘B(!, k̂,M, T ) d⌦

= d! dS
c

4⇡
u(!, T )

Z 2⇡

0
d'

Z
⇡/2

0
cos# sin# d# (13.9)

where the last integral over # only goes to ⇡/2 because radiation is only emitted outside
of the body. We thus deduce that PB(!, T ) = cu(!, T )/4. That is to say, a measure of
the power emitted per unit surface of the blackbody directly yields the energy density of a
photon gas in thermal equilibrium! This explains why Planck’s law, initially destined to
describe blackbody radiation, was deduced from the properties of the photon gas.

Finally, the total power per unit surface of the blackbody obeys:

Law 10 — Stefan-Boltzmann’s law.

PB(T ) =

Z +1

0
PB(!, T ) d! =

⇡
2
k
4

60c2~3T
4
⌘ �T

4 (13.10)

where � is called Stefan-Boltzmann’s constant.
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14. Statistical study of a fluid

In a gas, the potential energy of interactions between molecules is small compared to their
kinetic energy. At high temperatures and low densities, the regime where the ideal gas
approximation is valid, it is even negligible. However as the temperature decreases and/or
the density increases the contribution of the interaction energy to the total energy becomes
more important and the properties of the gas start to deviate from that of an ideal gas.
Finally, when the interaction energy becomes comparable to the kinetic energy, the gas
condenses and becomes a liquid.

The Van der Waals model allows to understand this transition from gas to liquid, even
though it relies on a rather crude mean field theory and should only be expected to yield
qualitative results. This is because it possesses the necessary properties to describe the
physical phenomena at play in real gases and liquid-gas phase transitions.

14.1 General case

Consider a mono-atomic⇤ fluid made of N o 1 identical particles of mass m, contained
in a recipient of volume V and kept at temperature T . We can calculate the macroscopic
properties of this system using classical mechanics and the partition function:

Z =
1

N !

1

h3N

Z
· · ·

Z
d3p1 · · · d3pN d3r1 · · · d3rN exp

✓
�

H

kBT

◆
(14.1)

where

H =
1

2m

NX

i=1

~pi
2 + U(~r1, · · · , ~rN )

⇤Strictly speaking, the mono-atomic hypothesis is not necessary to derive the EOS of real gases but will
simplify our life considerably as it allows us to ignore the internal degrees of freedom and non-spherical
shape of molecules that we have previously discussed in the lectures devoted to the statistical mechanics of
simple systems.
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is the Hamiltonian of the system, complete with its kinetic (first term) and potential (second
term) energy parts. The integration over all momenta ~pi, i.e. the kinetic part of Z, is the
same as for the ideal gas, so

Z =
1

N !

✓
mkBT

2⇡~2

◆3N/2 Z
· · ·

Z
d3r1 · · · d3rN exp

✓
�
U(~r1, · · · , ~rN )

kBT

◆
(14.2)

i.e. when the potential energy U is negligible in front of kBT ,
R
· · ·
R
d3r1 · · · d3rN = V

N

and Z is the partition function of the ideal gas. If we want to do better and take into
account the interaction between gas particles, we thus have to determine U .

Suppose that the total interaction energy is the sum of the pairwise interaction energies
between particles†, u(k~ri � ~rjk), i.e. that

U(~r1, · · · , ~rN ) =
1

2

i 6=jX

i,j

u(k~ri � ~rjk)

where the 1/2 factor arises from the need not to double count the interaction energy between
particles i and j. Having made this approximation, we still have to determine u(r). In
principle one could calculate it from Quantum Mechanics, but in practice it is a very
difficult proposition, especially if the molecules involved are complex. However, one can
show that at large distances, r, the interaction energy between particles varies like r

�6,
which corresponds to an attractive “Van der Waals” force that scales like r

�7.

R The physical origin of these Van der Waals forces is the following: a charge fluctuation
in a molecule creates an electric dipole (or more generally multipole) which polarizes
a neighbouring molecule. In turn, the dipole (or multipole) induced on this second
molecule acts on the polarization of the first. Note that even though we talk about
large distances for r, these forces are short-range interactions between neighbouring
molecules.

At short distances (when r becomes of the order of the size of the molecules themselves),
the molecules exert intense repelling forces upon one another. Essentially this is because the
Pauli exclusion principle which rules their electrons prevent molecules from inter-penetrating.
This behaviour at short and large distances can be captured by a potential u(r) of the
shape given by Fig.14.1, which has two important characteristics: the position r0 of its
minimum, and the value at this minimum �u0 < 0. Their order of magnitude is ⇠ 1 Å for
r0 and a few 10�2 eV for u0 (i.e. a few 100 K for u0/kB).

Practically, one uses empirical analytic forms with the correct shape of u(r). Arguably
the most famous one, which we plot in Fig.14.1 is called the Lennard-Jones potential:

uLJ(r) = u0

⇣
r0

r

⌘12
� 2

⇣
r0

r

⌘6�
(14.3)

which has only two parameters, u0 and r0 and intercepts the x-axis (i.e. uLJ = 0) at
r1 = r0/21/6 ' 0.89 r0.

†Such an approximation may look natural enough to make, but the main interaction between molecules
is caused by the electron motion they induce within one another when they are close, so this could easily be
influenced by the presence of a third molecule in the vicinity. In other words, the approximation assumes
that three body interactions are weak which is fine for a gas but much less so for a liquid ...
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Figure 14.1: The Lennard-Jones potential describing the behaviour of the Van der Waals
forces between molecules in a real gas.

14.2 The Van der Waals model

Even with the approximation previously made for the interaction energy, evaluating the
volume integral present in the partition function of the system (equation (14.2)) is extremely
difficult. So we are going to use a still cruder approximation, albeit one that we have
already met before when discussing the statistical mechanics of solid crystals: the mean
field approximation.

14.2.1 Mean field approximation

Consider a given molecule. One can say that, at a zeroth order approximation, the
N � 1 o 1 other molecules which are almost uniformly distributed in the volume V , are
felt by this molecule, as an almost continuous cloud. Neglecting the perturbation of this
cloud caused by the presence and motion of the molecule, this latter will have a potential
energy ue↵(~r) which will depend only on its position and not on the positions of the other
N � 1 particles anymore. In other words, in this approximation, each particle moves in
a mean field created by all the other particles, and the system behaves as an ensemble
of independent particles, just as the vibrations of atoms in a crystal were turned into an
ensemble of independent oscillators.

The total potential energy of the system thus becomes a sum of terms‡, each of which
involves the coordinates of a single particle, i.e.

U(~r1, · · · , ~rN ) =
1

2

NX

i=1

ue↵(~ri)

and the partition function given by equation (14.2) becomes

Z =
1

N !

