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Structure of the
Ca ion showing
relevant transitions
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Main points

Summary of Results

We present experiments and theory in quantum information
processing using trapped ions.
This poster concentrates on entanglement and gates: see
accompanying poster for cooling, coherence.
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Trap:
ion to electrode surface = 1.2 mm
r.f. freq = 6 to 10 MHz
radial vibrational freq = 1 MHz
axial freq = 300 to 800 kHz

Single-qubit gates, 1-2 ions
Spin qubit state coherently manipulated either by magnetic resonance or by
stimulated Raman transition.

Coherence time (measured separately) of order 1 ms: the falling visibility
here is a beating effect owing to unequal illumination of the ions.

This data is for a two-pulse
Ramsey sequence using
magnetic resonance with a
single trapped ion. Interference
fringes are seen as the RF
frequency is scanned.

Two-ion Rabi oscillations

Single-ion Ramsey fringes

P
r(

s
in

g
le

 i
o
n
 s

h
e
lv

e
d
)

Schrödinger Cat experiments
Coherent states of a harmonic oscillator approximate to classical motion, and a
superposition of such states at mesoscopic excitation <n> is a type of Schrödinger cat.

Oscillating spin-dependent force create such mesoscopic superpositions with single
or pairs of ions. Spin state = measuring device entangled with the motion. We prove the
‘cat’ maintains its coherence by bringing the two parts back together and observing an
interference.
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[As first demonstrated by Monroe Science 1131 (1996).]et al. 272
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Spin-dependent force
For two-qubit gates we use spin-dependent forces:
push ions depending on spin state

Coulomb interaction gives a two-qubit phase.
The force is an optical dipole force in a standing wave with
polarization gradient.
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2-ion spin-state = 2 qubits. Rabi
flopping, here driven by the Raman

transition (4.5 s time), gives a
single-qubit rotation applied to both
qubits simultaneously.
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Phasor diagrams of oscillating force

Example data

Also implemented
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A classical force displaces the motional state in phase space.
e.g. oscillating force drives the state around a loop.

Initial |n=0> displaced Glauber coherent state
When loop closes one has U=diag(exp(phases))

.
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We have found a general mathematical method to
decompose such U for multiple ions as a unique
product of 1,2, ... n-qubit phase gates
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10 two-ion (2 qubit) Rabi flops with high visibility
Deterministic entanglement of 2 ions (calcium 40 spin qubits) at

Schrodinger cat with 1 ion and motion:

( =12)

well outside Lamb-Dicke regime:

1 preserved for 422 s with 80(20)% fidelity

also = -2,0,+2 with 2 ions
robust convenient tomography method
(th.) factorization of general phase gates (ask for details)
(th.) composite pulses for fast gate (t=1/trap freq) insensitive to
optical phase
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Spin echo sequence to suppress slow
drift effects

= 500 kHz,

ion sep = 9 m = 22

the entangled state ( is
produced

a further analysis pulse with

variable phase demonstrates cos(2 )
oscillations in the parity signal with
amplitude >0.5
1st exp: parity amplitude => entangled
state fidelity > 75(5)%
2nd exp: two loops, one in each half of
spin-echo: fidelity 82(2)%
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(i.e. single-shot, no post-selection) entanglement of 2 spin-qubits
gate uses same oscillating spin-dependent driving force as to create Schrödinger

cats, with force frequency close to & ion separation = integral number of

standing wave periods
only stretch mode excited

=> states acquire a phase; do not.

wstr

( Leibfried [Nature 412 (2003)].)

=>

­¯, ¯­ ­­, ¯¯ et al. 422
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Tomography
In general, tomography involves accumulating information by applying well-chosen
rotations to the qubits and measuring them in a fixed basis. We developed a
convenient scheme which is robust against typical experimental issues.

The rotation ( is through about an axis in the x-y plane.

A maximum likelihood estimation method is then used to obtain the physical density
matrix closest to that obtained from the data.

is

scanned from - top p:
same for all qubits)

P(spin state) = sinusoidal functions of this allows robust

curve-fitting of sin functions with period and 2 and an offset Each contribution to

the fit yields 1 or 2 real numbers; two values of are needed for complete information.
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Bloch Sphere representation

q = p/2

q = 2p/3

We show  the results of tomography experiments

on an entangled state | .
The large amplitude of the oscillations with period

compared to those with period 2p
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from but this has little influence for this

example

p indicate that

the coherence between and is large.
(Our measurement method does not distinguish

Deduced maximum likelihood
density matrix.
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2 ions,
3 coherent
states

= -2, 0,+2a

Double echo: long-lived cat: tcoh > 2 ms

t/2

n t = 422 ms
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Spin echo with rephasing
of force and motion.

Explore composite
pulse concept
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Composite pulses for fast robust gates

fixedrandom

w pcom totT / 2

4 pulse (fixed , , )f w Dj

3 pulse

3 pulse(adjust )j

2 pulse

(adjust )j

example pulse sequence

time ( =1)with wcom
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Final
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area com Gate phase
= area diff
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top hat
Wobble gate works well at low but is slow,

At high both COM and STR modes excited, can’t close both loops in a
single pulse (incomensurate freq).

Tailor f(t) in order to go faster? : lose insensitivity to optical phase

We find fast composite pulse sequences maintaining insensitivity to

Issues: loop closure, constant area, lightshift phase

d = w - w t = 2 p / d.
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