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Fluid dynamicists were divided into hydraulic engineers who observe what cannot be ex-

plained and mathematicians who explain things that cannot be observed.

Sir Cyril Hinshelwood (in Lighthill, 1956)

These notes borrow from the following books:

E. Guyon, J.–P. Hulin, L. Petit, C. D. Mitescu, Physical Hydrodynamics, 2nd edition

(Oxford University Press)

D. J. Acheson, Elementary Fluid Dynamics (Oxford University Press)

L. D. Landau, E. M. Lifshitz, Fluid Mechanics, 2nd edition, Volume 6 of Course of

Theoretical Physics (Elsevier)

G. K. Batchelor, An introduction to Fluid Dynamics (Cambridge University Press)

These notes are meant to be a support for the course, but they should not replace text-

books. It is strongly advised that at least one of the books listed above is used regularly,

as they provide much more details about the subject and lots of examples and problems.
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Chapter 1

Kinematics of fluids

1.1 What is a fluid?

A fluid is a collection of particles that can be treated as a continuum and which flows

(deforms) when acted upon by a stress.

When particles are free to move relative to each other, the description as a continuum

requires their mean free path to be much smaller than the other characteristic lengths of

the problem. This condition is usually met in liquids and may also be satisfied in gases

and plasmas. Solids, in which particles are bound to their neighbours, can be described as

a continuum on scales large compared to inter–atomic distances (e.g., theory of elasticity).

In cases where the continuum approximation does not apply, kinetic theory has to be used.

Hydrodynamics can actually be obtained as the limit of kinetic theory when the mean free

path is much smaller than all the other characteristic lengths.

Liquids, gases and plasmas all deform under stress and therefore may be treated as fluids.

In general, solids are not considered as fluids because they do not deform easily. However,

some solids do flow when subject to stresses larger than their limit of elasticity. Examples

of this are glaciers and the Earth’s crust. Also, some materials behave either like solids or

liquids depending on whether they are subject to a high or low frequency stress, respec-

tively. For instance, we sink deeper into wet sand when standing up than when running.

Also some polymers, which behave like solids when acted upon by a stress that varies on

a short timescale, start to behave like liquids when the stress varies on a timescale long

enough that the polymer can use its internal degrees of freedom to deform like a liquid.

The frontier between solids and liquids can therefore be fuzzy.
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1.1.1 Mean free path

The mean free path λ is the average distance travelled by a particule before it collides

with another particle. It is given by:

λ ∼ 1

nσ
, (1.1)

where n is the number density of particles and σ is the collision cross section. If all the

particles are identical and with diameter d, then σ = πd2.

Let us calculate the mean free path of the molecules in air at atmospheric pressure

and room temperature. Air consists of 21% of O2 and 78% of N2 (and small amounts of

other gases), which have a diameter d ' 0.4 nm. Treating the air as an ideal gas, the

number density is given by n = P/(kT ), where P is the pressure, T is the temperature

and k is the Boltzmann constant. Adopting P = 1 atm = 1.01× 105 Pa and T = 300 K,

we obtain n = 2.4 × 1025 m−3. The collision cross section is σ = πd2 = 5 × 10−19 m2.

Therefore λ ' 8× 10−8 m, which indicates that the fluid approximation applies unless we

are interested in microscopic processes.

1.1.2 Averaged quantities

If the mean free path λ is very much smaller than the scale of interest L in the system,

we can characterize a volume element with scale l such that λ � l � L using averaged

quantities. For example, the velocity of a single particle can be written as u = v + w,

where v is the same average velocity for all the particles in the volume (since l� L), and

w is a fluctuating part. In a volume element with l� λ, particles suffer a large number of

collisions so that w changes sign very rapidly. Therefore, as illustrated in the figure below,

the displacement of the particles in this volume over an interval of time ∆t is given by

v∆t, as w averages to zero, and the volume element is always made of the same particles

as it moves.

For most purposes, we can therefore neglect w and define u = v as being the velocity of

the fluid element. In the same way, the temperature, pressure, etc., can be defined as an

average over the large number of particules in the volume. Thereafter, fluid elements will

be sometimes loosely referred to as particles.
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1.2 Eulerian and Lagrangian descriptions

A flow can be described in two different ways, depending on how the variations of the

different quantities (velocity, density, temperature, etc.) are considered:

• In the Eulerian description, the variations are described as a function of time at

all fixed points in the flow. The velocity v(r, t) of a fluid element which at time t

coincides with the fixed point located at r is that seen by the fox at rest on the river

bank. In this description, the velocity is a vector field. Such a velocity field would

be measured by fixed probes embedded in the fluid.

• In the Lagrangian description, one follows individual fluid elements moving with

the flow and variations are described as a function of time. The velocity V(t, r0)

of a fluid element which at some time t0 is at position r0 is that of the duck in

the river. (We denote the Lagrangian velocity with a capital letter to distinguish it

from the Eulerian velocity). The parameter r0 simply ’tags’ the path along which

the fluid element is moving. Such a velocity can be measured by tracking (e.g.,

phosphorescent) tracer particles. If at a time t′ the duck is a the position r′, then its

Lagrangian velocity at that time coincides with the Eulerian velocity at that point

and time: V(t′, r0) = v(r′, t′).
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1.3 Streamlines, trajectories and streamtubes

A streamline is, at any particular time t, a curve whose tangent is everywhere parallel to

the velocity vector. Let us consider a point (x, y, z) on a streamline. A small displacement

(dx,dy,dz) along the streamline is then parallel to v(x, y, z), which implies that:

dx

vx
=

dy

vy
=

dz

vz
. (1.2)

Integrating these two differential equations yields the equation of the streamlines.

Streamlines at a given time do not

intersect, because a particle at a

given point cannot have two different

velocities at the same time.

A trajectory (or pathline) is the path

followed by a particle. Trajectories

can intersect.

Streamlines and trajectories only coincide in a steady flow. This can be seen by noting

that M1 which, at t0, is on the streamline which is represented above, will have advanced

to M2 at a subsequent time t1 only if the velocity does not change between t0 and t1.

A streamtube is a set of streamlines

that are drawn through each point of

a closed curve.

1.4 Material time derivative

We consider a Eulerian quantity Q (e.g., temperature, density, etc.), that is to say a

quantity which is specified at a fixed position at a given time. For a fluid element which

at time t is at a point located at r, the value of this quantity is Q(r, t). If the Eulerian

velocity at this point is v(r, t), then at time t + δt the fluid element is at r + vδt, where

10



the value of Q is Q(r + vδt, t + δt). The time rate of change of Q for this fluid element,

which we denote by DQ/Dt, is therefore:

DQ

Dt
= lim

δt→0

Q(r + vδt, t+ δt)−Q(r, t)

δt
. (1.3)

Performing a Taylor series expansion to first order in δt:

Q(r + vδt, t+ δt) = Q(r, t) + δt
∂Q(r, t)

∂t
+ vδt ·∇Q(r, t), (1.4)

equation (1.3) becomes:

DQ

Dt
=
∂Q

∂t
+ v ·∇Q. (1.5)

The time derivative following the motion of a fluid element is then given by the following

operator:

D

Dt
=

∂

∂t
+ v ·∇ , (1.6)

which is also called material time derivative or Lagrangian rate of change. The way it

has been calculated here, it has meaning only when applied to a Eulerian quantity which

depends on the two independent variables r and t. However, this is not a unique approach1.

From equation (1.6), we see that there are two contributions to DQ/Dt: ∂Q/∂t, which

is the local rate of change due to time variations of Q at a fixed point, and v ·∇Q, which

is due to the fluid element being transported to a different position along the gradient of

Q (see below). The first term is the Eulerian rate of change, whereas the second term is

the convective rate of change.

If Q is a constant for every fluid element, then DQ/Dt = 0. It does not mean though

that it is a constant through the fluid, as it may be a different constant for different fluid

elements. It only means that a fluid element having a given value of Q at some particular

time will retain this value of Q at any subsequent time.

1Mathematically, the operator D/Dt could also be defined as the total time derivative of a function

which depends both on r(t) and on t explicitely. Indeed, the quantity Q could be seen as depending

explicitely on time, and also on the location r, which itself depends on time: Q(r(t), t). The rate of change

of Q is then just its total time derivative:

dQ(r(t), t)

dt
=
∂Q

∂t
+
∂Q

∂x

dx

dt
+
∂Q

∂y

dy

dt
+
∂Q

∂z

dz

dt
.

Using vx = dx/dt, vy = dy/dt and vz = dz/dt, we obtain:

dQ(r(t), t)

dt
=
∂Q

∂t
+ v ·∇Q,

which is the same as DQ/Dt. However, note that Q(r(t), t) is neither the Eulerian representation of Q, as

this is given by Q(r, t) where r is fixed, nor the Lagrangian representation, as this is given by Q(r0, t) and

is independent of r.

11



1.4.1 Acceleration of a fluid element:

Above, we have calculated the material time derivative of a scalar Q, but the operator

D/Dt could also be applied to a vector. For example, to calculate the acceleration of

a fluid element, or Lagrangian acceleration, we have to calculate Dv/Dt. Applying the

operator to each of the cartesian coordinates of the velocity, it is straightforward to see

that:

Dv

Dt
=
∂v

∂t
+ (v ·∇) v , (1.7)

where the operator is applied to the Eulerian velocity v(r, t). Note that ∂v/∂t is not the

acceleration of a fluid element at location r at time t, because the element is there only

instantaneously.

In cartesian coordinates, the components of (v ·∇) v are given by:

vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

,

vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

,

vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

.

To use the above formula in other coordinate systems, we have to take into account the

fact that the unit vectors depend on the space coordinates. For example, in cylindrical

coordinates (r, θ, z):

(v ·∇) v =

(
vr
∂

∂r
+ vθ

∂

r∂θ
+ vz

∂

∂z

)(
vrr̂ + vθθ̂ + vzẑ

)
,

where r̂, θ̂ and ẑ denote the unit vectors. Remembering that ∂θ̂/∂θ = −r̂, we see that,

for example, the radial component of this expression has a term −v2
θ/r that comes from

∂
(
vθθ̂
)
/∂θ.

The acceleration of a fluid element could also be calculated directly using the La-

grangian representation of the velocity V(r0, t). In this case, it is just the time derivative

of the velocity along a given path, so that:

Dv

Dt
=

(
∂V

∂t

)
r0

. (1.8)

Note that the velocity of a fluid element can be written as:

v =
Dr

Dt
. (1.9)
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This can be seen by writing that the operator applies to the Eulerian quantity r = xx̂ +

yŷ + zẑ, where a hat denotes a unit vector, so that there is no time dependence and:

Dr

Dt
= (v ·∇) r = vx

dx

dx
x̂ + vy

dy

dy
ŷ + vz

dz

dz
ẑ = v.

1.4.2 Steady flow

It is a flow in which, at any fixed point r, the velocity does not depend on time, that is to

say:

∂v

∂t
= 0. (1.10)

We see from equation (1.7) that, in a steady flow, fluid elements may still be accelerated

by being transported to a position where the velocity has a different value.

Consider for example a fluid in uniform rotation with angular velocity Ω, so that

vx = −Ωy, vy = Ωx and vz = 0. Then:

(v ·∇) v =

(
−Ωy

∂

∂x
+ Ωx

∂

∂y

)
(−Ωy,Ωx, 0) = −Ω2(x, y, 0),

which is, as expected, the centripetal acceleration −Ω2r.

1.4.3 Rate of change along a streamline

In a steady flow, the Lagrangian rate of change of a quantity Q is given by v ·∇Q. Let

us denote s the coordinate (distance) along a streamline, and ŝ the unit vector associated

with this coordinate. Then v = |v|ŝ and

v ·∇Q = |v|ŝ ·∇Q = |v|∂Q
∂s

. (1.11)

This is the rate of change of Q with distance along the streamline times the flow speed,

which gives the rate of change of Q with time along the streamline.

Therefore, v ·∇Q = 0 means that Q is constant along a streamline, that is to say for

a fluid element moving along that streamline.
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1.5 Vorticity and strain rate

Here we are interested in the way a small volume of fluid deforms when it moves with the

flow. In the figure below, the velocity is not uniform across the volume, so that it tilts and

stretches as it moves:

At time t, the velocity of a particle at location r is v(r, t) and that of a particle at

location r+ dr is v + dv. To first order in the components dxj (j = 1, 2, 3) of dr, we have:

dvi =
∂vi
∂xj

dxj . (1.12)

Einstein notation2 has been used in this equation and will be used throughout these notes.

We use either (x1, x2, x3) or (x, y, z) to denote the x–, y– and z–components.

The quantity Dij ≡ ∂vi/∂xj is called the deformation tensor. If we select a corner of

the cube on the figure above as a reference point, then Dij tells us how the points in the

cube move with respect to this reference point. Therefore, it contains information about

how the cube deforms as it moves, but does not describe the overall motion of the cube

with the flow. This tensor can be written as Dij = eij + ωij , where eij is a symmetric

tensor and ωij is an anti-symmetric tensor which are given by:

eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, rate of strain tensor (1.13)

ωij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
, vorticity tensor. (1.14)

The strain is a measure of the local deformation of a fluid element caused by an applied

stress, whereas the vorticity measures the local angular velocity of the fluid element, as

will be made clear below.

2Einstein notation implies that repeated indices within one term are summed over. Therefore,

∂vi
∂xj

dxj ≡
3∑
j=1

∂vi
∂xj

dxj .
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1.5.1 Rate of strain tensor

We are going to show that the diagonal terms of the tensor eij are associated with a change

in volume whereas off-diagonal terms are associated with shear.

Diagonal terms:

We assume here that only the diagonal terms, of the form ∂vi/∂xi, are non–zero.

Let us consider the volume element repre-

sented in the figure at time t. Its volume is

V (t) = ∆x1∆x2∆x3. We are now going to

calculate its volume V (t+ δt) at time t+ δt.

We note v(x1, x2, x3, t) the velocity at point (x1, x2, x3) and at time t. To first order in

δt, point A moves away from O at the relative velocity:

vrel = v(∆x1, 0, 0, t)− v(0, 0, 0, t) = ∆x1
∂v1

∂x1
x̂1,

where x̂1 is the unit vector in the x1–direction and the velocity in the derivative is evaluated

at O and at time t. The distance traveled by point A relative to O between t and t+ δt is

|vrel|δt and the distance OA(t+ δt) between O and A at t+ δt is obtained by adding ∆x1:

OA(t+ δt) = ∆x1 + ∆x1
∂v1

∂x1
δt.

We have assumed here that the displacement of a point which is initially at ∆x1 is

v(∆x1)δt, that is to say we have not taken into account the variations of v between t

and t + δt. This is only valid to first order in δt when the deformations are very small.