✓
mkBT

2⇡~2

◆3N/2 Z
d3r exp

✓
�
ue↵(~r)

2kBT

◆�
N

(14.4)

‡
ue↵(~r) is obtained by averaging

PN
i=2 u(k~r � ~rik) over the positions ~r2, · · · , ~rN of the N � 1 other

molecules, so u(k~ri � ~rjk) is present in both ue↵(~ri) and ue↵(~rj), hence the factor of 1/2 in the following
formula for U(~r1, · · · , ~rN ).
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14.2.2 Effective potential

The mean field approximation neglects the correlations between molecules, i.e. it considers
that the molecules are uniformly distributed in the recipient volume. In these conditions, the
effective potential ue↵(~r) = ue↵,0 ought to be constant over the entire volume V . However,
we have seen that this approximation breaks down when the distance between molecules
approaches the molecule size, r1 (see Fig.14.1). On these small distances, individual
molecules do not feel an average attractive force created by an homogeneous cloud, but a
very strong repulsive force from their immediate neighbour. To crudely account for this
effect, we will simply consider that a fraction V0/V of the recipient volume is forbidden
to any given molecule, due to the presence of the others. This allows us to calculate the
integral in the formula (14.4) as:

Z
d3r exp

✓
�
ue↵(~r)

2kBT

◆
= (V � V0) exp

✓
�

ue↵,0

2kBT

◆

Our task now boils down to evaluating the constants V0 and ue↵,0.
Let us start by the excluded volume, V0. The minimum allowed distance between two

particles is almost equal to r1, as the interaction potential is extremely steep at smaller
distances (for the Lennard-Jones potential it diverges in r

�12, see Fig.14.1). So when two
molecules approach one another, the volume forbidden to one of them due to the presence
of the other is 4⇡r31/3. As there are N(N � 1)/2 possible pairs of molecules, the total
volume excluded simply is N(N �1)/2⇥4⇡r31/3 ' 2⇡N2

r
3
1/3, if we assume that V0 ⌧ V so

that the spheres of exclusion of any pair of molecules almost never intersect. The excluded
volume per particle, is therefore V0 = 2⇡r31/3⇥N ⌘ bN , i.e. V0 is proportional to N , with
a proportionality constant, b, which only depends on the nature of the gas and is of the
order of four times the proper volume, v0 ⌘ 4⇡/3⇥ (r1/2)3, of a molecule.

Let us now turn to ue↵,0 and take for origin of our coordinate system the position of
a given particle. As previously mentioned, the others are uniformly distributed in space,
except that they cannot get closer to the origin than r1. The number n(~r) d3r of particles
contained in an infinitesimal volume d3r around ~r is therefore:

n(~r) =

(
0 if r < r1
N�1
V�V0

'
N

V
if r > r1

The potential energy of the particle located at the origin of the coordinate system is thus:

ue↵,0 =

Z
u(~r)n(~r) d3r =

N

V

Z +1

r1

4⇡r2u(r) dr

with u(r) < 0 over the entire integration domain (see Fig. 14.1). In other words, ue↵,0 < 0
and independent of ~r, as expected. An order of magnitude for ue↵,0 is the number of
particles times the minimal value of the potential between two particles, N ⇥ (�u0), times
the ratio of the interaction volume

§ and the total volume, V . This ratio is of the order of
a few v0/V where “few” depends on the exact model used for u(r). In a general manner,
one therefore writes ue↵,0 = �2aN/V where a > 0 is a constant of order a few u0v0 which
depends on the nature of the fluid.

R The important point in this calculation is that u(r)
r!1
���! 0 fast enough forR

4⇡r2u(r) dr to converge. This is obviously true for Van der Waals forces, where
u(r) / r

�6 at large distances, but not for charged particles where u(r) / r
�1.

§This is the volume of a sphere whose radius is equal to the range of the potential u(r).
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Exercise 14.1 Calculate ue↵,0, a and b as a function of u0 and v0 in the specific case of
the Lennard-Jones potential given by equation (14.3).
Ans: ue↵,0 = �64Nu0v0/(3V ), a = 32u0v0/3 and b = 4v0. ⌅

Plugging the general expressions obtained for V0 and ue↵,0 in the formula (14.4) for the
partition function we finally obtain

Z =
V

N

N !

✓
mkBT

2⇡~2

◆3N/2 ✓
1�

bN

V

◆
exp

✓
aN

kBTV

◆�
N

(14.5)

which is the partition function of the system in the Van der Waals approximation. Note
that is is equal to the partition function of the ideal gas, multiplied by a corrective term
(in between square brackets and raised to the power N).

14.3 Thermodynamical quantities

Now that we have derived the partition function of the system in the Van der Waals
approximation, we can use it to obtain thermodynamical quantities of interest, and in
particular the famous Van der Waals equation of state. We therefore start with the
calculation of the Helmholtz free energy of the system, F , as we know this is the one which
provides the most direct route to the EOS. We have, using expression (14.5) for Z and
Stirling’s formula:

F = �kBT lnZ

= �NkBT


3

2
ln

✓
mkBT

2⇡~2

◆
+ 1

�
�NkBT ln

✓
V � bN

N

◆
�

aN
2

V
(14.6)

where the first term on the right hand side and the �NkBT ln(V/N) part of the second
term combine to give the Helmholtz free energy of a mono-atomic ideal gas, and the �bN

part of the second term and the third term are Van der Waals corrections. Note that, as
required, F is extensive, F/N only depends on the ratio N/V , not on N and V separately.

To get the EOS, we then calculate the system pressure:

p = �

✓
@F

@V

◆

T,N

=
NkBT

V � bN
�

aN
2

V 2

which is known as the Van der Waals equation of state, and more commonly written as:
✓
p+

aN
2

V 2

◆
(V � bN) = NkBT (14.7)

Once again this EOS is similar to that of the ideal gas, with a smaller volume available
(V � bN) instead of V to account for the finite size of the molecules, and a reduced pressure
(by an amount aN

2
/V

2) because of the attraction between molecules at large distances.
The internal energy, is

U = �
@ lnZ

@�
=

3

2
NkBT �

aN
2

V
(14.8)

which is, once again, the internal energy of a mono-atomic ideal gas with a correction term
(second term on the right hand side) that accounts for the potential energy of the particles
in a real gas (N ⇥ ue↵,0/2). On the other hand, the heat capacity at constant volume,
CV = (@U/@T )V,N = 3NkB/2, is the same as that of an ideal gas.
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R • Note that the second term in the internal energy for a Van der Waals gas depends
on V and not on T . It is therefore not correct to say that the internal energy of a
real gas is a function of T alone, this statement only applies to ideal gases.
• What is true for CV , i.e. it is the same for a Van der Waals gas than for an ideal
gas, is not true for Cp (see exercise 14.2)

Exercise 14.2 Calculate Cp for a Van der Waals gas as the sum of Cp for a mono-atomic
ideal gas and a corrective term which is a function of T and V .
Ans: Cp = 5NkB/2 + 2aN2

kB(V � bN)2/(kBTV 3
� 2aN(V � bN)2). ⌅

The entropy of the gas reads:

S = �

✓
@F

@T

◆

V,N

= NkB


3

2
ln

✓
mkBT

2⇡~2

◆
+

5

2

�
+NkB ln

✓
V � bN

N

◆
(14.9)

which can also be split into the entropy of a classical ideal gas with a correction, �bN in
the second right hand side term, which accounts for the reduced volume due to the finite
size of the particles. In order words, the entropy of a Van der Waals gas is smaller than
that of an ideal gas because the volume really accessible to the particles is smaller.

