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Most of the problems are taken from: David J. Griffiths, Introduction to Electrodynamics,

4th edition (Cambridge University Press)
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Chapter 1

Potentials

1.1 Potential of an infinite line charge

(a) A straight wire, assumed infinitely long, has a constant linear charge density λ.

Calculate the electric field due to the wire. Use this result to calculate the electric

potential.

Given the symmetry of the system, the electric

field at the point P is:

E =

ˆ
wire

λdz

4πε0d2
cos θ.

Using d = r/ cos θ and z = r tan θ, which yields

dz = rdθ/ cos2 θ, we get:

E =
λ

4πε0r

ˆ π/2

−π/2
cos θdθ =

λ

2πε0r
.

Using cylindrical coordinates, E = −∇V yields:

V = − λ

2πε0
ln r + C,

where C is a constant. We see that the reference point for V cannot be taken at

infinity (that is, we cannot have V = 0 when r → +∞).

(b) Show that equation (1.12) from the lecture notes cannot be used to calculate the

potential.

Using equation (1.12) would yield:

V =
λ

4πε0

ˆ +∞

−∞

dz√
r2 + z2

=
λ

4πε0
[arcsinh(x)]+∞−∞ ,

which gives an infinite result. Equation (1.12) is not valid here because it assumes

that the reference point for the potential is at infinity, which cannot be satisfied

when the wire extends to infinity.
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1.2 Vector potential of an infinite wire

(a) A straight wire, assumed infinitely long, carries a current I. Calculate the magnetic

field due to the wire. Use this result to calculate the vector potential.

Assuming the current is along the z–

direction, Ampère’s law gives the magnetic

field:

B =
µ0I

2πr
θ̂,

where θ̂ is the unit vector in the azimuthal

direction.

We look for A such that ∇×A = B = Bθ̂. In cylindrial coordinates, the θ–

component of the curl is ∂Ar/∂z − ∂Az/∂r. Given the symmetry of the system, A

cannot depend on z, so that we are left with:

−∂Az
∂r

=
µ0I

2πr
=⇒ A = −µ0I

2π
ln r ẑ.

Note that any vector with zero curl could be added to this solution.

(b) Show that equation (1.13) (or equation [1.16]) from the lecture notes cannot be used

to calculate the vector potential.

Using the z–component of equation (1.16) would yield:

Az =
µ0
4π

ˆ +∞

−∞

Idz√
r2 + z2

=
µ0
4π

[arcsinh(x)]+∞−∞ ,

which gives an infinite result. As in the case of the infinite line charge above,

equation (1.16) is not valid here because it assumes that the reference point for

the vector potential is at infinity, which cannot be satisfied when the wire extends

to infinity.
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1.3 Potential of a sphere with a charge density σ = k cos θ

We consider a sphere of radius R and a spherical coordinate system (r, θ, ϕ) with

origin at the centre of the sphere. A charge density σ = k cos θ is glued over the

surface of the sphere. Calculate the potential inside and outside the sphere using

separation of variables.

There is no charge inside and outside the sphere so that the potential V satisfies

Laplace’s equation ∇2V = 0 at any r 6= R. As the charge density does not depend

on ϕ, V is also independent of ϕ. The general solution of Laplace’s equation in the

axisymmetric case is given by equation (1.32) from the lecture notes. We can then

write the potential inside and outside the sphere as:

Vin(r, θ) =
∞∑
l=0

(
αin
l r

l +
βinl
rl+1

)
Pl(cos θ),

Vout(r, θ) =
∞∑
l=0

(
αout
l rl +

βoutl

rl+1

)
Pl(cos θ).

(1.1)

Boundary conditions:

(i) Vout(r, θ)→ 0 as r → +∞,

(ii) Vin(r, θ) finite inside the sphere,

(iii) Vin(R, θ) = Vout(R, θ) (V continuous),

(iv)
∣∣∣E⊥out∣∣∣− ∣∣∣E⊥in∣∣∣ =

σ

ε0
⇒ −∂Vout

∂r
+
∂Vin
∂r

=
k cos θ

ε0
.