This calculation could have been done for any point belonging to the x = ∆x1 plane, which

means that this face of the cuboid is moving along the x1–axis while staying parallel to

its original direction. Similarly, along the x2– and x3–directions:

OB(t+ δt) = ∆x2 + ∆x2
∂v2

∂x2
δt,

OC(t+ δt) = ∆x3 + ∆x3
∂v3

∂x3
δt,

and, again, the faces of the cuboid in the y = ∆x2 and z = ∆x3 planes move while staying

parallel to their original direction.
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Therefore, there is no tilting but only stretching:

the cuboid only dilates or contracts.

The volume at t+ δt is:

V (t+ δt) = ∆x1∆x2∆x3

(
1 +

∂v1

∂x1
δt

)(
1 +

∂v2

∂x2
δt

)(
1 +

∂v3

∂x3
δt

)
,

which, to first order in δt, is equal to:

V (t+ δt) = ∆x1∆x2∆x3

[
1 + δt

(
∂v1

∂x1
+
∂v2

∂x2
+
∂v3

∂x3

)]
.

This can be written as:

V (t+ δt) = V (t) (1 + δt∇ · v) .

If we note δV the change in volume during δt, then the relative change in volume is:

δV

V
= δt∇ · v, (1.15)

which expresses the fact that the rate of volume expansion is ∇ · v, which is also equal to

eii, the trace of the tensor eij .

Off–diagonal terms:

We now assume that only the off–diagonal terms, of the form ∂vi/∂xj with j 6= i, are non–

zero. We limit the discussion to the two dimensional case to keep the analysis simpler,

noting that it can easily be extended to three dimensions.

We consider the surface element OADB

represented in the figure at time t. Since v1

depends only on x2, A moves relative to O

in the x2–direction. Similarly, B moves rel-

ative to O in the x1–direction. The dashed

lines represent the surface at time t+δt (here

and thereafter we ignore the translation of

the whole surface).
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To first order in δt, point A moves relative to O at the velocity:

vrel = v(∆x1, 0, 0, t)− v(0, 0, 0, t) = ∆x1
∂v2

∂x1
x̂2,

where x̂2 is the unit vector in the x2–direction and the velocity in the derivative is eval-

uated at O and at time t. Therefore, after a time δt, OA becomes OA′ with AA′ =

∆x1(∂v2/∂x1)δt. The angle δα through which the line rotates during δt is then given by

δα ' AA′/OA = (∂v2/∂x1)δt (positive angles are defined counterclockwise). Similarly,

OB rotates through δβ ' −(∂v1/∂x2)δt (this angle is negative if, as assumed in the figure,

∂v1/∂x2 > 0.) If δα = δβ, the angle γ between the lines OA and OB remains constant:

there is only rotation. However, when δα 6= δβ, γ changes by δγ = δβ − δα (which on the

figure is negative): there is shearing motion. The angle δγ is called the shear strain of the

fluid element and the rate at which γ changes is called the shear strain rate. This can be

related to the strain tensor through:

δγ

δt
=
δβ − δα
δt

= −
(
∂v1

∂x2
+
∂v2

∂x1

)
= −2exy. (1.16)

Similarly, exz and eyz are related to the shear strain rates in the xz and yz planes, respec-

tively. It can be shown that the deformation of a fluid element due to the off–diagonal

terms of the strain tensor do not change its volume.

1.5.2 Vorticity

Here again, we consider the two dimensional case for simplicity. We assume that all the

components of the tensor eij are zero, so that v1 depends only on x2, v2 depends only on

x1 and ∂v1/∂x2 = −∂v2/∂x1.

We are therefore in the same situation as

above but with δβ = δα, as illustrated in

the figure. This implies that the surface is

rotating without being deformed with the an-

gular velocity:

δα

δt
=
δβ

δt
=

δα+ δβ

2δt

=
1

2

(
∂v2

∂x1
− ∂v1

∂x2

)
= ωyx.

The vorticity tensor is therefore related to the local angular velocity of the fluid element.

If the off-diagonal components of eij are non-zero, which means that δα 6= δβ, then ωyx

represents the average angular velocity of the surface element around the z–axis. Simi-

larly, ωzy and ωxz are the average angular velocities around the x– and y–axes, respectively.

The local angular velocity vector of a fluid element is therefore given by ωzyx̂+ωxzŷ+ωyxẑ.

As will be seen throughout these notes, the quantity that appears most commonly in the
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description of flows is actually twice this angular velocity vector. It is called the vorticity

vector and is noted ω:

ω =

(
∂vz
∂y
− ∂vy

∂z

)
x̂ +

(
∂vx
∂z
− ∂vz
∂x

)
ŷ +

(
∂vy
∂x
− ∂vx

∂y

)
ẑ,

which we recognize as:

ω =∇×v . (1.17)

A flow is called irrotational if ∇×v = 0 and rotational if ∇×v 6= 0. In a rotational

flow, fluids elements rotate as they move, whereas in an irrotational flow they do not

rotate. This is illustrated in the figure below:

1.5.3 Deformation of a fluid element in the general case

The deformation tensor Dij = ∂vi/∂xj can be written in the form:

Dij = tij + dij + ωij , with tij =
1

3
δijekk and dij = eij −

1

3
δijekk. (1.18)

The interpretation of the different contributions for a fluid element is as follows:

• the tensor tij is diagonal and its trace is equal to the rate of volume expansion,

• the tensor dij is symmetric, its trace is zero, and it is related to the deformation of

the fluid element without change of volume,

• the tensor ωij is anti-symmetric and related to the local rigid-body rotation of the

fluid element.

This is illustrated in the figure below:
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1.6 Mass conservation

In this section, we derive the equation which expresses mass conservation.

1.6.1 Eulerian approach

We consider an arbitrary fixed volume V of the fluid delimited by a closed surface S, which

contains the mass:

m =

˚
V
ρ dV,

where ρ is the mass density. This mass varies due to particles entering and leaving the

volume.

The particles P which cross a surface element dS

per unit time are contained within the cylinder of

cross–sectional area dS and length v parallel to the

vector velocity v at this location. The volume of this

cylinder is v · dS, where the vector dS is perpendi-

cular to the surface element and directed outwards.

Therefore, the total mass which crosses the surface

element dS per unit time is ρv · dS. Note that this

is positive if particles leave the volume and negative

if they enter it.

The total mass which leaves the volume V per unit time is therefore the integral of ρv ·dS

over the surface and this is equal to −dm/dt, so that we can write:

d

dt

˚
V
ρ dV = −

"
S
ρv · dS. (1.19)

As the volume is fixed, we can move the time–derivative inside the integral on the left–

hand side. By using the divergence theorem to transform the right–hand side into an

integral over the volume, we then obtain:

˚
V

(
∂ρ

∂t
+∇ · (ρv)

)
dV = 0. (1.20)

Since this is valid for any volume V , we must have:

∂ρ

∂t
+∇ · (ρv) = 0. (1.21)

This is the mass conservation equation, also called continuity equation.

Using equation (1.6), mass conservation can also be written as:

Dρ

Dt
+ ρ∇ · v = 0. (1.22)
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1.6.2 Lagrangian approach

Above, we have derived the mass conservation equation by considering a fixed volume in

the fluid. We now show that the same equation can be obtained by writing the conservation

of mass for a fluid element of volume V moving with the flow. The calculation is slightly

more complicated, but it is worth doing as it shows how conservation laws can be obtained

with the two different approaches. The element distorts as it moves, but by definition its

mass m stays constant: no fluid crosses the surface as the surface itself moves with the

fluid. Therefore:
Dm

Dt
≡ dm

dt
= 0 =

d

dt

˚
V
ρ(t)dx(t)dy(t)dz(t),

where we make it explicit that the coordinates of the volume depend on time, as does the

mass density since the volume changes as the fluid element moves. This yields:

˚
V

(
dρ

dt
dxdydz + ρ

d(dx)

dt
dydz + ρ

d(dy)

dt
dxdz + ρ

d(dz)

dt
dxdy

)
= 0. (1.23)

To calculate, e.g., d(dx)/dt, we write dx =
(−−→
OP 2 −

−−→
OP 1

)
· x̂, where O is any fixed point,

x̂ is the unit vector in the x–direction, and the coordinates of P1 and P2 are (x, y, z) and

(x+ dx, y, z), respectively. Therefore:

d(dx)

dt
=

(
d(
−−→
OP 2)

dt
− d(

−−→
OP 1)

dt

)
·x̂ = (v(x+ dx, y, z)− v(x, y, z)) ·x̂ =

∂v

∂x
dx ·x̂ =

∂vx
∂x

dx.

Similarly for d(dy)/dt and d(dz)/dt. Therefore, equation (1.23) becomes:

˚
V

(
dρ

dt
+ ρ∇ · v

)
dxdydz = 0. (1.24)

Since this satisfied for any volume V , the integrand is identically zero and we recover

equation (1.22).

1.7 Incompressibility

The compressibility of a fluid is characterized by the coefficient:

β = − 1

V

∂V

∂p
=

1

ρ

∂ρ

∂p
,

where the derivatives are taken at either constant temperature or entropy, depending

on how compression happens. This coefficient is very small for liquids, and generally

several orders of magnitude larger for gases. Water is approximately incompressible, with

β ∼ 10−9 Pa−1 for a wide range of temperatures and pressures, whereas β ∼ 10−5 Pa−1 for

air, and the compressiblity of air is of course what enables sound to propagate. However,

we need to distinguish between an incompressible fluid and an incompressible flow as, under

some circumstances, air in motion for example can be approximated as incompressible.

A flow is said to be incompressible if the volume of fluid elements stays constant as they

move. In section 1.5, we established that the change δV of the volume V = ∆x1∆x2∆x3
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as it moved with the flow was given by equation (1.15). Substituting δV = 0 in this

equation then yields the condition for incompressibility:

∇ · v = 0 . (1.25)

As the mass of a fluid element stays constant as it moves, writing that its volume stays

constant is equivalent to writing that its density stays constant. Therefore, incompressi-

bility implies Dρ/Dt = 0 which, from equation (1.22), yields ∇ · v = 0, as above.

In section 2.2.4, we will give a condition for incompressibility that involves the ratio

of the flow velocity to the sound speed.

Note that the density ρ is not necessarily uniform (the same for all fluid elements) in

an incompressible flow. For example, oceans are stratified (higher density at the bottom)

due to gradients of salinity, temperature etc., even though water can be considered as

incompressible because an individual fluid element will retain its density as it moves.

Stratification of an incompressible fluid, in which Dρ/Dt = ∂ρ/∂t + v ·∇ρ = 0, implies

that ρ varies with time at a given location. This leads to internal waves because of

buoyancy being a restoring force, as we will see later in these notes.

1.8 Velocity potential, circulation and stream function

In some cases, it is convenient to express the components of the velocity vector as the

derivatives of a scalar. This can be done when the flow is either irrotational and/or

incompressible.

1.8.1 Velocity potential

If the flow is irrotational, then∇×v = 0, which implies that there exists a scalar φ, called

the velocity potential, such that:

v =∇φ. (1.26)

This is equivalent to the electrostatic potential resulting from ∇× E = 0. This equation

does not uniquely define φ, as any function of time can be added to a solution without

modifying v. Flows in which the velocity can be written as the gradient of a scalar are

also called potential flows. These are a very important class of flows, to which we will

come back in chapter 3. If in addition the fluid is incompressible, then ∇ · v = 0, which

yields:

∇2φ = 0, (1.27)

that is to say φ satisfies Laplace’s equation.

If the domain occupied by the fluid is simply connected (meaning any closed curve can

be reduced to zero by being continuously deformed while staying in the domain, e.g., flow

moving past a sphere), then, given v(r, t), the potential φ(r, t) is a single–valued function

of position. This can be shown by writing:

φ(r, t) =

ˆ r

r0

v(r′, t) · dl′,
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where r0 is an arbitrary fixed point. This integral is independent of the path from r0 to

r. Indeed, any two paths make up a closed curve. The circulation of v around that curve

is equal to the flux of ∇×v across the surface delimited by the curve (Stoke’s theorem),

and this is zero as the flow is irrotational. Therefore the integral is the same along the

two paths, which implies that φ is single–valued .

The velocity potential can still be defined through equation (1.26) when the domain

of the flow is not simply–connected (e.g., flow moving past an infinite cylinder), but the

integral above may then depend on the path from r0 to r, which means that φ is a multi–

valued function of position. In that case, the circulation of v around a closed curve is not

necessarily zero.

As an exemple, let us consider the so–called line vortex flow which, in cylindrical polar

coordinates (r, θ, z), is given by:

v =
k

r
θ̂,

where k is a constant and θ̂ is the unit vector in the azimuthal direction. It is straight-

forward to check that ∇×v = 0 everywhere except at r = 0, where neither the velocity

nor the vorticity are defined. If we define the flow domain to be r ≥ R, where R is an

arbitrary value, then it is not simply connected: any curve centered at the origin cannot

shrunk to a point without leaving the flow domain. Integrating ∇φ = v:

∂φ

∂r
= 0,

1

r

∂φ

∂θ
=
k

r
,
∂φ

∂z
= 0,

we obtain φ = kθ, which is a multi–valued function of position.

1.8.2 Circulation

Circulation is a very important concept in aerodynamics, where it is used to calculate

the lift on an object embedded in a fluid. We consider a closed curve C which delimits a

surface of the fluid.
It is a mathematical convention to define the positive

sense along a 2D curve as counterclockwise. There-

fore, an element dl along the curve is orientated as

shown on the figure. In aerodynamics, a circulation is

considered positive when it is clockwise, so in princi-

ple signs should be reversed. However, in these notes,

we will use the mathematical convention.

Therefore, the circulation, which is noted Γ, is defined as:

Γ =

˛
C

v · dl. (1.28)

Stokes’s theorem yields:

Γ =

¨
S

(∇× v) · dS ≡
¨
S
ω · dS, (1.29)
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with S being the surface delimited by C. For an irrotational flow, ω = 0 and Γ = 0.

Stokes’s theorem implicitly assumes that ω is defined everywhere over S. When the

domain of the flow is not simply connected, this condition is not satisfied, and Stokes’s

theorem cannot be used. For example, for the line vortex flow introduced in the previous

section, the circulation of the velocity along a circle C of radius r ≥ R centered at the

origin is given by:

Γ =

˛
C

v · dl =

˛
C

k

r
rdθ = 2πk.

This is non–zero because ω is non–zero at the origin.

We now consider the circulation along a contour C which encloses an aerofoil, which

is the cross-sectional shape of a wing, as represented on the figure below:

We are going to establish the following important result:

For an irrotational flow, the circulation is the same round all simple closed contours

enclosing the aerofoil. The circulation can therefore be calculated by choosing for C

a circle with a radius large enough that it encloses the aerofoil.

Let us take another contour C ′ and show that the circulation around C is the same as

that around C ′. This is illustrated in the figure below:

With the orientations shown on the figure, the blue contour is J1 = C1 − L1 + C ′1 − L2

and the red contour is J2 = C2 + L2 + C ′2 + L1. Since they are closed and the flow is

irrotational, we have: ˛
J1

v · dl =

˛
J2

v · dl = 0.

