

Deterministic Entanglement of Trapped-Ion Spin-Qubits

J.P.Home, G.Imreh, B.C.Keitch, D.M.Lucas, M.J.McDonnell, N.R.Thomas, D.N.Stacey, A.M.Steane and S.C.Webster Centre for Quantum Computation, Clarendon Laboratory, Oxford University, U.K.

Main points We present experiments and theory in quantum information processing using trapped ions. This poster concentrates on entanglement and gates: see accompanying poster for cooling, coherence. P_{1/2} ion to electrode surface = 1.2 mm $\tau \sim 18$ r.f. freq = 6 to 10 MHz radial vibrational freg = 1 MHz axial freq = 300 to 800 kHz Structure of the Ca⁺ ion showing **SPIN QUBIT** relevant transitions (splitting ~4MHz) Summary of Results • 10 two-ion (2 qubit) Rabi flops with high visibility Deterministic entanglement of 2 ions (calcium 40 spin qubits) at 82(2)% fidelity • Schrodinger cat with 1 ion and motion:

- α up to 3.5(3) (<*n*>=12)
- well outside Lamb-Dicke regime: $\eta^2 2n = 1.6$
- $\alpha = 1$ preserved for 422 µs with 80(20)% fidelity also α = -2,0,+2 with 2 ions
- robust convenient tomography method
- (th.) factorization of general phase gates (ask for details) • (th.) composite pulses for fast gate (t=1/trap freq) insensitive to optical phase

Single-qubit gates, 1-2 ions

Spin qubit state coherently manipulated either by magnetic resonance or by stimulated Raman transition.

Single-ion Ramsey fringes

This data is for a two-pulse Ramsey sequence using magnetic resonance with a fringes are seen as the RF frequency is scanned.

Coherence time (measured separately) of order 1 ms: the falling visibility here is a beating effect owing to unequal illumination of the ions.

Deterministic entanglement

- Deterministic (i.e. single-shot, no post-selection) entanglement of 2 spin-qubits gate uses same oscillating spin-dependent driving force as to create Schrödinger cats, with force frequency close to ω_{str} & ion separation = integral number of
- standing wave periods => only stretch mode excited

=> states $\uparrow\downarrow$, $\downarrow\uparrow$ acquire a phase; $\uparrow\uparrow$, $\downarrow\downarrow$ do not.

Results

- Spin echo sequence to suppress slow drift effects
- $V_{com} = 500 \text{ kHz},$ ion sep = 9 μ m = 22 λ
- the entangled state $(\uparrow\uparrow -i \downarrow\downarrow)$ is produced
- a further $\pi/2$ analysis pulse with variable phase ϕ demonstrates cos(2 ϕ) oscillations in the parity signal with amplitude >0.5
- 1st exp: parity amplitude => entangled state fidelity > 75(5)%
- 2nd exp: two loops, one in each half of spin-echo: fidelity 82(2)%

single trapped ion. Interference

gubits simultaneously.

(Leibfried et al. [Nature 422 412 (2003)].