Finally, the chemical potential of the Van der Waals gas can be calculated from:

µ =

✓
@F

@N

◆

V,T

= �kBT


3

2
ln

✓
mkBT

2⇡~2

◆
+ 1

�
� kBT ln

✓
V � bN

N

◆
+

kBTV

V � bN
�

2aN

V

(14.10)

which differs from that of an ideal gas by the �bN part in the second and third terms on
the right hand side, as well as the presence of the last term. We can easily rewrite this
expression for µ as:

µ =
F

N
+

kBTV

V � bN
�

aN

V
=

1

N
(F + pV ) ⌘

G

N
(14.11)

where we have used the equation of state (14.7) to obtain the last equality, and ultimately
the definition of the Gibbs free energy, G. This relation between µ and G is a general result
for a fluid characterised by three external parameters, i.e. it holds for real and ideal gases.



15. Gas-liquid phase transition

Even though the Van der Waals model for real gases derived in the previous chapter
involves rather crude approximations, it still proves very useful as it contains the basic
physical ingredients necessary to understand the phase transition between liquid and vapour
observed to take place in real fluids. This will be the subject of this chapter.

15.1 Van der Waals isotherms

Isotherms for an ideal gas are monotonic hyperbolae. That is to say, for a given value of T ,
p / 1/V . Van der Waals isotherms generally have a similar shape, except that for some
values of T , the extra terms contributing to the pressure and volume become significant
and extrema appear. Indeed, differentiating the Van der Waals equation of state (14.7),
one obtains:

✓
@p

@V

◆

T,N

= �
NkBT

(V � bN)2
+ 2a

N
2

V 3
(15.1)

This expression is equal to zero when:

V � bN =

✓
kBT

2aN

◆1/2

V
3/2 (15.2)

Plotting both left-hand (y0 = V � bN) and right-hand (yi =
p
kBTi/(2aN)V 3/2, with

i 2 N+ and T1 < T2 < · · · < Tn) side terms of the previous equation onto a single graph in
Fig.15.1 for various temperatures Ti, one realises that either these two curves intersect in
two places (at low temperatures), or not at all (high temperatures). Moreover, from the
same figure, it is quite clear that there must exist a critical temperature, Ti ⌘ Tc, for which
the two curves are tangent to one another, i.e.

✓
@y0

@V

◆

T,N

=

✓
@yi

@V

◆

Ti,N

, 1 =

✓
9kBTc

8aN

◆1/2

V
1/2 (15.3)
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Figure 15.1: Graphical solution of equation (15.2). The cyan solid line represents y0 =
V � bN whereas the orange curve indicates y2 = yc, for which T2 = Tc and y0 is a tangent
in Vc. y1 (green curve) and y3 (red curve) correspond to temperatures T1 = 3Tc/4 and
T3 = 3Tc/2 respectively lower and higher than Tc. Note that the only curves to intersect y0
twice are those with Ti < Tc.

This yields an expression for the critical volume, Vc = 8aN/(9kBTc), which, when
injected into y0 = yi at the point of tangency gives Tc = 8a/(27kBb), and thus Vc = 3bN .
Finally, plugging these expressions into the Van der Waals equation of state, one obtains
the critical pressure, pc = a/(27b2). Also note that (@p/@V )T,N is always negative (the first
term in equation (15.1) always dominates), except between the two extrema when they
exist, and that these extrema are located further and further apart as the temperature of
the isotherm decreases. All these considerations lead to the isotherms for a Van der Waals
gas plotted on Fig. 15.2.

Let us pick a specific isotherm with temperature T . For high values of the volume V ,
pressure is a slowly decreasing function of V which corresponds to a high compressibility (a
small increase of pressure changes the volume considerably) typical of a gas. On the other
hand, for low values of V the pressure is a rapidly decreasing function of V . In other words,
one needs a large change of pressure to reduce the volume by a small amount so the fluid is
almost incompressible: it is a liquid.

R In this latter domain (small values of V ) the Van der Waals approximation is poorly
justified, but it qualitatively captures the behaviour of the liquid because it takes into
account the main characteristic of the interaction between molecules, namely that
their potential energy becomes comparable to their kinetic energy.

For intermediate values of V ⇠ Vc things are more complicated. Looking at the isotherm
graph (Fig.15.2) there clearly exist two domains of temperature:

• At high temperature (T > Tc), p remains a decreasing function of V for all values
of the volume. When one follows such an isotherm, i.e. when one increases V at
constant T , one continuously moves from a weak compressibility regime (liquid) to
a high compressibility regime (gas). The system remains homogeneous during the
transformation, and we call the fluid supercritical.

• At low temperature (T < Tc), there exists a range of values of V where (@p/@V )T,N >

0, i.e. a range of negative compressibility. This means that the system becomes
unstable in these conditions (the fluid wants to expand as one compresses it) and the
isotherm cannot be an equilibrium state for the fluid. A more detailed analysis of
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Figure 15.2: Examples of Van der Waals isotherms in the three different temperature
regimes, T3(= 3Tc/2) > Tc (red curve), T2 = Tc (orange curve) and T1(= 3Tc/4) < Tc

(green curve). Note that the green curve intersects the x�axis, p = 0, at Vc/2 and Vc, and
possesses both a minimum and a maximum, as indicated on the figure. The horizontal blue
line corresponds to the equilibrium pressure of the system when it splits into two phases,
liquid and gas (see example 15.2 for detail on how it is calculated).

what happens to the system is required and we will devote the rest of this chapter to
it.

R For low enough values of the temperature (e.g. Ti = 3/4Tc in Fig.15.2), p itself
becomes negative, a sure sign that everything is going to hell in a handbasket!

The isotherm corresponding to Ti = Tc, which separates the two temperature domains
previously described is called the critical isotherm. The ratio pcVc/(NkBTc), sometimes
called “compression factor at the critical point”, is a dimensionless quantity and is indepen-
dent of the parameters a and b used in the Van der Waals approximation, i.e. it has the
same value for all fluids (pcVc/(NkBTc) = 3/8 = 0.375). Typical experimental values for
real fluids show that this is indeed the case, but with values closer to 0.3, and even lower
for so-called polar fluids like water.