General method (always works): we use the boundary conditions to calculate all

the coefficients.

• Condition (i) implies αout
l = 0 ∀ l, condition (ii) implies βinl = 0 ∀ l, so that

equations (1.1) become:

Vin(r, θ) =

∞∑
l=0

αin
l r

lPl(cos θ),

Vout(r, θ) =
∞∑
l=0

βoutl

rl+1
Pl(cos θ).

(1.2)

• Then condition (iii) implies:

∞∑
l=0

αin
l R

lPl(cos θ) =
∞∑
l′=0

βoutl′

Rl′+1
Pl′(cos θ),
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where we have renamed the index of summation l′ in the right–hand side to

make things more clear.

We now multiply each side of this equality by Pm(cos θ) sin θ and integrate from

0 to π:

∞∑
l=0

αin
l R

l

ˆ π

0
Pl(cos θ)Pm(cos θ) sin θdθ =

∞∑
l′=0

βoutl′

Rl′+1

ˆ π

0
Pl′(cos θ)Pm(cos θ) sin θdθ.

Using the orthogonality of the Legendre polynomials:

ˆ π

0
Pl(cos θ)Pm(cos θ) sin θdθ =

2

2l + 1
δl,m,

we obtain αin
mR

m = βoutm /Rm+1 ∀ m. Therefore, equations (1.2) become:

Vin(r, θ) =
∞∑
l=0

αin
l r

lPl(cos θ),

Vout(r, θ) =

∞∑
l=0

αin
l

R2l+1

rl+1
Pl(cos θ).

(1.3)

• Then condition (iv) implies:

∞∑
l=0

(2l + 1)αin
l R

l−1Pl(cos θ) =
k cos θ

ε0
=

k

ε0
P1(cos θ),

where we have used the fact that cos θ = P1(cos θ).

Here again, we multiply each side of this equality by Pm(cos θ) sin θ and inte-

grate from 0 to π:

∞∑
l=0

(2l+1)αin
l R

l−1
ˆ π

0
Pl(cos θ)Pm(cos θ) sin θdθ =

k

ε0

ˆ π

0
P1(cos θ)Pm(cos θ) sin θdθ

The orthogonality of the Legendre polynomials then yields:

2αin
mR

m−1 =
2k

3ε0
δ1,m,

that is, αin
m = 0 for m 6= 1 and αin

1 = k/(3ε0).

Finally, equations (1.3) then become:

Vin(r, θ) =
k

3ε0
r cos θ,

Vout(r, θ) =
k

3ε0

R3

r2
cos θ.

(1.4)

8



Shorter method (works in this particular case): we “guess” some of the coefficients

and use the boundary conditions to calculate the others.

As the surface charge density is proportional to cos θ, we expect that the poten-

tial itself is propotional to cos θ. Therefore, we can assume that all the terms

in equations (1.1) are 0 except for l = 1. We will check a posteriori that this

assumption is correct. We then write directly:

Vin(r, θ) =

(
αinr +

βin

r2

)
cos θ,

Vout(r, θ) =

(
αoutr +

βout

r2

)
cos θ.

(1.5)

As above, the boundary conditions (i) and (ii) yield βin = 0 and αout = 0.

Conditions (iii) and (iv) can then be used to calculate αin and βout.

Finally, we have found a solution that satisfies Laplace’s equation and the

boundary conditions. As the solution is unique, this is the correct one, and

that justifies a posteriori the assumption we have made to start with.
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1.4 Multipole expansion

A sphere of radius R, centered at the origin, carries charge density:

ρ(r, θ) = k
R

r2
(R− 2r) sin θ,

where k is a constant, and r, θ are the usual spherical coordinates. Find the approx-

imate potential for points on the z axis, far from the sphere.