Therefore the sum of these two integrals is zero, which yields:

ˆ
C1+C′1+C2+C′2

v · dl = 0.
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Since C = C1 +C2 and C ′ = C ′1 +C ′2, this means that the circulation along C is the same

as that around C ′ if both contours are oriented in the same direction.

This is actually valid for any integral along a closed contour, not just the integral of v ·dl.

1.8.3 Stream function

In an incompressible fluid, ∇ · v = 0, which implies that there exists a vector A such

that v =∇×A. This is equivalent to the electromagnetic vector potential resulting from

∇ ·B = 0. In cartesian coordinates, this yields:

vx =
∂Az
∂y
− ∂Ay

∂z
, vy =

∂Ax
∂z
− ∂Az

∂x
, vz =

∂Ay
∂x
− ∂Ax

∂y
.

These equations do not uniquely define A: any gradient (in addition to any function of

time) can be added to a solution without modifying v.

Let us consider a two dimensional flow in the (x, y)–plane, for which there is no z–

dependence. From the above equations we get:

vx =
∂ψ

∂y
, and vy = −∂ψ

∂x
, (1.30)

where ψ ≡ Az is called the stream function. In this two dimensional case, the velocity

vector can be characterized by this one scalar function ψ only.

The stream function can of course also be defined in polar coordinates (r, θ) through the

relations:

vr =
1

r

∂ψ

∂θ
, and vθ = −∂ψ

∂r
. (1.31)

In two–dimensions, the vorticity is:

ω =

(
∂vy
∂x
− ∂vx

∂y

)
ẑ = −

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
ẑ ≡∇2ψ ẑ. (1.32)

Therefore, if the fluid is irrotational, the stream function satisfies Laplace’s equation:

∇2ψ = 0. (1.33)

The rate of change of ψ along a streamline is given by (see section 1.4.3):

v ·∇ψ = vx
∂ψ

∂x
+ vy

∂ψ

∂y
. (1.34)

Using equations (1.30), we see that v ·∇ψ = 0, which implies that ψ is constant along

a streamline. This can be used instead of equations (1.2) to find the equations of the

streamlines.

This also implies a relationship between the velocity potential and stream function

for a two dimensional fluid which is both irrotational and incompressible. Indeed, since

∇φ = v, this vector is everywhere tangent to a streamline. The lines of constant φ, which

are called equipotential lines, are therefore perpendicular to the streamlines (∇φ cannot

have a component along a line of constant φ). In other words, equipotential lines (constant

φ) and streamlines (constant ψ) are perpendicular to each other.
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Chapter 2

Dynamics of fluids

In this chapter, we focus on the transport of momentum in a moving fluid. Most of the

results presented here apply to incompressible fluids only. In general, when no external

forces are present, momentum can be transported by either advection and/or diffusion.

Advection is a transport by the mean motion of the flow and therefore occurs in the di-

rection of the flow. Diffusion is a transport from regions of higher momentum to regions

of lower momentum and occurs perpendicularly to the direction of the flow. Diffusive

transport of momentum is due to the viscosity of the fluid and results in frictional forces.

As already stated in chapter 1, the fundamental equations of fluids can be derived by

considering them as either a collection of particles (kinetic theory) or as a smooth con-

tinuum. This latter approach is justified when the mean free path of the particles is very

small compared to the macroscopic lengthscale of interest in the fluid. It enables to estab-

lish conservation equations more straightforwardly than kinetic theory. However, this does

not lead to a precise expression for the transport coefficients, in contrast to kinetic theory.

Transport of energy, mass and momentum occurs in a gas which is out of equilibrium

(i.e. in which the distribution function is not a Maxwell–Boltzmann distribution) through

molecular collisions. Most of the time, the departure from equilibrium is tiny, so that the

distribution function is nearly maxwellian. Within the context of kinetic theory, in which

molecular collisions are explicitly calculated, the so–called Chapman–Enskog procedure

gives the transport coefficients by considering small variations of the distribution function

around the Maxwell–Boltzmann distribution. Such a calculation is not possible when flu-

ids are viewed as continua, as in this case molecular collisions are not explicitly calculated.

It is possible however to get a phenomenological expression for the transport coefficients

in this context, as we shall see below.

2.1 Stress tensor

When the fluid is at thermal equilibrium, there is no resultant force on any volume element

within the fluid. However, when a deformation occurs (which can be measured by the rate

of strain tensor eij introduced in section 1.5.1), internal forces are created which tend to
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resist the deformation and bring the fluid back to equilibrium. Such forces, due to the

deformation of the fluid, are called internal stresses. As we may expect, they are related

to the rate of strain tensor, and also to the viscosity of the fluid. Internal stresses also

include pressure forces, which may exist in a fluid which is at rest.

2.1.1 Pressure and viscous forces in fluids

In a gas, forces between molecules are small and pressure is due to particles colliding with

each other. This can be pictured by imagining that the gas is contained within walls:

molecules have random velocities due to the finite temperature, and when they hit a wall

and rebound they transfer momentum to the wall. The net force communicated by the

molecules is perpendicular to the wall, and its value per unit surface area is defined as the

pressure. If we try to compress a gas by moving a piston, the collisions of the molecules

with the piston create a pressure force that resists the compression. A similar calculation

can be done by replacing the wall by an imaginary surface within the volume of the gas:

the momentum communicated to the molecules on that surface yields a pressure force on

the surface.

In a solid, pressure forces are due to intermolecular forces: if we try to compress a piece

of wood by pushing on its surface, there is a resistance due to the force that the molecules

in the wood exert on each other. The molecules are not able to move with respect to each

other.

In a liquid, compression is also resisted by mainly by intermolecular forces, although

molecules are also able to move with respect to each other: not as much as in a gas, but

more than in a solid. Intermolecular forces are strong enough to keep a given amount of

liquid in a specific volume, but not strong enough to prevent the molecules from moving

past each other, which enables the liquid to flow. In a gas, pressure forces are always

present whenever there is a finite temperature. In a liquid however, there can only be

pressure forces if there is gravity. In the ocean for example, pressure increases with depth:

because of gravity, a layer of water at a given depth exerts a force on the layer below, and

this is resisted by the pressure due to the intermolecular forces at the boundary between

the two layers. Because intermolecular forces are relatively strong, liquids are almost

incompressible.

Pressure forces exist in a fluid whether it moves or not. In a steady fluid, it is called

hydrostatic pressure.

A viscous force, by contrast, is only present in moving fluids. It is the force that

exists between two layers of fluid which move with respect to each other with different

velocities. It is characterized by the viscosity of the fluid, which measures how easy it is

for molecules to glide past each other. In a gas, a viscous force can be calculated in a

way similar to a pressure force: molecules with different mean velocities collide with each

other because of their random thermal velocity, and exchange momentum in such a way

as to reduce the relative velocity between the two layers. This process is called molecular

interchange. When the temperature increases, random velocities increase which leads to
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a higher viscosity.

In a liquid, it is intermolecular forces that predominantly resist layers moving past each

other, although there is some molecular interchange as well. Intermolecular forces become

weaker at higher temperatures, and therefore the viscosity of liquids decreases when the

temperature is increased.

2.1.2 Definition of the stress tensor

Transport of momentum across the surface of a volume element results in forces being

exerted by the fluid located on one side of the surface onto the fluid located on the

other side. When the transport of momentum is due to molecules crossing the surface

and colliding with each other, these forces have a very short–range and are localized in

very thin layers on both sides of the surface. Therefore, they can be viewed as being

exterted onto the surface itself (like pressure forces), and we can consider the local effect

of these forces by isolating a small plane surface element δS. We denote n̂ the unit vector

perpendicular to this surface element.

The local stress T is defined as the force per unit area exerted by the fluid located

on the side of the surface element towards which n̂ points, on the fluid located on the

other side.

If the range of the forces is very small compared with the linear dimensions of the surface

element, then the forces are proportional to the surface area. For example, if there is no

viscosity, only pressure forces are present and the stress is −pn̂. In a viscous fluid, there

is an additional contribution from the viscous stress.

We note σij the i–component of the stress

tensor on a surface element which has a

normal pointing in the j–direction.

It follows that, if i 6= j, σij is a tangential, or

shear stress, whereas, if i = j, it is a normal

stress.

In the particular example on the figure, the unit vectors normal to the surfaces are x̂, ŷ

and ẑ, and the components of the stress on the surface which normal is x̂, for example,

are Tx = σxx, Ty = σyx and Tz = σzx. More generally, it can be shown (see appendix)

that the components of the stress T acting on a surface which normal is along the unit
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vector n̂ = nxx̂ + nyŷ + nzẑ are given by:

Tx = σxxnx + σxyny + σxznz,

Ty = σyxnx + σyyny + σyznz,

Tz = σzxnx + σzyny + σzznz.

This can also be written in a compact form as:

Ti = σijnj , (2.1)

where Einstein’s notation is used.

Thereafter, we will define σij as having contribution from viscous forces only, that is to

say pressure forces will have to be added to obtain the total stress.

2.1.3 Two–dimensional shear flow in a gas

We start by revisiting a simple case which has been studied in the Statistical Physics

course in second year.

Let us consider a flow with the velocity profile rep-

resented on the figure. Such a flow where adjacent

layers of fluid move parallel to each other at different

speeds is called shear flow. Shear between adjacent

layers of fluids is resisted for by the viscosity of the

fluid, which results in a frictional force between the

layers.

Here we consider a gas, so that we neglect intermolecular forces and the transport of

momentum is only due to particles colliding with each other. The frictional force, which

we are are now going to calculate using kinetic theory, is due to the momentum transported

along the y–direction by the particles in the fluid which have a random (thermal) velocity

u relative to the mean flow.

On average, a molecule has a collision with another molecule after it travels through

a distance λ, which is the mean free path of the particles. We suppose that after the

collision, the momentum of the molecule is the same as that of its new environment.

Let us consider the momentum which is transported during the time δt across a surface

element δS perpendicular to the y–axis and with ordinate y.
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The particles which cross that surface from above

during δt are those contained in the cylinder of length

uδt and section δS and with a velocity u along −y.

There are nuδtδS/6 of these particles, where n is the

number density of particles and the factor 6 comes

about because there are three possible directions for

the particles, each with two orientations.

Each of these particles travel through λ before it suffers a collision below δS, which results

in its momentum varying by:

m [vx(y)− vx(y + λ)] ' −mλdvx
dy

,

to first order in λ/L, where L is the scale of variation of the velocity. In other words, each

particle carries below δS the excess of momentum mλdvx/dy. Here m is the mass of a

particle. On the other hand, each particle traveling upward carries above δS the deficit

of momentum −mλdvx/dy. Therefore, the net x–component of the momentum which is

carried downward during δt by the particles crossing δS is:

δ2px = 2

(
1

6
nuδtδS

)(
mλ

dvx
dt

)
=

1

3
nmuλ

dvx
dy

δSδt. (2.2)

This quantity is positive if dvx/dy is positive. In that case, the fluid located above the

surface δS accelerates the fluid located below, which means that it exerts onto this fluid

a force δFx ≡ δ2px/δt directed in the positive x–direction.

Adopting for the unit normal to the surface n̂ = ŷ, the stress on the surface δS is the force

per unit area exerted by the fluid located above the surface on the fluid located below,

that is to say T = (δFx/δS) x̂ ≡ σxyx̂. Therefore:

σxy = η
dvx
dy

, (2.3)

where we have defined the dynamic shear viscosity η as:

η =
1

3
nmuλ. (2.4)

Instead of η, we often use the kinematic viscosity ν:

ν =
η

ρ
=

1

3
uλ, (2.5)

where ρ = mn is the fluid mass density. Note that σxy is a rate of change of momentum

per unit area, which is a flux of momentum. The above result has been obtained for a gas,

but a similar calculation could be done for a liquid by replacing the mean free path λ by
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a correlation length, which is on the order of the spatial scale over which intermolecular

forces are important.

We now consider a box with horizontal faces at y and y+ δy and surface area δS. The

exchange of particles across the upper face during the time δt results in the momentum

δ2px(y + δy) being added to the volume, whereas the exchange across the lower surface

results in the momentum δ2px(y) being removed from the volume. Therefore, the time

rate of change of the momentum content of the box is:

1

δt

[
δ2px(y + δy)− δ2px(y)

]
=

d

dy

(
η

dvx
dy

)
δSδy, (2.6)

to first order in λ/L. This is also fvisc,x δSδy, where fvisc,x is the viscous force per unit

volume. Therefore:

fvisc,x =
dσxy
dy

. (2.7)

It is important to note that viscous forces are surface forces, meaning that they are

applied on a surface and are proportional to the area of the surface, like pressure forces.

They give rise to a net force on a volume and therefore we can define a viscous force per

unit volume, as done above, but when deriving boundary conditions for example they have

to be explicitly written as surface forces.

2.1.4 Stress tensor and velocity correlations

Using again the simple case of the two dimensional shear flow illustrated above, we now

show that the stress tensor is related to the correlation between the components of the

fluctuating velocity. The components of the instantaneous velocity of a particle in the fluid

are (vx+ux, uy), where vx is the mean velocity of the flow and ux and uy are the components

of the random (thermal) velocity relative to the mean flow. We have < ux >=< uy >= 0,

where the brackets denote a time average. The flux of the x–component of the momentum

along the y–direction is:

ρ (vx + ux)uy.

Averaged over a large number of particles, or, equivalently, over time, this gives:

ρ 〈uxuy〉 ,

since < vxuy >= vx < uy >= 0. We consider a small surface element with unit normal in

the positive y–direction. The quantity above, being the upwards flux of the x–component

of momentum, is the opposite of the force per unit area in the x–direction exerted by

the fluid located on the side of the surface element towards which the normal points. By

definition, this is −σxy. Therefore,

σxy = −ρ 〈uxuy〉 . (2.8)

30



This illustrates that the momentum is transported by the fluctuations of the velocity. For a

Maxwell–Boltzmann distribution function (or any xy symmetric function), < uxuy >= 0

and there is no transport. However, in a fluid which is out of equilibrium, this correlation

between the components of the fluctuating velocity may not be zero.

We denote by C the correlation coefficient between the velocities ux and uy:

C ≡ |〈uxuy〉|
u2

. (2.9)

We see from (2.8) that C gives a measure of the stress tensor.

In the special case where the random fluctuations are caused by sound waves propa-

gating with speed cs through a gas, u ∼ cs (as will be shown in section 5.1.3). In addition,

using equations (2.3) and (2.8), we obtain:

〈uxuy〉 = −ν dvx
dy

.