⌅ Example 15.1 — Experimental values for real fluids. Helium (He) has Tc = 5.2 K, Vc =
57.8 cm3mol�1, pc = 2.26 atm and pcVc/(NkBTc) = 0.3; Nitrogen (N2) has Tc = 126.1 K,
Vc = 90.1 cm3mol�1, pc = 33.5 atm and pcVc/(NkBTc) = 0.29; Water (H2O) has Tc = 647.4
K, Vc = 56.3 cm3mol�1, pc = 218.3 atm and pcVc/(NkBTc) = 0.23. ⌅

R Another approximation than Van der Waals for real gases, the Dietericci approximation
that you will encounter in one of the problem sheets, yields a value of this ratio of
0.29, in better agreement with the experimental measures.

15.2 The law of corresponding states

This property of the compression factor at the critical point lead us to go further and define
reduced coordinates as the following dimensionless quantities: T̃ ⌘ T/Tc, Ṽ ⌘ V/Vc and
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p̃ ⌘ p/pc. We can then rewrite the Van der Waals equation of state as:

✓
p̃+

3

Ṽ 2

◆⇣
3Ṽ � 1

⌘
= 8T̃ (15.4)

This reduced equation is independent of the Van der Waals parameters a and b, i.e. it is
the same for all Van der Waals fluids! One thus says that two different fluids (as in fluids
with different values of Tc, Vc and pc) verify the law of “corresponding states”. This means
that if we fix their T̃ and Ṽ at the same values, then their value for p̃ is also the same.

15.3 Helmholtz free energy

To gain some insight into the unstable region previously uncovered by looking at the Van
der Waals isotherms, let us examine how the Helmholtz free energy of the system, F , varies
as a function of V , at constant T .

R Although this is a natural choice since we have seen in the lecture on availability
that a system at fixed T and V will spontaneously evolve towards an equilibrium
for which F is a minimum, most other textbooks prefer to use the Gibbs free energy,
G, which is minimal for a system in equilibrium at fixed T and p, to discuss phase
transitions. As repeatedly mentioned in these lectures, F is more directly linked to
the equation of state of thermodynamical systems than G, so we will stick to it.

Speaking in general terms, as p must remain a positive quantity, (@F/@V )T,N = �p

should always be negative. In other words, at fixed T , F should be a decreasing function
of V . Furthermore, we expect this decrease to be fast at small V (high pressure) and
slow at large V (low pressure). As we have seen previously, when T > Tc, p itself, as
for an ideal gas, is everywhere a decreasing function of V , so that (@p/@V )T,N < 0 and
(@2

F/@V
2)T,N = �(@p/@V )T,N > 0. Mathematically, this last statement means that for F

to be a true, stable minimum for the system, F (V ) needs to be convex (i.e. at each point
V of F (V ), the tangent is below the curve).

Let us now consider the case of a Van der Waals isotherm with T < Tc (see Fig.15.2). We
realise that F (V ) will then present two inflection points (change of concavity) corresponding
to the two extrema of the isotherm, since (@p/@V )T,N — and thus (@2

F/@V
2)T,N — changes

sign at these extrema. Given that F is convex both at very small and very large V , it will
be concave between the extrema, and the stability condition (@p/@V )T,N < 0 will not be
satisfied. As a consequence, F (V ) as sketched in Fig.15.3 cannot represent the Helmholtz
free energy of a system in equilibrium in this volume range.

So what went wrong? Why can’t there exist an equilibrium solution for the system in
this volume range? Well, we have only considered homogeneous systems so far, and we know
that two fluid states (liquid and gas) exist separately from one another. So, in principle,
nothing prevents our system from spontaneously separating into two sub-systems, each of
them homogeneous, but corresponding to these two different macroscopic states. When
such a separation occurs, we say that the system is composed of two phases in equilibrium.

R Nothing guarantees a priori that the two phases can co-exist. We know from the
previous lectures on basic thermodynamics that two systems are in mechanical and
thermal equilibrium if they have the same pressure and temperature respectively, but
this is already the case here because the two phases are located on the same isotherm
and we consider a unique value of p on that isotherm. So we are left with only one
requirement, which arises because our two sub-systems can exchange particles: they
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Figure 15.3: Sketch of the Helmholtz free energy (green solid curve) corresponding to
the Van der Waals isotherm T = 3Tc/4 plotted in Fig.15.2. The blue line represents the
bi-tangent to F derived in equation (15.5), with Vliq and Vgas calculated in example 15.2.
The pink shaded region indicates the range of volume values where F is concave and
therefore cannot be the free energy of a system in equilibrium. This latter must split into
two phases and follow the bi-tangent instead.

must be in diffusive (also called “chemical” sometimes) equilibrium, i.e. their chemical
potential must be the same (µgas = µliq). We will prove this latter equality later
on, but for the moment note that the three equilibrium conditions involve intensive

variables.

How do we decide how many particles are in the liquid and gas phases? Well, we know
that at fixed T and V , the equilibrium state of a system must minimise the Helmholtz free
energy. This means that our two phase solution will only be preferred by the system if
its resulting Helmholtz free energy, which is the sum of the Helmholtz free energy of the
two phases (F is additive), is smaller than the Helmholtz free energy of the homogeneous
system. Pushing this argument a bit further, we conclude that of all possible separations in
two phases, the one with the lowest Helmholtz free energy will constitute the equilibrium
state of the system.

We now turn to the task of calculating this minimal Helmholtz free energy. Let us call
Fliq ⌘ F (Vliq, T,N), the Helmholtz free energy of the homogeneous system of N molecules at
temperature T when it is in the liquid phase, and Fgas ⌘ F (Vgas, T,N), the Helmholtz free
energy of the homogeneous system when it is in the gas phase. If we build a two phase system
with Nliq molecules in the liquid phase and Ngas = N �Nliq molecules in the gas phase, the
volume occupied by this system will simply be V2ph ⌘ V = Vliq ⇥Nliq/N + Vgas ⇥Ngas/N ,
and its Helmholtz free energy F2ph = Fliq⇥Nliq/N +Fgas⇥Ngas/N . Eliminating Nliq/N =
1�Ngas/N from this latter expression, we can rewrite F as:

F2ph = Fliq +
V � Vliq

Vgas � Vliq
⇥ (Fgas � Fliq) (15.5)

where V is a volume point located between Vliq and Vgas. This is the equation of the straight
line joining the points (Vliq, Fliq) and (Vgas, Fgas) in Fig.15.3.
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R When T > Tc, F2ph(V ) > F (V ), as F is always convex in that case. In other words,
the straight line (chord) F2ph(V ) is always above the curve F (V ) and the system
remains homogenous in a single phase over all the volume range since this corresponds
to a smaller F .

To obtain the values of Vliq and Vgas geometrically, i.e. to determine which of all the
possible straight lines F2ph follows, we require the equilibrium condition p(Vliq) = p(Vgas)
on the isotherm, that is to say we require that the pressure be the same for the two
homogeneous phases which mark the beginning and the end of the system phase transition.
This is a “natural limit” requirement since the two phases must constitute an equilibrium
for the system when they co-exist, no matter how many particles are in which phase.
Mathematically, this means that (@F/@V )T,N (Vliq) = (@F/@V )T,N (Vgas), i.e. F2ph(V ) must
be tangent to F (V ) at both volume values Vliq and Vgas.