We use equation (1.35) from the lecture notes with O the center of the sphere and

M on the z–axis, so that γ = θ and r = z.

• Monopole term:

V0(z) =
1

4πε0z

˚
V
ρ(r)dτ =

Q

4πε0z
,

with dτ = r2 sin θ dr dθ dϕ and Q is the total charge of the sphere. Here:

Q = kR

ˆ R

r=0
(R− 2r) dr

ˆ 2π

ϕ=0
dϕ

ˆ π

θ=0
sin2 θdθ.

The integral over r is 0 so that V0(z) = 0 .

• Dipole term:

V1(z) =
1

4πε0z2

˚
V
r cos θρ(r)dτ.

Here:

V1(z) =
kR

4πε0z2

ˆ R

r=0
(R− 2r) rdr

ˆ 2π

ϕ=0
dϕ

ˆ π

θ=0
sin2 θ cos θdθ.

The integral over θ is 0 so that V1(z) = 0 .

• Quadrupole term:

V2(z) =
1

4πε0z3

˚
V
r2

1

2

(
3 cos2 θ − 1

)
ρ(r)dτ.

Here:

V2(z) =
kR

8πε0z3

ˆ R

r=0
(R− 2r) r2dr

ˆ 2π

ϕ=0
dϕ

ˆ π

θ=0

(
3 cos2 θ − 1

)
sin2 θdθ.

The integral over r is −R4/6 and the integral over θ is −π/8, so that:

V (z) ' V3(z) =
1

4πε0

kπ2R5

48z3
.

10



1.5 Electric dipole moment

Four charges are placed as shown. Calculate

the electric dipole moment of the distribution

and find an approximate formula for the po-

tential, valid far from the origin (use spherical

coordinates).

Since the total charge is 0, the monopole term is also 0. The dipole term in the

expansion of the potential is given by:

V1(r) =
1

4πε0

p · r̂
r2

,

(equation 1.37 from the lecture notes) where r is the position vector, r̂ is the unit

vector along the radial direction in spherical coordinates and p is the electric dipole

moment. We have:

p =
∑
i

qir
′
i,

where r′i denotes the position of the charge qi. Since the total charge is 0, p does

not depend on the choice of the origin from which we measure the positions. We use

O as the origin. Then we have:

p = (3qa− qa)ẑ + (−2qa+ 2qa)ŷ = 2qaẑ,

where ẑ and ŷ are unit vectors. Therefore:

V (r) ' V1(r) =
1

4πε0

2qa cos θ

r2
,

where we have used ẑ · r̂ = cos θ.
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Chapter 2

Electric fields in matter

2.1 Field of a uniformly polarized sphere

(a) Find the electric field produced by a uniformly polarized sphere of radius R. (Hint:

use the results of example 1.3)

Inside the sphere, the volume charge density is ρp = −∇·P
which is 0 as the polarization is uniform. At the surface

of the sphere, there is a surface charge density σp = P · r̂,

where r̂ is the unit vector in the radial direction. We choose

the z–axis in the direction of P, so that σp = P cos θ in

spherical coordinates.

In example 1.3 we have calculated the potential of a sphere with a surface charge

density proportional to cos θ:

V (r, θ) =
P

3ε0
r cos θ, for r ≤ R,

V (r, θ) =
P

3ε0

R3

r2
cos θ, for r ≥ R.

(2.1)

The electric field is:

E = −∇V = −∂V
∂r

r̂− 1

r

∂V

∂θ
θ̂,

where θ̂ is the unit vector in the azimuthal direction. Therefore:
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E = − P

3ε0
ẑ, for r < R,

E =
2p cos θ

4πε0r3
r̂ +

p sin θ

4πε0r3
θ̂, for r > R,

(2.2)

where we have used r cos θ = z and we have defined the total dipole moment of the

sphere p = (4/3)πR3P .

We see that the field inside the sphere is uniform, whereas the field outside

the sphere is that of a perfect dipole p at the origin.