Therefore, in that case, the correlation coefficient becomes::

C ∼ ν

c2
s

∣∣∣∣dvxdy
∣∣∣∣ ∼ λ

L

vx
cs

=
λ

L
M, (2.10)

where we have used equation (2.5) and dvx/dy ∼ vx/L, where L is a characteristic length-

scale. Here M ≡ vx/cs is the Mach number. Momentum is therefore transported effi-

ciently when the mean free path in a gas, or correlation length in a liquid, is not too small

compared to L.

2.1.5 Expression of the stress tensor for a Newtonian fluid

We are now going to calculate the stress tensor in a more general case, and the calculation

presented in this section applies to either a gas or a liquid. As seen above, the viscous

(or friction) force in a fluid is due to an irreversible transport of momentum from regions

where the velocity is higher to regions where it is lower.

Friction occurs only when different parts of the fluid have different velocities. Therefore σij

should depend on the velocity gradients. If the velocity varies on a scale large compared

to the mean free path, i.e. to the scale over which molecular transport arises, one can

suppose that σij depends only on the first derivatives of the velocity with respect to the

coordinates. Furthermore, we suppose that the dependence is linear, i.e. we limit ourselves

to Newtonian fluids. The most general form of σij is then:

σij ∝
∂vi
∂xj

+A
∂vj
∂xi

,+Bδij
∂vk
∂xk

, (2.11)

where A and B are constants to be determined, and δij is the Kronecker symbol. The

inclusion of the last term on the right–hand side enables the trace of the tensor σij to

be treated separately. If the flow is uniformly rotating with angular velocity Ω in the

(xy)–plane for instance, we must have σxy = 0. Since vx = −Ωy and vy = Ωx in that case,

that implies A = 1. Therefore the tensor σij is symmetrical. We note that its trace is:
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Tr [σ] = (2 + 3B)∇ · v,

which shows that Tr [σ] is a measure of the volume change of a fluid element. It is an

experimental fact that the stresses which change the volume of a fluid element give different

viscous forces than the stresses that preserve the volume. Therefore we rewrite σij under

the form1 :

σij ∝
(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij∇ · v

)
+

(
B +

2

3

)
δij∇ · v,

where the first term in brackets on the right–hand side is trace free, i.e. does not modify

the volume of a fluid element.

The shear and bulk viscosities, that we denote η and ζ respectively, are then experi-

mentally defined as:

σij = η

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij∇ · v

)
+ ζδij∇ · v . (2.12)

Since σij has the units of a pressure, the units of η and ζ are Pa s (Pascal second).

This expression for the stress tensor is not exact: it has been derived phenomenologically

assuming that σij depends only on a linear combination of the first derivatives of the

velocity with respect to the coordinates. However, the kinetic theory applied to dilute

gases leads to the same expression for σij , as has been shown above in the simple case of

the two dimensional shear flow. For a dilute gas, η is given by equation (2.4).

By writing that η and ζ are scalar quantities, we implicitly assume that the fluid is

isotropic. When this is not the case, η and ζ are themselves tensors. It can be shown

that, as viscosity leads to dissipation of energy, η is always positive. Similarly, as internal

friction leads to an increase of entropy, ζ is also always positive.

The bulk viscosity is associated with internal degrees of freedom of the molecules in the

fluid. It becomes negligible if the equipartition between these different degrees of freedom

is reached over a timescale shorter than the timescale between two collisions. Furthermore,

for a perfect monoatomic gas it can be shown that ζ = 0.

For an incompressible fluid, we have simply:

σij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
= 2ηeij . (2.13)

The stress tensor is therefore proportional to the rate of strain tensor, that is to say to the

1I thank Prof. Steven Balbus for providing the elegant discussion presented here and leading to this

expression of the stress tensor.
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rate of change of the deformation of the fluid element2 (see section 1.5.1).

By generalising the calculation done above (section 2.1.3) for a shear flow, we can show

that the i–component of the viscous force per unit volume is given by:

fvisc,i ≡
∂σij
∂xj

. (2.14)

The viscous stress tensor we have calculated above, and which results from the defor-

mation of the fluid elements, vanishes when there is no velocity gradient. In that case, the

only stresses are due to pressure. We define the total stress Σij , which has contributions

from both viscosity and pressure, as:

Σij = σij − pδij , (2.15)

where p is the pressure. The minus sign comes from the fact that a fluid element which is

at rest is under compression, and the Kronecker symbol is required because the pressure

force acts perpendicularly to the surface. Pressure, therefore, only enters the component

of the stress which is along the direction j in which the normal points. This expression

for the total stress appears naturally in the equation of motion (see eq.[2.19] below).

Many fluids are not Newtonian, meaning there is no direct proportionality between

stresses and rates of strain. This can be due to the presence in the fluid of objects which

are large compared to the atomic scale, although small compared to the characteristic

lengthscales of the flow. This is the case for suspensions, which are heterogeneous mixtures

containing solid particles (e.g., muddy water, dust in air, etc.), biological fluids (e.g., blood)

or molten polymeres containing macro–molecules. The study of the relation between a

stress applied on a material and the resulting strains (deformation) and strain rates is

called rheology.

2It is interesting to contrast expressions (2.12) and (2.13) of the viscous stress tensor with that of the

stress tensor obtained for solid bodies, regarded as continuous media. Within the linear theory of elasticity,

that is to say in the context of small deformations, the stress tensor for isotropic bodies is given by Hooke’s

law:

σij = 2µ

(
εij −

1

3
δijεkk

)
+Kεkkδij ,

where µ and K are the shear and bulk moduli, respectively (also called moduli of rigidity and compression).

Here, εij is the strain tensor which, for small deformations, is given by:

εij =
1

2

(
∂εi
∂xj

+
∂εj
∂xi

)
,

where εi is the i component of the displacement vector due to the deformation. The quantity εij gives

the change in an element of length when the body is deformed. Therefore, in an elastic solid, the stress

tensor is proportional to the strain tensor, whereas in a liquid it is proportional to the rate of strain tensor.

In a solid body, internal stresses are due to forces of interaction between molecules which are displaced

when the body is deformed. Within the theory of elasticity, the body recovers its original shape when the

external applied force is removed. There is no dissipation of energy: mechanical energy is stored in the

deformation and regained after the external force is removed.
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There are broadly three reasons why a fluid may be non–Newtonian:

• the relation between the shear rate eij and the stress σij is non–linear; for example,

the effective viscosity ηeff , defined as the ratio of stress to shear rate, decreases when

the shear rate increases (shampoo, wall paint, ketchup, etc.),

• the relation between the shear rate and the stress depends on time; for example, ηeff

decreases with time, under constant stress (ketchup, cytoplasm, semen, etc.),

• the behavior is a mixture of viscous and elastic responses; the silicone silly putty

ball is an example of such a material, as it spreads out like a liquid when left on a

table under constant stress, whereas it bounces elastically off the ground (i.e. when

subject to a high stress).

Although these fluids are extremely important in a vast number of areas, we will only

concentrate on Newtonian fluids thereafter.

2.2 Equation of motion for a fluid

We now write Newton’s second law of motion for a fluid. This leads to the so–called

Navier–Stokes or Euler equations depending on whether the fluid is viscous or not, respec-

tively.

2.2.1 Navier–Stokes equation

We consider an arbitrary fixed volume V of the fluid delimited by a closed surface S, which

momentum in the i–direction is: ˚
V
ρvi dV.

This momentum varies due to particles entering and leaving the volume (in other words,

there is a flux of momentum advected by the fluid across the surface), and also because

of forces exerted on the surface and on the volume itself. In the same way that the total

mass leaving the volume V per unit time is the integral of ρv · dS over the surface (see

eq. [1.19]), the i–component of the momentum advected by the fluid across the surface

per unit time is the integral of ρviv · dS over the surface. Therefore, Newton’s second law

gives:

d

dt

˚
V
ρvi dV = −

"
S
ρviv · dS +

"
S
fsurf,i dS +

˚
V
fvol,i dV, (2.16)

where fsurf,i is the i–component of the force exerted on the surface per unit area and fvol,i

is the i–component of the force exerted on the volume per unit volume. Viscous forces

can be dealt with either by integrating the shear stress given by equation (2.1) over the

surface, or by integrating fvisc given by equation (2.14) directly over the volume. Both
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integrals are identical, as can be shown by using the divergence theorem3. Here we use

the force per unit volume, so that the contribution from the viscous force is:

˚
V

∂σij
∂xj

dV.

Therefore the only force contributing to the surface integral is the pressure force, and we

have fsurf,i dS = −p dS · x̂i, where p is the pressure, −p dS is the pressure force acting on

the surface dS, and x̂i is the unit vector along the i–axis.

As the volume is fixed, we can move the time–derivative inside the integral on the left–

hand side of equation (2.16). By using the divergence theorem to transform the surface

integrals on the right–hand side into volume integrals, we then obtain:

˚
V

∂

∂t
(ρvi) dV =

−
˚

V
∇ · (ρviv) dV −

˚
V
∇ · (px̂i) dV +

˚
V

∂σij
∂xj

dV −
˚

V
ρgidV, (2.17)

where we have included the gravitational force acting on the volume in the last integral

on the right–hand side, with gi being the i–component of the acceleration due to gravity.

The minus sign is due to the fact that we choose gi to be positive. Other forces could be

added as well. As this relation is satisfied for any volume V , we have:

∂

∂t
(ρvi) +∇ · (ρviv) = − ∂p

∂xi
+
∂σij
∂xj

− ρgi, (2.18)

where we have used ∇ · (px̂i) = ∂p/∂xi.

We remark that this equation can also be written as:

∂

∂t
(ρvi) +

∂

∂xj
(ρvivj + pδij − σij) = −ρgi, (2.19)

which makes it clear that the flux of the i component of the momentum in the j direction,

ρvivj + pδij − σij , has contributions from both advection (transport by the flow, ρvivj

term) and molecular transport (pressure and viscous forces, pδij − σij term).

The left–hand side of equation (2.18) can be written as:

vi

(
∂ρ

∂t
+∇ · (ρv)

)
+ ρ

∂vi
∂t

+ ρ (v ·∇) vi,

where the term in brackets is zero because of mass conservation (eq. [1.21]).

3For the tensor σij , the divergence theorem can be written as:

˚
V

∂σij
∂xj

dV =

"
S

σijnjdS,

where nj is the j–component of the unit vector normal to the surface. This surface integral is equal to!
S
TidS (see eq. [2.1]), where Ti is the i–component of the viscous force exterted by the fluid outside the

volume element onto the surface.
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Equation (2.18) then becomes:

∂vi
∂t

+ (v ·∇) vi = −1

ρ

∂p

∂xi
+

1

ρ

∂σij
∂xj

− gi. (2.20)

We now consider the case when compressibility effects are negligible, so that σij is given

by equation (2.13). Making the sum over repeated indices explicit, we then obtain for the

viscous force:

∂σij
∂xj

= η
3∑
j=1

[
∂2vi
∂x2

j

+
∂

∂xi

(
∂vj
∂xj

)]
= η∇2vi + η

∂

∂xi
(∇ · v) = η∇2vi,

where we have assumed that η does not depend on the space coordinates, which is valid

in a homogeneous fluid.

Equation (2.20) can then be written in vectorial form as4:

∂v

∂t
+ (v ·∇) v = −1

ρ
∇p+ ν∇2v + g. (2.21)

where we have used ν = η/ρ and g = −gix̂i. This is the so–called Navier–Stokes equation,

valid for an incompressible Newtonian fluid. It is a inhomogeneous non–linear partial

differential equation which is first or second order depending on whether ν is zero or not,

respectively.

Using equation (1.6), Navier–Stokes equation can also be written as:

Dv

Dt
= −1

ρ
∇p+ ν∇2v + g. (2.22)

This means that the Lagrangian acceleration is equal to the sum of the forces per unit

mass. This equation could also have been obtained using a Lagrangian approach, that is

to say by writing that the change of momentum of a fluid element moving with the fluid

was equal to the sum of the forces exerted on that fluid element, as done in section 1.6.2

for mass conservation.

The mass conservation equation (1.21) and Navier–Stokes equation above provide four

scalar equations for five unknowns, which are the three components of the velocity, pressure

and density. If the flow is incompressible, we also have equation (1.25), so that the

system of equations is close. However, when the flow is not incompressible, we have

to add an energy equation, or an equation of state relating p and ρ. In most of the

situations studied in these notes, the density ρ will be taken as a constant, so that the

4In cartesian coordinates, the components of the vector ∇2v are ∇2vx, ∇2vy and ∇2vz. That is to

say, the definition of ∇2v makes explicit reference to cartesian coordinates. It follows that, in cylindrical

coordinates for example, as the unit vectors depend on the coordinates, the components of ∇2v are not

∇2vr,θ,z.
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mass conservation equation will automatically be satisfied. The incompressibility and

Navier–Stokes equations are then sufficient for determining the properties of the flow,

assuming boundary conditions (see below).

In general, the non–linear term (v ·∇) v makes it impossible to derive an exact solution

to the Navier-–Stokes equation, and one has to rely on solving it numerically. Only when

the non–linear term is negligible, which happens for very low speed and/or very viscous

flows (see below), can an exact solution be found.

2.2.2 Reynolds number

As mentioned above, the flux of momentum is due to both advection and molecular trans-

port, the latter manifesting itself through pressure and viscous forces. Here, we compare

the advection, also called inertial, and viscous terms. Using equation (2.21), we see that:

inertial term

viscous term
=
|(v ·∇) v|
|ν∇2v|

.

If U is a typical velocity of the flow and L is a characteristic lengthscale, then a spatial

derivative of a component of v is on the order of U/L. We then obtain the approximate

relation:
inertial term

viscous term
∼ U2/L

νU/L2
. (2.23)

This ratio is called the Reynolds number Re and we therefore have:

Re =
UL

ν
. (2.24)

Note that Re can also be interpreted as the ratio of timescales. If advection is the only

source of momentum transport, then ∂v/∂t = (v ·∇) v, so that the timescale for advection

over a lengthscale L is τadv ∼ L/U . In the opposite case, when viscosity is the only source

of transport, we have the diffusion equation ∂v/∂t = ν∇2v, and the timescale for diffusion

over a lengthscale L is τdif ∼ L2/ν. Therefore, Re ∼ τdif/τadv.

Large Reynolds numbers correspond to flows where the advection term is dominant over

the viscous term, or equivalently where the advection time is much smaller than the viscous

time. Viscous effects in that case are usually negligible. However, when velocity gradients

are very large, as in a boundary layer, the estimates above are not valid anymore and

viscosity still plays a role.