⌅ Example 15.2 — Calculation of Vliq and Vgas for the Van der Waals isotherm T= 3/4 Tc.

For this isotherm, T = 2a/(9kBb). Together with p(Vliq) = p(Vgas), µ(Vliq) = µ(Vgas) yields
a system of transcendental equations, as can easily be seen from the expression of the
chemical potential in the Van der Waals model (equation 14.10). In general such a system
must be solved numerically, but one can assume Vgas � Vliq for this particular isotherm and
Vliq ⇡ 3bN/2⇤ to eliminate the Vliq terms and obtain a simplified transcendental equation:
� ln(X/2) + 7X � 4 = 0, which is accurate to first order in X ⌘ bN/Vgas. Solving this
equation yields Vgas ' 19bN � Vliq, as initially assumed. Plugging this value of Vgas into
the pressure equilibrium constraint, we get p(Vliq) = p(Vgas) ' a/(104b2), so that the Van
der Waals EOS turns into the following cubic equation for Vliq: V

3
liq � (217/9)bNV

2
liq +

104b2N2
Vliq�104b3N3 = 0, whose root Vliq ' 1.47bN is the one compatible with our initial

assumption for Vliq
†. ⌅

R Note that F2ph is also a function of the temperature T , both explicitly because of the
expressions of Fliq and Fgas we derived in the previous chapter (see equation 14.6) but
also implicitly as the values of Vliq and Vgas depend on the Van der Waals isotherm
considered.

⇤We know that for the two phases to be able to achieve pressure equilibrium, the exact value of Vliq must
be very close to that which cancels the pressure as p is a very steep function of V for a liquid, see Fig.15.2.

†Normally one would need to iterate the procedure, i.e. inject this new value of Vliq back into the diffuse
equilibrium constraint to get a new value of Vgas, and so on and so forth until convergence of both Vliq and
Vgas to a pre-defined level of accuracy is achieved, but our initial guess is already accurate to the level of a
few percent, so we stop here.
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15.4 Liquid-vapour equilibrium

Figure 15.4: Typical three dimensional phase diagram representing surfaces of equilibrium
of a pure substance which contracts upon freezing (contrary to e.g. water), borrowed
from J. Carstensen (University of Kiel). Bold numbers in between brackets indicate the
number of phases of the substance which co-exist in the region. Note that the liquid-vapour
co-existence curve which joins together all the values of Vliq(T ) and Vgas(T ) (and is labelled
‘saturated liquid line’ and ’saturated vapor line’ on the diagram) is not planar. The critical
point is denoted by the letter ‘K’. Note that even though the solid phase (and its interface
with the liquid and gas phases) is missing from our analysis because the Van der Waals
model is a poor one for solids, you can intuitively understand what is happening in the
different regions of the diagram. For instance, the ‘sublimation line’ and ‘sublimation
region’ where solid and vapour co-exist, the ‘melting line’ and ‘melting region’ where solid
and liquid co-exist and the ‘triple line’ (in green) where all three phases co-exist. Two
interesting isobaric paths are marked on the figure (A to F in red, and G to J in green). On
both of these paths you heat the system to go progressively from the pure solid to the pure
gas phase, following the arrows, and see how the (specific) volume of the system changes.
Notice that from B to C (in the ‘melting region’), even though you continue heating the
system, its temperature does not change: the heat simply converts the solid into a liquid,
and similarly from D to E in the ‘wet steam region’, heat turns the liquid into vapour. We
will come back to this concept of latent heat later in this chapter, but it should not surprise
you: if the two phases co-exist in thermal equilibrium, their temperature must stay the
same as long as they co-exist. The same reasoning applies on the ‘triple line’ (from H to
I), where the three phases co-exist in equilibrium. Note that the specific volume increases
sharply (discontinuity) when such phase transitions occur, but that otherwise it varies very
little (especially in the pure solid and liquid phases, from A to B or C to D or G to H).

Looking back at Fig.15.2, it is now easy to describe the behaviour of the system at
equilibrium for T < Tc. Let us consider an isotherm at temperature T below the critical
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temperature and increase the volume slowly enough so that the system goes through a
series of equilibrium states. As long as V < Vliq(T ), the system is an homogeneous liquid
phase. When V becomes greater than Vliq and until it reaches a value of Vgas, the system
splits into two phases: a liquid phase with the characteristics of an homogenous system
occupying a volume of Vliq/N per molecule, and a gaseous phase (also called vapour) with
the characteristics of an homogenous system occupying a volume of Vgas/N per molecule.
The number of particles in the liquid phase is Nliq = N(Vgas � V )/(Vgas � Vliq), and the
number of particles in the vapour phase is Ngas = N(V � Vliq)/(Vgas � Vliq).

R The ratio Nliq/Ngas = (Vgas�V )/(V�Vliq) can be read directly on the isotherm (Figure
15.2): the number of particles in a phase is inversely proportional to the distance
which separates the volume V of the system from the volume of the homogeneous
phase in question (Vliq or Vgas). This is the so-called “lever rule”.

The Helmholtz free energy of the system is then F2ph(V ), which is a linear function of V
(see equation (15.5)), so that the pressure p = �(@F2ph/@V )T,N is a constant as long as the
two phases are present. It is called the saturation vapour pressure, and is a function of T
only. In other words, between volumes Vliq and Vgas on Fig.15.2, the system does not follow
the green Van der Waals isotherm, but the horizontal blue segment. For V > Vgas(T ), the
system becomes homogeneous again, but in a gas phase this time around. Finally, as T

increases, the volumes Vliq and Vgas get closer together, until they superimpose at a value
of Vc for T = Tc. For temperatures above Tc, the distinction between liquid and vapour
does not make much sense anymore. All this information can be summarised in a three
dimensional phase diagram, an example of which is plotted in Fig.15.4.

As indicated by the front red arrow on Fig.15.4, the equilibrium surfaces of this three
dimensional phase diagram can be projected onto the (p, V ) plane that we have used to
study the Van der Waals isotherms.
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Figure 15.5: Two dimensional phase diagram representing projected surfaces of equilibrium
of the Van der Waals fluid onto the (p, V ) plane (corresponding to, from top to bottom,
isotherms with T = 1.5Tc (red), T = Tc (orange), T = 0.9Tc (blueish-green), T = 0.75Tc

(green) and T = 0.6Tc (blue)). Note the existence of meta-stable states of the system
sandwiched between the co-existence curve (solid black line) and the spinodial curve (dotted
black line) which links together all the pressure extrema of the Van der Waals isotherms
(see Fig. 15.2). We will discuss their meaning shortly.