(b) Calculate the potential directly using equation 2.7 from the lecture notes.

Equation 2.7 gives:

V (r) =
1

4πε0

˚
V

P(r′)dτ ′ · (r− r′)

|r− r′|3
, (2.3)

where V is the volume of the sphere. We have seen in the lectures that this expression

is valid for calculating the potential both inside and outside the sphere. Since P is

uniform, it can be taken out of the integral, so that we obtain:

V (r) = P ·
[

1

4πε0

˚
V

(r− r′)dτ ′

|r− r′|3

]
. (2.4)

The term in brackets is the electric field E1 of a sphere with a uniform charge density

equal to unity. This electric field can be calculated using Gauss’s law and is given

by:

E1 =
r

3ε0
r̂, for r < R,

E1 =
R3

3ε0r2
r̂, for r > R.

(2.5)

V = P ·E1 can then be used to recover the potential.

Note that the parallel component

of E at the surface, Eθ(R), is con-

tinuous, whereas the perpendicular

component, Er(R), is discontinu-

ous:

E⊥out −E⊥in =
σ

ε0
r̂.
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2.2 D and E of an insulated straight wire

A long straight wire, carrying uniform line

charge λ, is surrounded by rubber insulation

out to a radius a. Find the electric displace-

ment and the electric field.

Gauss’s law (2.16) from the lecture notes can be used to calculate D. Given the

symmetry of the problem, and using cylindrical coordinates, D depends only on the

distance r to the wire and is in the radial direction. We choose the Gaussian surface

to be a cylinder of radius r and length L around the wire. Then Gauss’s law yields

D× 2πrL = λL, that is:

D =
λ

2πr
r̂,

where r̂ is the unit vector in the radial direction. This is true for all r > 0.

Outside the insulation, P = 0 so that:

E =
D

ε0
=

λ

2πε0r
r̂.

Inside the insulation, E = (D−P)/ε0, which we cannot calculate as we do not know

P.

2.3 D and E of a cylinder with polarization along the axis

A cylinder of finite size carries a “frozen–in” uniform polarization P, parallel to its

axis. (Such a cylinder is know as a bar electret). Find the polarization charges,

sketch the electric field and the electric displacement (use the boundary conditions).

Polarization charges: there is no volume charge as P is uniform, and the surface

charge is P · n̂ = +σ on one end and −σ on the other end.

Electric field: The bar is there-

fore like a physical dipole. Note

that electric field lines terminate

on charges, whether they are

bound or free, with E pointing to-

wards the negative charge. (Figure

from Purcell.)
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The perpendicular component of E is discontinuous at the surfaces:

E⊥out −E⊥in =
±σ
ε0

n̂,

whereas the parallel component of E is continuous across the lateral surface.

Electric displacement: D = ε0E + P, therefore D = E outside the cylinder.

Since there is no free charge at the surfaces, the perpendicular component of D is

continuous there, so that D inside the cylinder goes from left to right. Note that

D lines terminate on free charges. As there are no free charges here, D lines are

continuous:

We see that even though there is no polarization outside the cylinder, D is non

zero there. This is because the polarization is discontinuous at the surface of the

cylinder, and along the lateral surface we have (see equation [2.22] from the lecture

notes):

D
‖
in −D

‖
out = P.

The discontinuity of P generates a non zero D outside.

2.4 Linear dielectric sphere with a charge at the center

A point charge q is embedded at the center of a sphere of linear dielectric material

(with susceptibility χe and radius R). Find the electric field, the polarization, and

the polarization charge densities, ρp and σp. What is the total polarization charge

on the surface? Where is the compensating negative polarization charge located?

Electric displacement: Given the symmetry of the problem, in spherical coordi-

nates, Gauss’s law yields:

D =
q

4πr2
r̂,

for all r > 0, where r̂ is the unit vector in the radial direction.