It is interesting to relate the Reynolds number to the correlation coefficient between

the components of the fluctuating velocity in the flow. Using equations (2.5) and (2.24),

with U ∼ vx, we can write Re = ML/λ, and therefore C = M2/Re, where C is given

by equation (2.10). So large Reynolds numbers correspond to a small correlation between

the components of the fluctuating velocity. This is a consequence of the small value of the

ratio of the mean free path to the scale of the mean flow and it means the state of the

flow is not affected by the molecular transport of angular momentum. In other words, the

flow and the molecular transport are completely decoupled.
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2.2.3 Dimensional analysis and similarity

(Model flight in windtunnel, NASA)

Before computers were routinely used to assist de-

sign and manufacture of aircrafts, wind tunnels

were a common tool to test an object in flight. In-

stead of the object actually flying through stand-

ing air, the air is made to move past the object

which stays at rest. Although some wind tunnels

were large enough to test full–size aircrafts, scale

models were commonly used for tests to be carried

out in smaller tunnels.

The important question is then: how to make sure that the scale model is similar to (i.e.,

has the same properties as) the prototype to be tested? First, the scale model has to be

geometrically similar to the prototype, that is to say they can be transformed into one

another by changing all linear dimensions in the same ratio.

We are now going to obtain the other conditions by first rewriting Navier–Stokes

equation (2.21) under the form:

∂v

∂t
+ (v ·∇) v = −1

ρ
∇p+ ν∇2v − gẑ. (2.25)

where ẑ is the unit vector in the vertical direction. Through the boundary conditions, the

flow depends on the shape and velocity of a body moving through the fluid. The above

equation is valid for an incompressible fluid, and we further assume that ρ is uniform.

We introduce the typical velocity U of the flow, its characteristic lengthscale L (which is

that of the embedded body when there is one present), a characteristic timescale T and

a characteristic scale of pressure variation ∆P (the variation being measured from the

hydrostatic pressure). The inertial force5 (v ·∇) v, pressure force ∇p/ρ and viscous force

ν∇2v per unit mass are on the order of U2/L, ∆P/(ρL) and νU/L2, respectively. We also

define the following dimensionless variables:

r̃ =
r

L
, ṽ =

v

U
, t̃ =

t

T
, p̃ =

p

∆P
. (2.26)

Substituting these variables into equation (2.25) then yields:

L

UT

∂ṽ

∂t̃
+
(
ṽ · ∇̃

)
ṽ = −∆P

ρU2
∇̃p̃+

ν

UL
∇̃2ṽ − gL

U2
ẑ, (2.27)

5The term ρ (v ·∇)v is not a physical force, but it has the dimensions of a force per unit volume. In

steady state, it is the force that has to be exerted on a unit volume of the fluid to bring it into motion at

the velocity v, counteracting its inertia, or, equivalently, to bring it to rest if it has this velocity.
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where ∇̃ = L∇. Since L and T are the characteristic scales, the dimensionless time and

space derivatives are of order unity. This equation reveals the following dimensionless

numbers:

• Reynolds number Re = UL/ν: ratio of the inertial force U2/L to the viscous force

νU/L2 (already introduced above),

• Froude number (squared) Fr2 = U2/(gL): ratio of the inertial force U2/L to the

gravitational force g,

• Euler number, or pressure coefficient, Eu = ∆P/(ρU2): ratio of the pressure force

∆P/(ρL) to the inertial force U2/L,

• Strouhal number St = L/(UT ): ratio of the local acceleration U/T to the inertial

force U2/L.

Equation (2.27) can be written in terms of these dimensionless numbers:

St
∂ṽ

∂t̃
+
(
ṽ · ∇̃

)
ṽ = −Eu∇̃p̃+

1

Re
∇̃2ṽ − 1

Fr2
ẑ. (2.28)

This equation shows that, in two different flows with different viscosities moving past

objects with different dimensions, the dimensionless velocities ṽ = v/U are the same

functions of r̃ = r/L and t̃ = t/T as long as the numbers Re, Fr, Eu and St are the same.

Two such flows are called similar, as they can be transformed into one another by scaling

the lengthscale, velocity, time and pressure.

This scaling ensures kinematic similarity, as illustrated on the figure below in the case of

a model for waves:
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Keeping the ratio of the forces constant ensures dynamic similarity, as shown on the figure

below for a sluice gate flow in which the prototype and the model have identical Reynolds

and Froude numbers:

2.2.4 Incompressibility revisited

Here we consider a steady flow (very small St) with high Reynolds number Re. Ignoring

gravity and using the fact that
∣∣∣(ṽ · ∇̃

)
ṽ
∣∣∣ is on the order of unity, equation (2.28) indicates

that Eu ∼ 1, that is to say ρU2 ∼ ∆P (this is because acceleration in such a fluid is driven

by pressure gradients). The pressure variation ∆P within a fluid element induces a density

variation ∆ρ of this fluid element, and these are associated with sound waves propagating

through the fluid with the velocity cs such that c2
s ∼ ∆P/∆ρ, as will be shown in a later

chapter. Therefore ρU2 ∼ ∆P implies ρU2 ∼ c2
s∆ρ or, equivalently:

∆ρ

ρ
∼M2, (2.29)

where M≡ U/cs is the Mach number.

A fluid is incompressible if the density of an element within it does not change when

subject to pressure gradients. Therefore, compressibility can be neglected if ∆ρ/ρ � 1,

that is to say if M� 1. In other words, flows with velocities low compared to the sound

speed in the fluid behave as if the fluid were incompressible. This is because any surdensity

created by compression of a fluid element is transported away by sound waves much more

rapidly than the time it takes the fluid element to move. To a good approximation, the

fluid element therefore retains a constant density as it moves6.

6If a fluid element does not exchange heat with its surrounding, that is to say if the flow is isentropic,

which is the case when viscosity can be ignored, then a pressure variation ∆p results in a density variation

∆ρ such that ∆p/p = γ∆ρ/ρ, with γ being the adiabatic index, or ratio of heat capacity at constant

pressure to heat capacity at constant volume. Therefore, an incompressible flow corresponds to γ →∞.
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Typically, air is approximated to be incompressible for Mach numbers below 0.3, for

which the relative change in density is smaller than about 10%.

2.2.5 Euler equation for an inviscid fluid

Navier–Stokes equation is the equation of motion for an incompressible Newtonian (vis-

cous) fluid. If the viscosity is zero, it reduces to Euler equation:

ρ
∂v

∂t
+ ρ (v ·∇) v = −∇p+ ρg, (2.30)

which is valid even if the fluid is compressible. A fluid with no viscosity is called inviscid.

A fluid which is both inviscid and incompressible is called ideal, or perfect. It is usually

an approximation, as the only ideal fluid is superfluid liquid helium: at a temperature

of 2.172 K, the viscosity of He4 vanishes (He3 also becomes a superfluid but at a much

smaller temperature).

2.3 Boundary conditions

To calculate the velocity field v(r, t) of a fluid in motion, Navier–Stokes (or Euler) equation

has to be solved, and this requires to specify both the initial conditions and boundary

conditions.

2.3.1 Rigid boundary

Here we focus on a fluid which is in contact with a solid surface.

No–penetration condition:

A fluid which moves past a solid object cannot penetrate the object, and therefore the

component of the relative velocity perpendicular to the surface of the object is zero. In

other words, the normal component vn,fluid of the fluid velocity at the boundary has to be

equal to the normal component of the velocity of the boundary itself:

vn,fluid = vn,boundary. (2.31)

If the boundary is at rest, then vn,fluid = 0 there.

The above condition implies that streamlines lie on the surface of rigid boundaries and,

more precisely, in two dimensions, rigid boundaries are streamlines.

Note that the no–penetration condition only applies if the boundary is impermeable.

If it is porous, fluid can be injected into or sucked from the volume at the boundary.
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No–slip condition for a viscous fluid:

If the fluid is inviscid, it generally slips parallel to the boundary and there is no constraint

on the tangential component of the fluid velocity.

In a viscous fluid however, it is an observational fact that, in normal conditions, the

relative velocity parallel to the surface of the object is zero. That is to say, the tangential

component vt,fluid of the fluid velocity at the boundary is equal to the tangential component

of the velocity of the boundary itself:

vt,fluid = vt,boundary. (2.32)

This implies vfluid = vboundary for a viscous fluid. This is called the no–slip condition,

and it holds however small the viscosity may be. It can be understood by noting that any

discontinuity of the velocity at the boundary would lead to a very large stress (as the stress

depends on the gradient of the velocity) which would act to eliminate the discontinuity. In

other words, molecular transport at the surface prevents any slipping of the fluid parallel

to the boundary.

This condition was debated starting in the 19th century, as it was realized that molec-

ular interactions at the boundary may not lead to a stress similar to that in the interior

of the fluid. Although the no–slip condition is supported by observations at macroscopic

scales for simple fluids, slip over a rigid surface does occur in some cases. For exam-

ple, complex fluids like polymer melts slip over solid boundaries, in a complicated process

driven by the entanglement of the molecules. Boundary slip may also occur at microscopic

scales (smaller than a micron), and is therefore important in microfluidics, which deals

with flow of liquids through micrometer-sized channels.

In the rest of these notes, we will only deal with simple fluids at macroscopic scales

and will therefore assume that the no–slip condition holds for a viscous fluid.

This no–slip condition has important consequences for fluids with very small viscosity

(like the air) moving past an aerofoil (for example, cross-sectional shape of a wing). If the

viscosity of the fluid is neglected, then the flow is found to slip over the surface. However,

if the no–slip condition is enforced, the velocity varies very rapidly near the surface of

the aerofoil to adjust to the boundary condition. This creates a large stress according to

equation (2.13), even if the viscosity is very small, and results in a boundary layer in which

the structure of the flow is completely different than in the inviscid case. Therefore, even

though the viscosity can be neglected in the interior of the fluid, it cannot be ignored near

the boundary. Boundary layers will be discussed later in these notes.
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2.3.2 Interface between two fluids

We now examine the boundary conditions when the fluid is in contact with another fluid,

rather than a solid surface.

Continuity of the velocity:

When there is no mass transfer between the two fluids, conservation of mass implies

that the normal component of the velocity is continuous across the interface. (Mass trans-

fer may occur, e.g., at a liquid-gas interface when the liquid evaporates.)

This can be seen by writing the mass con-

servation equation (1.22) for the small

volume V represented on the figure and

spanning the interface, where both the

volume and the interface are moving with

the flow :
˚

V

Dρ

Dt
dV +

˚
V
ρ∇ · v dV = 0.

We take the limit ε→ 0. Then the first term on the left–hand–side vanishes. The second

term can be transformed into a surface integral using the divergence theorem, so that the

equation becomes: "
S
ρv · dS = 0,

where S is the surface that delimits the volume V . In the limit ε → 0, the lateral

surface does not contribute to the integral and we obtain the so–called kinematic boundary

condition:

v2 · n̂− v1 · n̂ = 0, (2.33)

where n̂ is the unit vector normal to the interface and the minus sign is due to the fact

that dS in the integral has to be oriented outwards.

As in the case of a rigid boundary, the above condition implies that, in two dimensions,

the interface between two fluids is a streamline.

If the equation of the interface is given by z = f(x, y, t), then the kinematic boundary

condition can be formulated in the following way:

vi,z =
dz

dt
=
∂f

∂t
+ vi,x

∂f

∂x
+ vi,y

∂f

∂y
, (2.34)

where vi,x, vi,y and vi,z are the components of the velocity in fluid i, for i = 1, 2. To

show that this is equivalent to the boundary condition written above, we assume that

the interface depends only on one coordinate, x for example. Then n = (−df/dx, 1) is a

vector normal to the interface at x. Therefore, vi · n = −vi,x (df/dx) + vi,z, and this is
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equal to ∂f/∂t, so that v1 ·n = v2 ·n, which is equivalent to the boundary condition (2.33).

The no–slip condition described in the previous subsection in the case of an interface

between a viscous fluid and a solid applies as well when the interface is between two viscous

fluids. This implies that the tangential component of the velocity is also continuous across

the interface. Therefore, for viscous fluids, the velocity is continuous across the interface,

and equal to the velocity of the interface itself:

vfluid 1 = vfluid 2 = vinterface. (2.35)

Surface tension:

Before discussing the other boundary conditions at the interface between two fluids, we

introduce the concept of surface tension, which is an important parameter for describing

the surface of a fluid or the interface between two fluids.

Within the volume of a fluid, a molecule is subject to attractive forces (e.g., hydrogen,

ionic or metallic bonds, van der Waals forces) from neighboring molecules in all directions,

so that the total force is zero. At the surface though, forces from molecules in the fluid

are not balanced and there is a net force pointing towards the interior of the fluid, as

illustrated on the figure below:

(Credit: www.sita–process.com)

This force opposes any increase of the surface area. The surface tension, noted γ, is defined

as the work per unit area that has to be done to increase the surface. For example, if

the surface is a rectangle with length L, the energy that has to be supplied to stretch its

width by dl is dW = γdS, with dS = Ldl. This can also be written as dW = Fdl, where

F is the force that has to be exerted to stretch the surface (and which is the opposite of

the force exerted by the surface). Therefore, F = γL, so that γ can also be defined as the

force per unit length exerted by the surface. The units of the surface tension are N/m.

The surface tension refers to a fluid which surface is in contact with vacuum. If the

surface is in contact with another fluid, the force exerted by this other fluid onto the
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surface modifies the surface tension and we talk about interfacial tension7. In the case

represented above where the interface is between a liquid and air, γ is positive. However,

γ may become negative when the interface is between two fluids or between a fluid and a

solid.

The effect of surface tension is to minimize the area of the interface, given of course

all the constraints that the interface is subject to. This is why soap bubbles or raindrops,

for which gravity is small, have a spherical shape: for a given volume, a sphere minimizes

the surface.

Continuity of the stress:

We now write Navier–Stokes equation (2.22) in an integral form for the small volume

element V represented on the figure used above for deriving the continuity of the velocity:

˚
V
ρ

Dv

Dt
dV =

"
S

fsurf dS +

˚
V

fvol dV,

where fsurf and fvol are the surface force per unit area and body force per unit volume

(e.g., gravity) exerted on the fluid element, respectively. As pointed out in section 2.1.3,

surface forces like viscous forces result in a net force on the volume of a fluid element,

and can therefore be written as volume forces as was done when deriving Navier–Stokes

equation. However, when the volume considered tends to zero, as here, viscous forces,

like pressure forces, have to be treated as surface forces. Therefore, fsurf has contribution

from viscous and pressure forces. When ε → 0, the left–hand–side of the equation above

vanishes. The first term on the right–hand–side gives fsurf,1 dS + fsurf,2 dS, where fsurf,1

(fsurf,2) is the force exerted by fluid 1 (fluid 2) on the area dS of the interface. Finally, the

second term on the right–hand–side reduces to ftens dS, where ftens is the surface tension

force at the interface. Therefore, we obtain at the interface:

fsurf,1 + fsurf,2 + ftens = 0. (2.36)

If the surface tension is negligible, this condition implies that the total stress (including

pressure) is continuous across the interface. Projected onto the i–axis, this gives:(
σ

(2)
ij − p

(2)δij

)
nj −

(
σ

(1)
ij − p

(1)δij

)
nj = 0, (2.37)

where σ
(1)
ij and p(1) are the stress tensor and pressure at the interface in fluid 1, and

σ
(2)
ij and p(2) are the same quantities at the interface in fluid 2. Here we have used the

7Interfacial tension also occurs when the fluid is in contact with a solid. This leads to capillarity, which

is the process by which a liquid in contact with a solid can rise or fall along the solid. Whether the liquid

rises or falls depends on the balance between the forces of adhesion (interaction between the molecules in

the liquid and that in the solid), cohesion (interaction between the molecules within the liquid) and any

other force present (e.g., gravity). The same competition between adhesion and cohesion explains why in

some circumstances (e.g., hydrophobic surface) the no–slip boundary condition does not apply.
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expression (2.1) of the stress, and the minus sign in front of the second brackets comes

about because the normal n̂ is oriented from fluid 1 to fluid 2.

