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e \We have selectively loaded all the stable isotopes of calcium by and discrimination Cooling ( )
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photo-ionization and measured a photo-ionization cross-section.

We have trapped and cooled pure crystals of 43Ca+. A focused laser beam gives state-dependent push; Coulomb repulsion

energy then results in a state-dependent phase (Cirac & Zoller, Nature 2000)
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e We observe ~1ms coherence time of our spin qubit state by Rabi 389 photo-ionization  Tatomic beam £00-1000kHo - S This is the ‘controlled
flopping using magnetic resonance. ©) magnetic field Vi 00> - expliog) 00> 100> -phase’ gate (equivalent
deshelving direction 01> = explio,) 01> — 01> to controlled-NOT).
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e We have implemented continuous Raman sideband cooling close 854 AOM}> All lasers are grating stabilized 10> — explio,) [10> — 110> . -
diode lasers, except the 389 PUG;, Issues: photon scattering,
to the ground state, i.e. <n> < 1. ’ 111> —  exp(io,) [11> — exp(i9)|11> intensity noise, thermal

which is a free-running diode.
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e Theoretical study of logic gate by selective ion displacement. ushing force, ingle-qubit rotations

Theoretical study of quantum logic gate

Ps/z o PUSHING FORCE = Dipole optical force
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Atomic beam Trap
Gross and fine structure electrodes e REALISATION IN ALINEAR TRAP — Original method for 2-qubit gate
of the Ca” ion with ions in separate traps can be extended to the case with 2 ions in
showing transitions we View of vacuum system and collection Geometry of photo-ionization the same trap
S, can excite optics system e  TOFFOLI GATE (3-qubit CNOT gate) can be implemented!

Detecting 1h of angular momentum Magnetic resonance Rabi oscillations

Method to detect the angular momentum state of an atom, L o : : : Hlati i~ fi
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e Pump laser strongly couples P(M=-1/2) and D(M=-3/2) 8,4l Co'g Rarqls?.y fringes ats_ affulgcf’uon of
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Photo-ionization loading Sideband Cooling
Method Calcium-43

Two major advantages over electron bombardment: e \We are able to load pure crystals of “Ca" by TA Py 0 | ' | ' '
. . . combining photo-ionization with laser heating of A ~150 MHz ' I ol el ]
e The loading process is much less perturbative to the other isotopes to expel them from the trap. K 4.5 A=150 MHz

trapping environment.

e \We can select which isotope we load into the trap. e We cool on the 393nm transition and repump on

the 397nm transition; scanning the 397nm
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.................. e Magnetic-field insensitive states exist. e Between the first red sideband and the carrier the
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e Large fine structure splitting P good-fidelity gates
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fluorescence on the blue sidebands as the single

The graph shows the 423nm fluorescence scattered from photon repumping provides cooling.

the atomic beam as the 423nm Ias_er freque_ncy IS scanned [See: Lucas et al., Phys. Rev. A69 012711 (2004) ]
over the resonance of the various isotopes in the beam.
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