Electric field: Inside the sphere, E = D/ε with ε = ε0(1 + χe). Therefore:

E =
q

4πε0(1 + χe)r2
r̂, for r < R,

and E = D/ε0 outside the sphere.
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Polarization: P = ε0χeE inside the sphere, that is:

P =
χeq

4π(1 + χe)r2
r̂, for r < R.

Volume polarization charge:

ρp = −∇ ·P = − χeq

4π(1 + χe)
∇ ·

(
r̂

r2

)
.

Using the definition of the δ function in 3 dimensions:

∇ ·
(

r̂

r2

)
= 4πδ3(r),

we get:

ρp = − χe
1 + χe

q δ3(r).

Surface polarization charge:

σp = P(R) · r̂ =
χeq

4π(1 + χe)R2
.

Therefore, the total surface charge is:

Qsurf = σp × 4πR2 =
χe

1 + χe
q.

The compensating negative charge is at the center, which is implied by the fact that

the δ3 function is non zero only at r = 0.

As P is radial, the dipoles in the sphere are

all aligned in the radial direction, leaving a net

charge at the center and at the surface only.

17



18



Chapter 3

Magnetic fields in matter

3.1 Field of a uniformly magnetized sphere

(a) Find the magnetic field produced by a uniformly magnetized sphere of radius R.

(Hint: use the results of Problem 7 in Problem Set 1)

Inside the sphere, the volume current

density is Jm = ∇×M which is 0 as

the magnetization is uniform. At the sur-

face of the sphere, there is a surface cur-

rent density Km = M×r̂. We choose

the z–axis in the direction of M, so that

Km = M sin θϕ̂ in spherical coordinates.

In Problem 7, Problem Set 1, we have calculated the magnetic field due to a spinning

sphere, which has a surface current density K proportional to sin θ in the ϕ̂–direction.

By making the appropriate replacement, we therefore get:

B =
2

3
µ0M, for r < R,

B =
µ0MR3

3r3

(
2 cos θr̂ + sin θθ̂

)
, for r > R.

(3.1)

We see that the field inside the sphere is uniform.
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We define the total dipole moment of the sphere m = (4/3)πR3M . Then the field

outside the sphere can be written as:

B =
µ0m

4πr3

(
2 cos θr̂ + sin θθ̂

)
,

which is the field of a perfect dipole m at the origin.

(b) Calculate the vector potential A directly using equation 3.13 from the lecture notes.

Derive the magnetic field from A.

Equation 3.13 gives:

A(r) =
µ0
4π

˚
V

M(r′)dτ ′×(r− r′)

|r− r′|3
, (3.2)

where V is the volume of the sphere. We have seen in the lectures that this expression

is valid for calculating the potential both inside and outside the sphere. Since M is

uniform, it can be taken out of the integral, so that we obtain:

A(r) = M×
[
µ0
4π

˚
V

(r− r′)dτ ′

|r− r′|3

]
. (3.3)

The term in brackets is the electric field E of a sphere with a uniform charge density

equal to µ0ε0. This electric field can be calculated using Gauss’s law and is given

by:

E =
µ0r

3
r̂, for r < R,

E =
µ0R

3

3r2
r̂, for r > R.

(3.4)

A = M×E if then equal to:

A =
µ0Mr

3
sin θ ϕ̂, for r < R,

A =
µ0MR3

3r2
sin θ ϕ̂, for r > R.

(3.5)

The magnetic field is given by:

B =∇×A =
1

r sin θ

∂

∂θ
(sin θ A) r̂− 1

r

∂

∂r
(rA) θ̂,

which leads to the same expressions as in (a).
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Field lines of a uniformly mag-

netized sphere. Note that the

perpendicular component of B at

the surface, Br(R), is continuous,

whereas the parallel component,

Bθ(R), is discontinuous:

B
‖
out −B

‖
in = µ0Kmθ̂.

3.2 Field of a cylinder with circular magnetization

A long circular cylinder of radius R carries a magnetization M = kr2ϕ̂, where k is

a constant, r the radius in cylindrical coordinates and ϕ̂ the unit vector in the az-

imuthal direction. Find the magnetic field due to M inside and outside the cylinder.