The above condition implies that the tangential viscous stress is continuous across the

interface, as pressure acts only perpendicularly to the interface.

If both fluids 1 and 2 are inviscid, and surface tension is negligible, there is no tangential

stress and equation (2.37) implies that pressure is continuous across the interface.

2.3.3 Free surface

When the interface is between a liquid and a gas, it is referred to as a free surface. We

treat it separately because it is an important particular case.

Kinematic boundary condition:

The kinematic condition (2.33) is still valid but, here again, it can be formulated in a

more useful way by using the equation of the surface. For example, if this is given by

z = f(x, y, t), then we have at the surface:

vz =
dz

dt
=
∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
, (2.38)

and this is the kinematic boundary condition. If the free surface is stationary and depends

only on one coordinate, x for example, then vz/vx = df/dx, which means that the slope

of the streamline at the point z = f(x) is equal to the slope of the free surface, which is

expected as the free surface is a streamline. This is equivalent to the statement that the

component of the velocity normal to the boundary is zero.

Continuity of the stress:

If surface tension is negligible, the continuity of the stress at the interface, expressed by

equation (2.37), is also still valid, and this implies in particular that the tangential viscous

stress is continuous. Therefore, given that the viscosity of gases is usually very small, the

tangential viscous stress is zero at a free surface with no surface tension.

In addition, if the fluid is inviscid, continuity of the perpendicular component of the

stress implies that, at the free surface, the pressure force is equal and opposite to the surface

tension force.

2.4 The vorticity equation and Kelvin’s theorem

The vorticity equation expresses the conservation of angular momentum in a fluid. In this

section, we write the gravitational acceleration as the gradient of a potential, g = −∇χ.

The results presented here are valid when other external forces are present, as long as they

are conservative, that is to say derivable from a potential. We also assume that the fluid

is incompressible and that the density ρ is constant through the fluid, although the results

would also be valid if ρ were not constant but a function of pressure only.
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2.4.1 The vorticity equation for an incompressible viscous fluid

With the assumptions listed above, Navier–Stokes equation (2.21) becomes:

∂v

∂t
+ (v ·∇) v = −∇

(
p

ρ
+ χ

)
+ ν∇2v. (2.39)

We now use the vector identity:

(v ·∇) v = (∇×v)×v +∇
(

1

2
v2

)
,

to transform the equation above into:

∂v

∂t
+ ω×v = −∇

(
1

2
v2 +

p

ρ
+ χ

)
+ ν∇2v, (2.40)

where ω =∇×v is the vorticity. Taking the curl of this equation then yields:

∂ω

∂t
+∇× (ω×v) =∇×

(
ν∇2v

)
, (2.41)

as the curl of a gradient is zero. We now use the vector identity:

∇× (ω×v) = (v ·∇)ω − (ω ·∇) v + ω (∇ · v)− v (∇ · ω) ,

togeter with ∇ · ω = 0 (the div of a curl is zero) and ∇ · v = 0 (incompressibility), and

also8 ∇×
(
∇2v

)
=∇2ω, to rewrite equation (2.41) as:

∂ω

∂t
+ (v ·∇)ω = (ω ·∇) v + ν∇2ω, (2.42)

which is equivalent to the so–called vorticity equation:

Dω

Dt
= (ω ·∇) v + ν∇2ω . (2.43)

This is an equation which involves v and ω only, which are themselves related. It can be

used instead of the Navier–Stokes equation to calculate the flow velocity, the advantage

being that it does not depend on the pressure.

This equation describes the transport of vorticity in an incompressible fluid in which

the external force is derivable from a potential. The term on the left–hand–side is the rate

of change of vorticity in a unit volume element moving with the flow. Contributions come

from ν∇2ω, which represents the rate of change due to molecular diffusion of vorticity (in

the same way that ν∇2v represents the rate of change of momentum due to the diffusion

of momentum), and from (ω ·∇) v, which produces vortex stretching and twisting. The

process of twisting generates vorticity in a direction from a vorticity which is originally

8By definition of ∇2, we have the identity ∇× (∇×v) =∇ (∇ · v)−∇2v. In an incompressible fluid,

∇ ·v = 0, so that ∇2v = −∇×ω. Therefore, ∇×
(
∇2v

)
= −∇× (∇×ω) = −∇ (∇ · ω) +∇2ω. The div

of a curl is zero, so that ∇ · ω = 0, which yields ∇×
(
∇2v

)
= ∇2ω.
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in another direction. The process of stretching increases the magnitude of the vorticity if

the fluid element gets elongated in the direction of its vorticity.

As can be seen from the calculation above, non–conservative forces, if present, are a

source of vorticity. This is the case in particular of the Coriolis force, which appears

when we write Navier–Stokes equation in a rotating frame, and which is very important

in atmospheric physics. The Coriolis force, which manifests itself only over large scales

(hundred or thousands of kilometers), generates hurricanes but does not affect tornadoes.

2.4.2 Case of an ideal fluid and Kelvin’s theorem

When the fluid is inviscid (ν = 0), the vorticity equation becomes:

Dω

Dt
= (ω ·∇) v. (2.44)

This shows that, if the vorticity is zero initially, then it remains zero at all times.

This result can also be obtained by considering the circulation of the flow velocity

along a contour C:

Γ =

˛
C

v · dl. (2.45)

The rate of change of the circulation as the contour is moving with the flow is given by:

DΓ

Dt
=

˛
C

Dv

Dt
· dl +

˛
C

v · D (dl)

Dt
. (2.46)

The first integral on the right–hand–side can be calculated using equation (2.39) with

ν = 0, which yields: ˛
C

Dv

Dt
· dl = −

˛
C
∇
(
p

ρ
+ χ

)
· dl = 0.

The second integral on the right–hand–side can be written as9:

˛
C

v · D (dl)

Dt
=

˛
C
∇
(

1

2
v2

)
· dl = 0.

9We note dl(t) =
−→
AB where, at time t, the points A and B are at locations r and r + dl, respectively.

At time t+ dt, A has moved to A′ such that
−−→
AA′ = v(r)dt and B has moved to B′ such that

−−→
BB′ = v(r + dl)dt = v(r)dt+

∂v

∂xj
(r)dljdt.

We have −−−→
A′B′ = dl(t+ dt) = dl(t) +

d(dl)

dt
(t)dt,

with d(dl)/dt ≡ D(dl)/Dt. Using
−−−→
A′B′ =

−−→
A′A+

−→
AB+

−−→
BB′, we then get D(dl)/Dt = (∂v/∂xj) dlj , so that

v · D(dl)

Dt
= v · ∂v

∂xj
dlj =∇

(
1

2
v2
)
· dl.
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This yields Kelvin’s theorem:

D

Dt

(˛
C

v · dl

)
= 0. (2.47)

This means that the circulation along a

closed contour C remains constant as the

contour moves with the flow, as illus-

trated on the figure. Kelvin’s theorem is

valid whether the flow domain is simply

connected or not.

Using Stokes’s theorem, we can also write:

DΓ

Dt
=

D

Dt

(¨
S

(∇× v) · dS

)
, (2.48)

with S being the surface delimited by C, and where we have assumed that the vorticity

ω =∇×v is defined everywhere inside C. Kelvin’s theorem then implies:

D

Dt

(¨
S
ω · dS

)
= 0. (2.49)

Therefore, the flux of vorticity through a surface delimited by a contour C remains constant

as the contour moves with the flow. In particular, if the flux of the vorticity is zero initially,

it remains so at all times. Since the contour C can be taken arbitrarily small, this implies

that if the vorticity is zero initially, it remains so at all times, which is the result obtained

above already.

Note that equation (2.49) is not in contradiction with equation (2.43), which shows that

vorticity can be produced by stretching a fluid elements. Indeed, changes in the magnitude

of the vorticity are compensated for by changes in the area so that the integral above stays

constant as the element moves.
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The figure illustrates Kelvin’s theorem. A

vortex line associated with a fluid element

is a line that points in the direction of

ω = ∇×v, and it is therefore perpendic-

ular to the streamline associated with that

fluid element. A vortex tube is a bundle

of vortex lines. A consequence of Kelvin’s

theorem is that the vortex lines/tubes move

with the fluid.

A vortex line attached to some fluid element remains attached to that fluid element

as it moves with the flow. We say that the vorticity moves with the fluid. This is

Helmholtz’s theorem.

A consequence of equation (2.49) is that a vortex line cannot end in the fluid: it either

terminates at the boundaries or forms a closed curve. (If it ended in the fluid, there would

be no flux of vorticity through the surface delimited by a closed contour, so the flux of

vorticity would not be constant.)

We now examine the particular case of a two–dimensional flow in which v = vxx̂+vyŷ,

with x̂ and ŷ being the unit vectors in the x and y directions, respectively, and where vx

and vy do not depend on z. Then ω is in the z–direction and (ω ·∇) v = ω (∂v/∂z) = 0.

Therefore
Dω

Dt
= 0 for a 2D ideal flow , (2.50)

assuming that it is subject to a conservative body force and it has a density ρ which is

constant throughout. This means that the vorticity of a fluid element is conserved as the

element moves with the flow. If the flow is steady, then the vorticity equation becomes

(v ·∇)ω = 0, which means that the vorticity is conserved along streamlines.

2.5 Conservation of energy and Bernoulli’s theorem

In the same way that the equation of motion in Mechanics leads to an equation expressing

conservation of energy, the Navier–Stokes equation can be re–written to express conserva-

tion of energy in a moving fluid. In an ideal fluid, this leads to the so–called Bernoulli’s

theorem.

2.5.1 Conservation of energy in an incompressible Newtonian fluid

The kinetic energy per unit volume is ρv2/2 ≡ ρv ·v/2, and its Eulerian rate of change is:

∂

∂t

(
ρv2

2

)
= ρv · ∂v

∂t
+
v2

2

∂ρ

∂t
≡ ρvi

∂vi
∂t

+
v2

2

∂ρ

∂t
.

Substituting ρ∂vi/∂t using equation (2.20), we obtain:
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∂

∂t

(
ρv2

2

)
= −1

2
ρvj

∂v2

∂xj
− vi

∂p

∂xi
+ vi

∂σij
∂xj

− ρvigi +
v2

2

∂ρ

∂t
. (2.51)

Using the fact that the fluid is incompressible, so that ∂vi/∂xi = 0, and the mass conser-

vation equation ∂ρ/∂t = −vi∂ρ/∂xi, the equation above can be written as:

∂

∂t

(
ρv2

2

)
= − ∂

∂xj

(
1

2
ρv2vj

)
− ∂

∂xi
(vip) +

∂

∂xj
(viσij)− σij

∂vi
∂xj
− ρvigi. (2.52)

Each of the first three terms on the right–hand–side is a divergence. We now integrate

this equation over a fixed volume V and use the divergence theorem to transform these

three terms into a surface integral:

d

dt

˚
V

ρv2

2
dV = −

"
S

1

2
ρv2v · dS−

"
S
pv · dS +

"
S
viσijnjdS

+

˚
V

fvol · v dV −
˚

V
σij

∂vi
∂xj

dV, (2.53)

where fvol ≡ ρg is the gravitational force (to which we may add any other body force acting

on the fluid) and nj is the j–component of the unit vector n̂ normal to the surface. Since

the volume is fixed, we have moved the time derivative outside the integral on the left–

hand–side. This equation means that the rate of change of kinetic energy in the volume

V (term on the left–hand–side) is equal to the sum of the terms on the right–hand–side

which are, in the order they are written:

• flux of kinetic energy advected by the fluid across the surface,

• work done per unit time by the pressure force −pdS exerted on the surface,

• work done per unit time by the viscous force exerted on the surface (the i–component

of the viscous force per unit surface area is σijnj , as given by eq. [2.1]),

• work done per unit time by the gravitational force (or any other body force) exerted

on the volume,

• irreversible energy dissipation rate due to viscosity10; we denote this term D.

The work done by the pressure and gravitational forces leads to a rate of change of kinetic

energy which is stored as potential energy and returned without loss to the system when

the forces are removed. By contrast, the work done by viscous forces is only partially

10The fact that this term leads to energy dissipation can be shown by writing the equation of conservation

of entropy, which takes the form:

ρT
Ds

Dt
= σij

∂vi
∂xj

,

where s is the entropy and T is the temperature (e.g., Landau & Lifshitz, Chapter V, §49).
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returned when the forces are removed: an amount D of energy per unit time is irreversibly

transformed into thermal energy (i.e. energy of ordered motion transferred into disordered

motion).

As the stress tensor is symmetrical, and making the sum over repeated indices explicit,

we can write:

σij
∂vi
∂xj

=

3∑
i=1

3∑
j=1

1

2
(σij + σji)

∂vi
∂xj

=

3∑
i=1

3∑
j=1

1

2
σij

∂vi
∂xj

+

3∑
j=1

3∑
i=1

1

2
σij

∂vj
∂xi

,

where we have interchanged the indices in the second double sum. For a Newtonian

incompressible fluid, σij is given by equation (2.13), and therefore the rate of energy

dissipation can be written as:

D =

˚
V
σij

∂vi
∂xj

dV = 2η

˚
V
e2
ij dV , (2.54)

where summation over i and j means that e2
ij = e2

11 +e2
22 +e2

33 +2e2
12 +2e2

13 +2e2
23, since eij

is symmetrical. As D expresses an irreversible dissipation of energy, it has to be positive,

which implies η > 0. Not surprisingly, D is related to the rate of change of the deformation

eij of fluid elements. In a solid, the energy D may be stored as potential energy of elastic

deformation and returned to the system when the deformation is removed. However, in a

fluid, this corresponds to an irreversible loss of kinetic energy.

It is interesting to compare the work Wsurf done by the viscous forces which are exerted

on the surface of a volume V with the work Wvol done by the resultant viscous force per

unit volume given by equation (2.14). They can be written as:

Wsurf =

"
S
viTidS =

"
S
viσijnjdS =

˚
V

∂

∂xj
(viσij) dV,

and:

Wvol =

˚
V
vi
∂σij
∂xj

dV = Wsurf −D.