Alternatively, one can project these surfaces onto the (p, T ) plane as indicated by the
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right hand side red arrow on Fig.15.4:
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Figure 15.6: Two dimensional phase diagram representing projected surfaces of equilibrium
of the Van der Waals fluid onto the (p, T ) plane. The solid blue curve which separates
the homogeneous liquid phase (blank region above the curve) from its gaseous counterpart
(blank region below the curve) is called the vaporization curve. The two phases only co-exist
along that curve, which is bounded by the critical point at the top, and the triple point at
the bottom. This latter is not represented on the diagram as it corresponds to the existence
of a solid phase at low T (see Fig.15.4), that the Van der Waals approximation fails to
account for. The shaded light blue region marks the domain where the distinction between
liquid and vapour makes little sense and one only talks about a Van der Waals fluid.

15.5 Characteristics of the transition

The liquid-vapour transition we have just studied presents three fundamental properties
which pertain to a whole class of phase transitions called first order phase transitions.

15.5.1 Co-existence of the two phases

If T < Tc, we have seen that the liquid and vapour phases co-exist in thermal and mechanical
equilibrium for all values of V between Vliq and Vgas. This means that if the vaporization (or
liquefaction) happens at fixed pressure (temperature), the temperature (pressure) remains
constant all along the process. We will now demonstrate that the associated thermodynamics
potential, namely the Gibbs free energy, G, stays constant as well during the process‡.
Indeed, during the co-existence regime, we have G2ph = F2ph + pV , where F2ph is given by
equation (15.5) and p = �(@F2ph/@V )T,N so that:

G2ph = Fliq +
V � Vliq

Vgas � Vliq
⇥ (Fgas � Fliq)� V

Fgas � Fliq

Vgas � Vliq

=
FliqVgas � FgasVliq

Vgas � Vliq
(15.6)

and since, as we have seen previously, Vliq and Vgas are functions of temperature alone and
so are Fliq and Fgas and by extension G2ph. As the temperature is constant during the
phase transition process, G2ph is therefore a constant. From this result, one deduces that at
equilibrium between the phases, the Gibbs energy per particle of each homogeneous phase,

‡We have already used this result to calculate Vliq and Vgas on the specific isotherm T = 3Tc/4 in a
previous example, but here we establish why this was a legitimate thing to do.
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a.k.a. the chemical potentials of the two phases, µliq ⌘ Gliq/N and µgas ⌘ Ggas/N , are equal.
Indeed, proceeding as we previously did for F , we can call Gliq(p, T,N) and Ggas(p, T,N)
the Gibbs free energies of the homogeneous system when all its N particles are in the liquid
and vapour phases respectively. We then have G2ph = Gliq ⇥Nliq/N +Ggas ⇥Ngas/N . As
we have just demonstrated that G2ph is a constant and given that p, T and N are fixed, we
can differentiate this expression to obtain dG2ph = Gliq/N ⇥ dNliq +Ggas/N ⇥ dNgas = 0
so that (µliq � µgas)dNliq = 0 and the equality between chemical potentials immediately
follows. As previously mentioned, this form µliq = µgas is often used to characterise the
diffusive equilibrium between two phases, in direct analogy with pliq = pgas and Tliq = Tgas

for the mechanical and thermal equilibria respectively.

15.5.2 Entropy variation during the phase transition

When n molecules out of N go (at constant T and p) from the liquid state to the vapour
state, the entropy of the system, S, increases by:

�S ⌘
n

N
(Sgas � Sliq) = nkB ln

✓
Vgas � bN

Vliq � bN

◆
(15.7)

given equation (14.9) and using the same notation for the entropies Sliq and Sgas as
previously used for the Helmholtz and Gibbs free energies. This increase is positive since
Vgas > Vliq > bN and proportional to the number of particles vaporized, n. This entropy
variation must be accompanied by a heat exchange of the system with its surroundings.
Indeed, since G = U � TS + pV stays constant during the vaporization, as do T and p,
we must have �G = �U � T�S + p�V = 0. Defining W and Q as the work and heat
given to the system during the vaporization process, the first law of thermodynamics yields
�U = W + Q, and since the transformation is reversible (the system stays in thermal,
mechanical and diffusive equilibrium throughout), W = �p�V and Q = T�S. We thus
conclude that Q > 0, i.e. heat must be given to the system for �G to cancel: this is an
endothermic process. This heat needed to change the state of the system from the liquid to
the vapour phase is called latent heat of vaporization and is usually defined per mole:

L =
NA

n
T�S = RT ln

✓
Vgas � bN

Vliq � bN

◆
(15.8)

Note that this is completely intuitive: you have to keep on heating liquid water when it
starts boiling to turn all of it into water vapour at the same temperature! As the simple
exercise given below shows, this latent heat is large when compared to the amount of
heat required to raise the temperature of each different homogeneous phase by tens of
degrees.

Exercise 15.1 Take a litre of water at 10oC and vaporize it to 160oC at constant standard
pressure p = 105 Pa. How much heat Q, do you need?
[The specific heat capacities of water in its liquid and vapour phases are c

liq
p = 4200

J kg�1K�1 and c
gas
p = 1900 J kg�1K�1 respectively, and its specific latent heat of

vaporization at 100oC LV = 2.3⇥ 106 J kg�1.]
Ans: Q = 2.8⇥ 106 J. ⌅

R • As Vliq and Vgas are functions of T alone, so is L.
• L = 0 when T = Tc as Vliq = Vgas for that particular isotherm.
• S(T ) will exhibit a discontinuity when the phase transition occurs, as �S > 0 but
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the temperature does not change. This jump in the value of S will be of order L/T .
• The reverse process also exists: vapour can condense into a liquid. This is an
exothermic process where the latent heat is given to the surroundings of the system.

15.5.3 Meta-stable states

Let us come back to the Van der Waals isotherms in Fig.15.2. Between point p(Vliq) and
the minimum of p as well as between the maximum of p and p(Vgas), p still is a decreasing
function of V , and thus the compressibility of the system is positive. Of course we have
shown that the true equilibrium state of the system does not follow the Van der Waals
isotherms between p(Vliq) and p(Vgas), but the points in the two regions previously defined
can still be reached by the system: they are called meta-stable states.

Indeed, considering our F2ph formulation as a linear function of V (equation (15.5)),
one clearly sees that any “local” straight line connecting two points located either between
point Fliq and the first inflection point of F (V ) or between its second inflection point
and point Fgas will be above F (V ) (see Fig.15.3). Conversely, only straight lines joining a
point between point Fliq and the first inflection point of F (V ) to another point between
its second inflection point and point Fgas are below F (V ). This tells us that if somehow
the system manages, one way of another, to find itself trapped between Fliq and the first
inflection point of F (V ) or between its second inflection point and Fgas, fluctuations of
small amplitude will not be able to move it away from this point: the system is locally

stable. However, a fluctuation with a large enough amplitude will “see” that there exists a
possibility of realizing a more stable state by separating into two phases. As the probability
of fluctuations goes down rapidly when their amplitude increases, a meta-stable state can
therefore be maintained for quite a long time.