Calculate H using B and M and, independently, using the current distribution.

The volume current density is:

Jm =∇×M =
1

r

d

dr
(rM) ẑ = 3krẑ.

The surface current density is:

Km = M(R)×r̂ = −kR2ẑ.

Note that the current is flowing up in the volume of the cylinder and returns down

along the surface. For a length L of the cylinder, the total current is:

Itot = −Km × 2πRL+ L

ˆ R

0
Jm2πrdr = −2πkR3Lẑ + 6πkLẑ

ˆ R

0
r2dr = 0,

as expected.

Given the symmetry of the system, and using Ampère’s law, we obtain:

2πrB = µ0ϕ̂

ˆ r

0
Jm2πrdr =⇒ B = µ0kr

2ϕ̂ = µ0M for r < R,

and

2πrB = µ0ϕ̂Itot =⇒ B = 0 for r > R.

To get H we use H = B/µ0 −M. Then H = 0 everywhere.

This is consistent with Ampère’s law, as ∇×H = Jf = 0 and the symmetry of the

problem leads to 2πrH = 0ϕ̂. Note however that, in general, there may be a non

zero H even when there is no free current (see below).
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3.3 H and B of a cylinder with magnetization along the axis

A cylinder of finite size carries a “frozen–in” uniform magnetization M, parallel

to its axis. (Such a cylinder is know as a bar magnet). Find the magnetization

currents, sketch the magnetic field B and the auxiliary field H (use the boundary

conditions).

Magnetization currents: Since the magnetization is uniform, the volume current

density is Jm = ∇×M = 0. The surface current density is Km = M×n̂, that is

Km = Mϕ̂ on the lateral surface.

Magnetic field: The bar is like a

finite–size solenoid. (Figure from

Purcell.)

The perpendicular component of B

is continuous across the surfaces,

whereas:

B
‖
in −B

‖
out = µ0Kmẑ.

Auxiliary field: H = B/µ0−M, there-

fore H = B/µ0 outside the cylinder.

Since there is no free current at the sur-

faces, the parallel component of H is con-

tinuous there, so that H inside the cylin-

der goes from right to left.

We see that even though there is no magnetization outside the cylinder, H is

non zero there. This is because the magnetization is discontinuous at the surface

of the cylinder:

H⊥out −H⊥in =
B⊥out
µ0
− B⊥in

µ0
+ M = M.

The discontinuity of M generates a non zero H outside.
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3.4 H and B of a linear insulated straight wire

A current I flows along a straight wire or radius a. If the wire is made of linear

material with susceptibility χm, and the current is distributed uniformly, what is the

magnetic field a distance r from the axis? Find all the magnetization currents. What

is the net magnetization current flowing along the wire?

We define the volume density of free current: Jf = I/(πa2), and we assume that the

current I flows up along the z–axis. Given the symmetry of the system, and using

cylindrical coordinates, Ampère’s law gives:

H× 2πr = πr2Jf θ̂ =⇒ H =
Ir

2πa2
θ̂ for r < a ,

and:

H× 2πr = I θ̂ =⇒ H =
I

2πr
θ̂ for r > a .

Therefore, B = µH, with µ = µ0(1 + χm) inside the insulated material and µ = µ0

outside, yields:

B =
µ0(1 + χm)Ir

2πa2
θ̂ for r < a,

B =
µ0I

2πr
θ̂ for r > a.

Volume density of magnetization current: Jm = ∇×M = ∇×(χmH) = χm∇×H,

that is: Jm = χmJf ẑ .

Surface density of magnetization current: Km = M×r̂ = χmH(a)×r̂, that is:

Km = −χmI ẑ/(2πa) .

Net magnetization current along the wire:

ˆ a

0
Jm × 2πrdr + Km × 2πa = 0,

as expected.
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