Navier–Stokes equation (2.20) multiplied by vi and integrated over a volume V yields:

˚
V
vi

Dvi
Dt

dV = Wp +Wvol +Wg,

where Wp and Wg are the work done by pressure and gravitational forces, respectively

(note that here the work done by surface pressure forces is equal to the work done by

the resultant pressure force per unit volume, as the fluid is incompressible). Therefore,

the rate of change of kinetic energy is related to Wvol. However, this quantity does not

represent the work done by viscous forces when the velocities vary across the volume,

because in that case the surface forces are exerted at points which move with different

velocities. If the velocity were uniform throughout the volume, Wvol would be equal to

Wsurf and there would be no dissipation. In that case, the work done by viscous forces

results only in a change of the bulk velocity of the volume. However, when the velocity is
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non uniform, Wsurf = Wvol +D, where Wvol is the part of the work that changes the bulk

velocity of the fluid and D is the part that deforms the volume without changing its bulk

velocity.

2.5.2 Conservation of energy in a steady ideal fluid: Bernoulli’s theorem

We now focus on the particular case of an ideal fluid, which is both incompressible and

inviscid (ν = 0). Although we could just use the equations above with σij = 0, we

obtain more general results by re–deriving the conservation energy equation from Euler’s

equation (2.30). Writing the gravitational acceleration as the gradient of a potential,

g = −∇χ, and assuming ρ to be constant throughout the fluid, this equation becomes:

ρ
∂v

∂t
+ ρ (∇×v)×v = −∇

(
1

2
ρv2 + p+ ρχ

)
. (2.55)

(eq. [2.40]) with ν = 0 and in which we have replaced ω by ∇×v).

Bernoulli streamline theorem:

We now consider a steady flow and take the dot product of equation (2.55) with v. As the

vector (∇×v)×v is perpendicular to v, this yields:

(v ·∇)

(
1

2
ρv2 + p+ ρχ

)
= 0, (2.56)

which means that the quantity

H =
1

2
ρv2 + p+ ρχ is constant along streamlines. (2.57)

This is called Bernoulli’s theorem, and is valid for a steady, inviscid and incompressible fluid

in which ρ is constant throughout the fluid. It implies that, if the gravitational potential

is constant along a streamline, the flow accelerates when the pressure decreases11.

The quantity ρv2/2, which is the kinetic energy per unit volume, has the dimensions

of a pressure and is called the dynamic pressure, and p+ ρv2/2 is the total pressure. The

fact that H is constant along streamlines can be understood by noting that, when the

pressure p is increasing in the direction of the flow, fluid elements have to do work against

11Bernoulli’s theorem is responsible for the cavitation phenomenon, which is the formation of vapor

bubbles in a fluid when the velocity increases sufficiently that the pressure drops down to the saturation

vapor limit. This happens for example behind the blade of a rapidly rotating ship propeller. Due to the

higher pressure of the surrounding medium, the bubbles subsequently collapse, emitting large amplitude

shock waves which release energy locally and damage the blades of the propeller. This emission of shock

waves enables to detect military submarines. Cavitation bubbles are also used in a range of medical

procedures to deposit energy non–intrusively, for example to target cancer cells or break kidney stones.

Cavitation bubbles are also an efficient tool for Mantis shrimps to catch their preys: the rapid motion of

the claws generates bubbles which, when they subsequently collapse, produce a measurable force on the

prey that can be enough to kill it.
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the pressure gradient and therefore loose kinetic energy. In the opposite case, when the

pressure p is decreasing, fluids elements gain kinetic energy. The quantity H is often

referred to as the total enthalpy per unit volume.

Bernoulli’s theorem for irrotational flow:

In an irrotational flow, ∇×v = 0, and v can be written as the gradient of a velocity

potential φ: v =∇φ (see section 1.8.1). Therefore, equation (2.55) implies:

ρ
∂φ

∂t
+

1

2
ρv2 + p+ ρχ = C(t), (2.58)

where C is a function of time only. The quantity on the left–hand side is therefore constant

throughout the whole fluid at any given time. Since any function of time can be added to

φ without changing the velocity, the function C(t) can be subsumed into ∂φ/∂t by adding

(1/ρ)
´ t
t0
C(t′)dt′ to φ, where t0 is an arbitrary constant. Therefore, Bernoulli’s theorem

becomes:

ρ
∂φ

∂t
+

1

2
ρv2 + p+ ρχ = 0. (2.59)

If the flow is steady, then

H =
1

2
ρv2 + p+ ρχ is constant throughout the whole fluid, (2.60)

but here the constant is not necessarily zero. This is an extension of Bernoulli’s theorem

which is valid for a steady, inviscid, incompressible and irrotational fluid in which ρ is

constant throughout.

2.6 Examples of viscous flows and very viscous flows

Couette, Poiseuille and Stokes flows are studied in Problem Set 2.
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Chapter 3

Potential flows

A potential flow is a flow which is both inviscid and irrotational. The name comes from the

fact that, in an irrotational flow, the velocity can be written as the gradient of a velocity

potential.

In the previous chapter, we have established Kelvin’s theorem, which states that if

an inviscid flow has no vorticity initially, it has no vorticity at all subsequent times and

therefore remains a potential flow (provided the external force is derivable from a potential

and the mass density is constant throughout the fluid). In particular, a flow which is at

rest initially is a potential flow.

There is a difficulty near a solid boundary though, as may occur if an object is immersed

in the flow. As we have already pointed out in section 2.3.1, viscosity cannot be ignored

near a rigid boundary, even if it can be neglected in the interior of the fluid. The large stress

that results from the flow velocity adjusting to the boundary condition creates a boundary

layer in which viscous effects are important. Potential flow theory does not apply in such

boundary layers, which will be studied in the next chapter. However, the flow moving

past a solid object may still be calculated using the potential flow approximation in the

outer regions if the Reynolds number is large there (larger than about 25), and matched

to boundary layer approximations near the object.

In this chapter, we will be concerned with irrotational high Reynolds number flows,

approximated as inviscid. We will also limit our study to incompressible fluids.

Important applications of potential flow theory include water waves and outer flows

(away from the boundary layers) around aerofoils, which are the cross–sectional shape of

an object designed to generate lift when moving through a fluid, like a wing, blade or sail.

The study of the motion of air past an aerofoil is called aerodynamics. As pointed out

in section 2.2.4, air is approximated to be incompressible for Mach numbers below 0.3.

Therefore, although incompressible potential flow theory would not apply to commercial

aircrafts, which cruise at speeds of Mach larger than 0.8, it is important for low–speed

aerodynamics. The Reynolds number Re = UL/ν depends on the characteristic velocity

U of the flow and on the characteristic lengthscale L over which parameters vary. In the

case of aerodynamics, L is the size of the aerofoil. Therefore, high Reynolds numbers

are achieved for high–speed flows around larger objects. In the case of waves, L is the
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wavelength, so potential theory applies to large scale disturbances.

3.1 General properties of potential flows

In this chapter, we make the following assumptions:

• the flow is inviscid (ν = 0),

• the flow is irrotational (∇×v = 0),

• the flow is incompressible (∇ · v = 0),

• ρ is uniform throughout the fluid,

• the external force is gravity with the gravitational acceleration given by g = −∇χ.

The condition ∇×v = 0 implies that the velocity can be written as the gradient of

a velocity potential φ: v = ∇φ. As pointed out in section 1.8.1, φ is a single–valued

function of position only if the flow domain is simply connected. Also, φ is not uniquely

defined by the equation above: any function of time can be added to a solution without

modifying v.

Incompressibility yields:

∇ · v = ∇2φ = 0 , (3.1)

which means that φ satisfies Laplace’s equation. The boundary conditions for φ follow

from the boundary conditions for v. If the boundary is rigid, equation (2.31) implies that

the normal derivative of φ on the surface (that is to say, the derivative in the direction

of the normal to the boundary) is equal to the normal component of the velocity of the

boundary itself:
∂φ

∂n

)
surface

= vn,boundary. (3.2)

If the boundary is an interface between two fluids, then equation (2.33) implies:

∂φ

∂n

)
fluid 1, surface

=
∂φ

∂n

)
fluid 2, surface

. (3.3)

The no–slip condition does not apply here as the fluid is inviscid.

It can be shown that, within a simply connected flow domain, Laplace’s equation has

a unique solution in the two following cases: (i) the flow domain is bounded and the

boundary condition (3.2) is satisfied at each point of the boundary, (ii) the flow domain

is not bounded but the boundary condition (3.2) is satisfied at any rigid surface and the

velocity matches that of the fluid at infinity (e.g., flow moving past a sphere).

If the flow domain is not simply connected, other conditions have to be added for the

potential to be determined uniquely.

Calculating φ from Laplace’s equation and then v from ∇φ is much easier than cal-

culating v directly from Euler’s equation, because Laplace’s equation is linear whereas
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Euler’s equation contains the non–linear term (v ·∇) v. Once the velocity has been ob-

tained, the pressure can be calculated from Euler’s equation (2.30), which we recall here:

ρ
∂v

∂t
+ ρ (v ·∇) v = −∇p+ ρg. (3.4)

We also recall Bernoulli’s theorem (2.59), as satisfied by incompressible potential flows:

ρ
∂φ

∂t
+

1

2
ρv2 + p+ ρχ is constant throughout the whole fluid. (3.5)

Finally, as we have seen in section 1.8.3, if the flow is two dimensional, as it is also

incompressible, we can define a stream function ψ such that:

vx =
∂ψ

∂y
, and vy = −∂ψ

∂x
, (3.6)

in cartesian coordinates (x, y) or:

vr =
1

r

∂ψ

∂θ
, and vθ = −∂ψ

∂r
. (3.7)

in polar coordinates (r, θ). The lines ψ = constant are streamlines.

Like φ, ψ is not uniquely defined by the equations above: any gradient (in addition to any

function of time) can be added to a solution without modifying v.

Since the flow is irrotational, and noting ẑ the unit vector in the z–direction:

∇×v = −∇2ψ ẑ = 0 , (3.8)

which means that ψ satisfies Laplace’s equation in a two dimensional potential flow.

3.2 Simple potential flows

Because Laplace’s equation is linear, different solutions for φ (and ψ in two dimensions) can

be superposed to yield new and more complex solutions. This is why it is worth studying

very simple potential flows which may not be very realistic, but can be superposed to

construct more interesting flows.

3.2.1 Uniform parallel flows

This is a flow such that v = U x̂ where U is a constant and x̂ is the unit vector along the

x–axis. The vorticity is clearly zero for this flow. The condition v =∇φ then implies:

φ = Ux. (3.9)

If the flow is two dimensional, then equations (3.6) yield:

ψ = Uy. (3.10)

It is easy to verify in this simple example that ψ = constant, that is to say y = constant,

is the equation of the streamlines and that the streamlines and equipotential lines (given

by φ = constant) are perpendicular to each other.
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3.2.2 Line vortex flow

This a two dimensional flow such that, in polar coordinates:

v =
Γ

2πr
θ̂, (3.11)

where Γ is a constant, called the strength of the vortex, and θ̂ is the unit vector in the

azimuthal direction. The vorticity is:

ω =∇×v =
1

r

∂ (rvθ)

∂r
ẑ = 0.

As already calculated in section 1.8.1, the velocity

potential is given by:

φ =
Γθ

2π
, (3.12)

which is a multi–valued function of position.

We obtain ψ by integrating equations (3.7):

ψ = − Γ

2π
ln

r

r0
, (3.13)

where we have added a constant to make the argument of the ln dimensionless (as ψ is

defined within an arbitrary constant).

As seen in section 1.8.2, the circulation is defined as:

Γ =

˛
C

v · dl,

and, for an irrotational flow, it is the same round all simple contours enclosing the origin.

It was noted in section 1.8.2 that, for a line vortex flow, the circulation of the velocity

around a contour centered at the origin is non zero, even though the vorticity is zero. This

is because the flow domain is not simply connected, due to the singularity at r = 0. In

other words, since the vorticity is not defined at r = 0, Stokes’s theorem does not apply.

One way around this difficulty is to define ω as a Dirac delta function at the origin:

ω(r, θ) = Γδ(0)ẑ, (3.14)

so that: ˆ +∞

r=0

ˆ 2π

θ=0
ωrdrdθ = Γ,

and Stokes’s theorem applies. This is really what is meant by line vortex: the vorticity is

non zero only along a line.
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3.2.3 Sources and sinks

This is a flow which streams towards (sink) or away from (source) a point. The velocity

of such a flow is given by:

v =
m

4πr2
r̂ in 3D, v =

m

2πr
r̂ in 2D, (3.15)

where m is a constant, called the strength of the source or sink, and r̂ is the unit vector

along the radial direction. In this case, the origin is the sink (m < 0) or source (m > 0).

The vorticity is:

ω =∇×v = −1

r

∂vr
∂θ

ẑ = 0.

In two dimensions, dφ/dr = m/(2πr) yields:

φ =
m

2π
ln

r

r0
, (3.16)

and dψ/dθ = m/(2π) yields:

ψ =
mθ

2π
. (3.17)

It is similar to what what obtained for the line vortex flow, with φ and ψ being inter-

changed.

3.2.4 Dipole flow

We now consider the situation where we have both a source and a sink with the same

strength m.

The dipole approximation in this con-

text is the limit when the separation

d = 2a between the source and the

sink goes to zero. We call moment of

the dipole flow the vector p = −mdx̂
pointing from the sink to the source.

In two dimensions, the velocity potentials φ1 and φ2 corresponding to the sink and source,

respectively, are given by:

φ1 = −m
2π

ln
|r− ax̂|
r0

, φ2 =
m

2π
ln
|r + ax̂|
r0

,

where r0 is an arbitrary length. Since Laplace’s equation is linear, the velocity potential

φ corresponding to the dipole flow is obtained by adding φ1 and φ2, so that:

φ =
m

2π
(ln |r + ax̂| − ln |r− ax̂|) .
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Using a/r � 1, to first order in a/r we obtain:

φ =
m

2π

2a cos θ

r
=
p cos θ

2πr
= −p · r̂

2πr
, (3.18)

where r̂ is the unit vector in the radial direction. The velocity is then calculated from the

gradient of φ:

vr =
∂φ

∂r
= −p cos θ

2πr2
, vθ =

1

r

∂φ

∂θ
= −p sin θ

2πr2
. (3.19)

The figure shows the streamlines in blue and

the equipotential (lines of constant φ) in

red. This is similar to the calculation of

the electrostatic potential due to an electric

dipole, as expected since in both cases the

potential satisfies Laplace’s equation.

3.2.5 Flow around a circular cylinder

We consider a flow moving past an infinite cylinder perpendicularly to its axis.

Far away from the cylinder, the flow velocity is

v = U x̂. Since there is no dependence on the

coordinate along the axis of the cylinder, this is

a two dimensional problem in the (x, y), or (r, θ),

plane. We note R the radius of the cylinder cross–

section.