In practice, when we slowly increase the volume available to the liquid at constant
T , the system can remain homogeneous beyond point Fliq, in a state called superheated

liquid, but not beyond the first inflection point of F (V ) when it becomes violently unstable
(negative compressibility). In a similar manner, if we slowly reduce the volume available
to the vapour at fixed T , we will be able to keep it in a homogeneous phase beyond point
Fgas (but not beyond the second inflection point of F (V )), in a meta-stable state called
supercooled vapour. Important perturbations (like a drop of liquid in supercooled vapour,
or a vapour bubble in a superheated liquid, impurities, or a simple shock) will trigger an
evolution of the system towards its true equilibrium: the two-phase state. The meta-stable
domain is bounded by the two phase co-existence curve on one side, and the curve linking
the extrema of the different Van der Waals isotherms (or equivalently the inflection points
of the different corresponding F (V )) as T varies. Such a curve is called a spinodial curve

and is represented on Fig.15.5.

15.6 The Clausius-Clapeyron equation

Let us now examine the other two dimensional phase diagram, the one obtained when
projecting in the (p, T ) plane (see Fig.15.6). The line in this diagram defines the region
where the two phases co-exist.In other words, if we are in the homogeneous gas phase on
the line (i.e. T < Tc) and p increases slightly, we will jump to the homogeneous liquid
phase immediately. This will appear as a volume discontinuity and is a characteristic of
the liquid-vapour phase transition.

On either side of the line, all N particles are either in the gas or the liquid phase. As
we have previously shown, the Gibbs free energy (at fixed p and T ) of these two phases are
equal: Gliq = Ggas. This means that G is continuous as we cross the phase transition line.
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Let us then sit on this line and move upwards along it by an infinitesimal amount. As the
total number of particles, N , is constant, the change in G caused by this displacement for
each phase is given by:

dGliq = �SliqdT + Vliqdp

dGgas = �SgasdT + Vgasdp (15.9)

Equating these two expressions to enforce the continuity of G across the phase transition
line at the new position yields:

dp

dT
=

Sgas � Sliq

Vgas � Vliq
=

L

T (Vgas � Vliq)
(15.10)

where the last equality arises from the definition of latent heat (L = T�S). This relation
which defines the slope of the phase transition line as the ratio of the latent heat released
by the phase transition and the discontinuity in volume between the phases is known as
the Clausius-Clapeyron equation.

Exercise 15.2 Find an approximated solution, p(T ), to the Clausius-Clapeyron equation.
[Assume that L is independent of T , Vgas � Vliq and that the gas EOS is that of an
ideal gas.]
Ans: p = p0 exp(�L/(kBT )). ⌅

15.7 Classification of phase transitions

The liquid-gas phase transition that we have just studied is not the only kind of phase
transition that exists in nature. Ehrenfest thus proposed to classify phase transitions based
on whether the derivatives of the thermodynamical potential (usually F or G) of a system
are continuous. This means that if the n

th derivative of this potential is discontinuous,
we will say that we have a n

th order phase transition. In the case of the liquid-gas phase
transition, as we have seen, latent heat is released/absorbed, so S = �(@F/@T )V,N is
discontinuous, as is V = (@G/@p)T,N . So we are dealing with a first order phase transition.

In practice, phase transitions of order greater than two are rare, and the thermodynamical
limit tends to break down at phase transition (fluctuations are large), so the thermodynamic
potentials are not well defined. For these reasons, the modern classification is more simple
than that originally advocated by Ehrenfest: if latent heat is present, the phase transition
is first order; if not, the phase transition is called continuous.

R • Note that when T ! Tc, the amplitude of the discontinuity diminishes as Sliq ! Sgas,
and that for T � Tc we do get a continuous phase transition.
• For most simple materials, the liquid-gas phase transition is part of a larger phase
transition which includes a solid phase at smaller T or higher p, as illustrated on
Fig.15.4.



16. Cooling of real gases

The purpose of these final lectures is to close the loop. Recall the Basic Thermodynamics
part of the course at the beginning of the year, where we studied the thermal behaviour of
ideal gas under certain practical transformations (adiabatic, isothermal expansions, etc ...).
We will now see how real gases behave during similar transformations and what practical
consequences this has.

16.1 Joule expansion revisited

Remember the Joule expansion for ideal gases (section 5.6.2). No heat enters or leaves the
system as the containers are thermally insulated, no work is done either by or on the gas as
it expands in a vacuum, so its internal energy, U , is unchanged according to the first law.
For an ideal gas, U is a function of T alone, so �U = 0 =) �T = 0.

We can reformulate this statement using the Joule coefficient, µJ ⌘ (@T/@V )U , i.e.
the change of temperature induced by a change in volume at constant internal energy,
which is the relevant constraint in the case of a Joule expansion. Using the reciprocity and
reciprocal theorems, we can re-write the Joule coefficient as µJ = �(@T/@U)V (@U/@V )T =
�1/CV (@U/@V )T . From the first law of Thermodynamics, dU = TdS � pdV , so that
(@U/@V )T = T (@S/@V )T � p, and using the Maxwell relation for F (equation (6.7)), one
gets (@U/@V )T = T (@p/@T )V � p, therefore

µJ = �
1

CV


T

✓
@p

@T

◆

V

� p

�
(16.1)

As we have just recalled, for a mole of an ideal gas with EOS p = RT/V , µJ = 0. Now for a
real gas, we have seen than the pressure is always lower than for an ideal gas because of the
presence of an attractive long-range force between molecules. This means that since CV > 0,
µJ < 0 for a real gas. Indeed, as U is not changing in a Joule expansion (Q = W = 0), and
the potential energy of the gas becomes less negative as it expands (the distance between
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gas molecules increases and the intermolecular attraction becomes weaker), then the kinetic
energy of the gas must also decrease and the real gas must thus cool.

Let us calculate by how much. That is where µJ becomes handy. Indeed, during a
Joule expansion, the change of T is simply:

�T =

Z
Vf

Vi

µJ dV = �

Z
Vf

Vi

1

CV


T

✓
@p

@T

◆

V

� p

�
dV (16.2)

Take the Van der Waals EOS. For one mole of gas, it yields⇤ p = RT/(V � b) � a/V
2

so (@p/@T )V = R/(V � b) and µJ = �a/(CV V
2). As Vi < Vf , we deduce that �T =

�a/CV ⇥(1/Vi�1/Vf ) < 0 for a Van der Waals gas: as expected, it cools.

Exercise 16.1 What is the temperature change when one Joule expands 1 mole of Helium
enclosed in a (0.1 m)3 container into a (0.2 m)3 container?
[Use the Van der Waals EOS with a = 0.00346 J m3 mol2 and the molar heat capacity

a

of Helium, CV = 12.48 J K�1 mol�1.]
Ans: �T = �0.243 K. ⌅

aThis is the specific heat of Helium times its molar mass (4g).

16.2 Joule-Kelvin expansion

The Joule expansion is interesting conceptually, but of little practical use. As we have seen,
the gas cools a bit when it expands but then “so what”? What you would want in practice
is a kind of “cooling machine” where you feed in warm gas and get out cold liquid! As it
turns out, James Joule and William Thomson (a.k.a. Lord Kelvin) discovered the process
such a machine could be based on. Note that this process, similarly to the Joule expansion,
is inherently irreversible.
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⇢
⇢

⇢

⇢

⇢⇢
⇢

⇢⇢⇢
⇢⇢⇢

thermally insulated walls
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porous plug
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Figure 16.1: Schematic diagram of a Joule-Kelvin expansion.

Consider a highly pressurized gas at pressure pi enclosed in a thermally insulated
container of volume Vi, which is forced through a porous plug (see Fig. 16.1). It might be
helpful to pretend it is pushed by a piston†. The internal energy of this gas is Ui and the
work done by the piston is piVi. This gas expands as it goes through the plug and occupies
another thermally insulated container of volume Vf > Vi. It also has to do work to push

⇤Strictly speaking, the constants a and b in this molar form of the equation are not the same as those in
equation (14.7): they differ by a factor of N 2

A and NA respectively, as they are defined per mole rather
than per molecule.

†In reality, this piston could be “virtual” and it would then be the inflowing gas behind the gas that is
enclosed in volume Vi that is doing the pushing.
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another piston which exerts a lower pressure pf < pi at the back of the container‡. This
work is pfVf . The temperature of the gas may change in the process, so we will denote its
internal energy by Uf .

The first law tells us that since there is no heat exchange, the change of energy
�U = Uf � Ui must be equal to the amount of work done on the gas to get it through the
plug, minus the amount of work done by the gas as it comes out of it. Mathematically,
�U = piVi � pfVf , i.e Ui + piVi = Uf + pfVf or Hi = Hf , that is to say the process
conserves the enthalpy of the gas. As in the Joule expansion we want to know how much
the temperature of the gas has changed during the process, so we define the Joule-Kelvin

coefficient, µJK ⌘ (@T/@p)H , which measures the temperature change of the gas as we
reduce its pressure at constant enthalpy. In a similar fashion as what we did for µJ ,
we can use the reciprocity and reciprocal theorems, coupled to the definition of Cp

§ to
re-write this coefficient as µJK = �(@T/@H)p(@H/@p)T = �1/Cp(@H/@p)T . Again from
the first law of Thermodynamics, dU = TdS � pdV , so that dH = TdS + V dp and
(@H/@p)T = T (@S/@p)T + V , and using the Maxwell relation for G (equation (6.8)), one
gets (@H/@p)T = �T (@V/@T )p + V , therefore

µJK =
1

Cp

"
T
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(16.3)

As for µJ , for a mole of an ideal gas with EOS V = RT/p, µJK = 0, and thus the change
in temperature during a Joule-Kelvin expansion,

�T =

Z
pf

pi

µJK dp =

Z
pf

pi

1

Cp

"
T
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� V

#
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is also nil. But what about a real gas? Will �T be positive or negative? Well, it depends
on the sign of µJK , which can, contrary to µJ , be positive or negative; and since Cp > 0, it
ultimately depends on the sign of T (@V/@T )p � V .

R The change in entropy during a Joule-Kelvin expansion can be calculated quite
straightforwardly. As the enthalpy is constant, we have dH = TdS + V dp = 0, so
that dS = �V/Tdp, and thus

�S = �

Z pf

pi

V

T
dp

which for a mole of ideal gas with EOS V/T = R/p yields �S = R ln(pi/pf ) > 0, in
line with what we expect for an irreversible process.

Therefore, the equation
✓
@V

@T

◆

p

=
V

T
(16.5)

defines the so called inversion curve in the T �p plane, i.e. the locus where the Joule-Kelvin
expansion switches from cooling the gas to heating it (see Fig.16.2).

‡Again, in reality, the expanding gas could be pushing the lower pressure gas in front of it instead of
the piston, as long as any change in the bulk kinetic energy of the gas flow can be considered negligible
throughout the process.

§At constant p we have dH = dU + pdV , as we used in equation (3.1).
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⌅ Example 16.1 — Calculation of the inversion curve for a Van der Waals gas. Starting
from the Van der Waals EOS in the form p = NkBT/(V � bN)� aN

2
/V

2, we calculate
(@T/@V )p, take its inverse, multiply it by T and substract V from the result to obtain
equation (16.5) in the form (V � bN)/(1� ⇠)� V = 0, with ⇠ = 2aN(V � bN)2/(kBTV 3).
This yields ⇠ = bN/V () (V �bN)2 = bkbTV

2
/(2a)¶. As V , (V �bN), T , a and b are all

positive, we can take the square root of this last equation to get V = bN/(1�
p
bkBT/2a).

Injecting this expression for V in the Van der Waals EOS then yields the following explicit
form of the inversion curve:

p =
1

b2

✓
�
3bkB
2

T +
p

8abkBT
1/2

� a

◆

The (quadratic) equation p = 0 has two roots, T+ = 2a/(bkB) = 27Tc/4 and T� =
2a/(9bkB) = 3Tc/4, and a maximum pressure pmax = 9pc, achieved when dp/dT = 0, i.e.
for T = 8a/(9bkB) = 3Tc. This curve is plotted in Fig.16.2. ⌅
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Figure 16.2: Joule-Kelvin expansion inversion curve (in solid red) for a Van der Waals gas,
as calculated in example 16.1. The inversion curve separates a light blue shaded domain
where µJK < 0 which means that the Joule-Kelvin expansion is cooling the gas, from a
blank region where µJK > 0 and the Joule-Kelvin expansion heats the gas. Note that
the inversion curve also crosses the co-existence curve (in solid blue), which makes it very
interesting a process to liquefy gases!

T+, as calculated in example 16.1 for the Van der Waals gas, is called the maximum

inversion temperature, as it is clear that above this temperature the Joule-Kelvin expansion
can only heat the gas, regardless of its pressure. Note that this maximum temperature can
be quite low. For instance, 4He has T+ = 43 K. This means that to cool Helium using the
Joule-Kelvin process, one needs to cool it below 43 K first! Finally, let us mention that the
Joule-Kelvin process is very useful to liquefy gases (intersection with the co-existence curve:
see Fig.16.2), and one can show that a liquefier needs to work on the inversion curve for
maximal efficiency.

¶Rigorously speaking, this solution is only valid for ⇠ 6= 1, but in the case ⇠ = 1, we have (@T/@V )p = 0
so T independent of V and the solution to the inversion curve equation is V = 0, which we can rightfully
discard.