Because of the presence of the cylinder, the flow domain is not simply connected (a contour

encircling the cylinder cannot be shrunk to zero continuously while staying in the domain).

However, it could be shown that the solution to Laplace’s equation satisfying the boundary

condition (3.2) at the surface of the cylinder and matching the velocity at infinity is unique

if we specify the circulation around the cylinder. Below, we therefore examine two different

cases corresponding to two different circulations.

Like in electrostatics, the velocity potential can be written as a multipole expansion.

The general solution of Laplace’s equation in two dimensions, using polar coordinates, is:

φ(r, θ) = (a0 + b0 ln r) (A0 +B0θ) +

∞∑
n=1

[An cos (nθ) +Bn sin (nθ)]
(
anr

n + bnr
−n) .

(3.20)
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We recognise the following terms: A0b0 ln r corresponds to a sink or a source, a0B0θ corre-

sponds to a line vortex, A1a1r cos θ corresponds to a uniform flow, A1b1 cos θ/r corresponds

to a dipole flow.

Cylinder with no circulation:

If there is no circulation around the cylinder, then the term corresponding to the line

vortex in the above expansion of φ is zero. Since there is also no sink nor source in the

fluid, the first non zero term in the expansion is the n = 1 dipole term. Since the flow

velocity at infinity is proportional to cos θ, we set B1 = 0 and look for solutions under the

form:

φ =

(
ar +

b

r

)
cos θ.

If we can find a solution under this form which satisfies the boundary conditions, then

this is the solution as we have also specified the circulation and therefore the solution is

unique. At infinity, we have a uniform flow for which φ = Ux = Ur cos θ as shown in

section 3.2.1. Therefore a = U . At r = R, vr = ∂φ/∂r has to be zero to satisfy the

boundary condition (3.2). Therefore U − b/R2 = 0, which yields b = UR2. The solution

is then:

φ = U

(
1 +

R2

r2

)
r cos θ, (3.21)

which is the sum of a uniform parallel flow and a dipole flow. The gradient of φ then gives

the velocity:

vr = U

(
1− R2

r2

)
cos θ, vθ = −U

(
1 +

R2

r2

)
sin θ. (3.22)

There are two stagnation points, where the velocity vanishes: (R, 0) and (R, π).

To obtain the equations of the streamlines (shown

on the figure), we can also calculate the stream

function ψ by integrating equations (3.7), which

yields:

ψ = U

(
1− R2

r2

)
r sin θ. (3.23)

The streamline ψ = 0 is made of the two

semi–infinite lines along the x–axis plus the cir-

cumference of the cylinder. As we have discussed

in section 2.3, in a two dimensional flow, a rigid

boundary is always a streamline as the velocity

has no normal component at the boundary.

(Credit: https://www.ecourses.ou.edu)
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The pressure is obtained from Bernoulli’s theorem (3.5) applied to a steady flow, which

states that ρv2/2 + p is constant throughout the whole fluid, as χ is uniform. If we note

p0 the pressure at infinity, then the pressure at the surface of the cylinder is given by:

p(R, θ) = p0 +
1

2
ρU2 − 1

2
ρv2(R, θ) = p0 +

1

2
ρU2

(
1− 4 sin2 θ

)
. (3.24)

In this figure, the streamlines correspond to

the black curves, the equipotential lines to

the white curves, and pressure is indicated

by the colors (red and blue are high and

low pressure, respectively).

(Credit: Wikipedia)

Because of the symmetry of the pressure, there is no net force acting on the cylinder.

This conclusion can be shown to hold for any object, not just a cylinder. This is known

as the d’Alembert paradox, as obviously common experience is that any object moving

relative to a fluid is subject to a significant resistance, or drag1. A solution to this paradox

will be presented in the next chapter.

Cylinder with circulation:

If the cylinder rotates around its axis, the relative motion of the fluid at the surface

results in a finite circulation around the cylinder. Note that, as shown in section 1.8.2, for

an irrotational flow, the circulation is the same round all simple contours enclosing the

1D’Alembert did this calculation in 1752 as a prize problem for the Berlin Academy of Science. The

motion of a body relative to an inviscid and incompressible flow was important to understand the design

of boats. The result however, indicating that there would be no drag, discredited completely mathematical

fluid mechanics, and d’Alembert did not get the prize. This episode prompted the words of Sir Hinshelwood

taken as an epigraph for these notes. Prandtl proposed a resolution of the paradox in 1904, when he found

that even a very small viscosity would result in the creation of a boundary layer at the surface of the

object in which viscous forces produce a drag. This is largely accepted as the right way of accounting

for the drag force, as it is completely supported by experimental observations and mathematical analysis.

However, there is no rigorous mathematical proof of this process and another solution to the paradox has

been proposed recently, in which the drag is produced by the turbulence which results from the inviscid

potential flow being unstable. No viscosity is required in that case.
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cylinder. We model this situation by adding to the velocity potential and stream function

found above in the case of no circulation a term corresponding to a line vortex as described

in section 3.2.2. We then obtain:

φ = U

(
1 +

R2

r2

)
r cos θ +

Γθ

2π
, (3.25)

ψ = U

(
1− R2

r2

)
r sin θ − Γ

2π
ln

r

r0
, (3.26)

with r0 being an arbitrary constant, which yield the following velocity:

vr = U

(
1− R2

r2

)
cos θ, vθ = −U

(
1 +

R2

r2

)
sin θ +

Γ

2πr
. (3.27)

We define α ≡ Γ/(4πRU). The stagnation points here satisfy (i) r = R and sin θ = α, if

|α| ≤ 1, or (ii) θ = ±π/2 and r/R = |α|+
√
α2 − 1, if |α| ≥ 1 (where θ is positive if Γ and

U have the same sign and negative otherwise).

The figure below shows the streamlines for different values of α. The stagnation points

are indicated in red. Here U > 0 and Γ < 0 (clockwise), so that α < 0.

When |α| < 1 (that is to say, |Γ| < 4πR|U |), there are two distinct stagnation points.

The point labelled 1 on the figure is called the attachment point, and it is where the

oncoming flow divides into that moving above and that moving below the cylinder. The

point labelled 2 is called the separation point.

The pressure can be calculated as above, and this yields:

p(R, θ) = p0 +
1

2
ρU2

[
1−

(
Γ

2πRU
− 2 sin θ

)2
]
. (3.28)

The force acting on a surface element dS = Rdθ with a unit length along the axis of

the cylinder is dF = −pdSr̂, where p is evaluated at the location of dS. The x– and

y–components of this force are −pdS cos θ and −pdS sin θ, respectively. Therefore, the

x– and y–components of the total force acting on the surface of the cylinder with a unit

length along the axis are:

Fx =

ˆ 2π

0
−p(R, θ)R cos θdθ, Fy =

ˆ 2π

0
−p(R, θ)R sin θdθ. (3.29)
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The force in the x–direction, which is called the drag, is zero, like in the case of no

circulation.

However, there is a non zero force in the y-direction, which is called the lift. It is due to

the sin θ term in the expression for p:

Fy =

ˆ 2π

0
−ρUΓ

π
sin2 θdθ = −ρUΓ. (3.30)

In the context of a rotating object immersed in a fluid, the lift is also called the Magnus

force. It is a well–known effect in tennis or football, as it leads to the swerving of balls

which are hit with spin. On the figure above, where U > 0 and Γ < 0 (clockwise), Fy > 0

so that the cylinder is pushed upwards.

The direction of the lift can be understood in the following way:

Because the velocity of the parallel

flow is in the same direction as that

of the line vortex above the cylinder,

and in the opposite direction below

the cylinder, the flow velocity is

larger above than below the cylinder.

(This results in the streamlines being closer to each other above than below the cylinder,

as seen in Problem Set 1). Bernoulli’s theorem then implies that the pressure is larger

below than above the cylinder, which results in an upwards force on the cylinder.

It is important to note that the vertical

pressure gradient is due to the fact that

the streamlines are curved, as illustrated

on the figure.

The change of direction of the velocity v yields a centripetal acceleration v2/r per unit

mass, where r is the local radius of curvature, which can only be generated by the pres-

sure force ∂p/∂n, where n is the coordinate in the direction normal to the streamline.

Therefore pressure decreases towards the centre of curvature. (This effect is the reason

why the pressure at the core of a tornado is very low, and objects get ’sucked’ into the

sky.) In the case of the cylinder with circulation, the streamlines are curved in such a

way that pressure decreases when we approach the cylinder moving vertically either from

the top or from the bottom. However, because both the curvature radius is smaller and

the velocity is larger above the cylinder, the drop in pressure is more significant above

than below the cylinder. The lift is therefore due to an asymmetry in the curvature of the

streamlines. Such a situation, which here is the result of the rotation of the cylinder, may
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also be produced by a stationary cylinder with a sharp–edged flap at the separation point

or by a wing2.

This figure illustrates how the Mag-

nus effect can be used on a ship to

reduce fuel comsuption.

Although it is straightforward to calculate the lift in the simple case of a flow past

a cylinder by directly solving for the velocity and pressure, it is much more difficult to

do so for a more complicated aerofoil. However, in two dimensions, techniques based on

complex variables can be used to map the flow past a cylinder into the same flow past a

different object. This is the object of the next section.

3.3 Complex velocity potential

In this section, we consider an incompressible and irrotational two dimensional flow.

3.3.1 Cauchy–Riemann equations

The velocity may be written as a function of either the potential velocity or the stream

function:

vx =
∂φ

∂x
=
∂ψ

∂y
, and vy =

∂φ

∂y
= −∂ψ

∂x
. (3.31)

The functions φ(x, y) and ψ(x, y) then satisfy the Cauchy–Riemann equations, so that the

complex potential, defined as:

w(z) = φ(x, y) + iψ(x, y), (3.32)

with z = x + iy, is differentiable (see appendix A). The derivative of w can then be

calculated by keeping y constant:

dw

dz
=
∂φ

∂x
+ i

∂ψ

∂x
= vx − ivy. (3.33)

2A very good description of the lift on aerofoils is given in How do wings work?, H. Babinsky, 2003,

Physics Education, 38, 497. In this article, the author shows that the ’popular’ explanation for the lift that

fluid particles flowing across the top and the bottom surfaces must reach the trailing edge of the aerofoil

at the same time, which results in higher speed and therefore lower pressure at the top, is wrong.
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These results also apply in polar coordinates, using z = reiθ. Both φ and ψ, and therefore

w, may be multi–valued functions. However, by specifying the values the function can take

(which is known as specifying a branch of the function), we can make it single–valued. Since

it is also differentiable, it then becomes an analytic function.

Cauchy–Riemann equations also imply that both φ and ψ satisfy Laplace’s equation, as

already pointed out in section 3.1.

3.3.2 Complex potential of a flow past a cylinder

In the absence of circulation, we have found above that the potential and stream function

of a flow past a cylinder are: φ = U
(
r +R2/r

)
cos θ and ψ = U

(
r −R2/r

)
sin θ (eq. [3.21]

and [3.23]). Using z = reiθ, we obtain:

w(z) = U

(
ze−iθ +

R2

z
eiθ

)
cos θ + iU

(
ze−iθ − R2

z
eiθ

)
sin θ = U

(
z +

R2

z

)
. (3.34)

For a line vortex, the potential is φ = Γθ/(2π) and ψ = −(Γ/(2π)) ln (r) (eq. [3.12] and

[3.13] where we have taken r0 = 1), so that:

w(z) =
Γ

2π
(−i ln r + θ) = − iΓ

2π
(ln r + iθ) ≡ − iΓ

2π
ln z, (3.35)

defined up to an additive constant3.

Therefore the complex potential for a flow past a cylinder with circulation Γ is:

w(z) = U

(
z +

R2

z

)
− iΓ

2π
ln z. (3.36)

3.3.3 Conformal mapping

This is a technique in which a flow problem (or more generally a Laplace equation problem)

in simple geometries is transformed into more complicated geometries by using an analytic

mapping function that preserves the angles.

We consider a pair of complex variables z = x + iy and Z = X + iY , each defined in

their own complex plane, such that:

Z = f(z) (3.37)

is an analytic function of z. This is a transformation that maps a point (x, y) in the

z–plane into a point (X,Y ) in the Z–plane. The inverse z = F (Z) is also an analytic

function of Z if f ′(z) 6= 0, as F ′(Z) ≡
(
f−1

)′
(Z) = 1/f ′

(
f−1(Z)

)
≡ 1/f ′ (z) .

3The logarithm of a complex number z = reiθ is defined as follows:

ln(z) = ln r + i (θ + 2πk) ,

where k is an integer. Although this is a multi–valued function, we can specify the branch as −π ≤
Im [ln(z)] ≤ π so that the function (called principal value) becomes single–valued.
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It can be shown that:

At the points in the z–plane where the first derivative of f is non–zero, the transfor-

mation preserves the angles and is called conformal mapping.

This means that two short segments which are perpendicular in the z–plane are mapped

into two short segments which are also perpendicular in the Z–plane. More generally, if

the first non–zero derivative of f at a point z is the nth derivative, then a local angle at z

is multiplied by n when mapped into the Z–plane. (See, e.g., section 4.6 in Acheson for a

proof).

If w(z) = φ(x, y)+iψ(x, y) is the complex potential of a two dimensional incompressible

potential flow in the z–plane, and Z = f(z) is a conformal transformation, then:

W (Z) = w (F (Z)) = Φ(X,Y ) + iΨ(X,Y )

is an analytic function of Z. It follows that Φ and Ψ satisfy the Cauchy–Riemann relations,

which implies that they satisfy Laplace’s equation4, and that VX(X,Y ) = ∂Φ/∂X =

∂Ψ/∂Y and VY (X,Y ) = ∂Φ/∂Y = −∂Ψ/∂X represent the velocity components of an

incompressible potential flow in the Z–plane, with again dW/dZ = VX− iVY . In addition,

since W (Z) = w (F (Z)), the value of φ at (x, y) is the same at that of Φ at (X,Y ) when

those two points are related by z = F (Z), with similar result for ψ and Ψ. This implies that

streamlines in the (x, y)–plane are mapped into streamlines in the (X,Y )–plane through

this transformation. Furthermore, as rigid boundaries are themselves streamlines, they

too map into rigid boundaries in the (X,Y )–plane.

In other words, if we know the streamlines and equipotentials of a flow in a given

geometry, we can obtain the streamlines and equipotentials corresponding to any

conformal mapping of this geometry.

Note that, since W (Z) = w (F (Z)), the streamline ψ(x, y) = C1, for example, trans-

forms into the streamline Ψ(X,Y ) = C1. We would still obtain a flow in the Z–plane

with W (Z) = 2w (F (Z)), for example, but that would lead to the velocity satisfying

different boundary conditions. The complex potential in the Z–plane is defined to be

W (Z) = w (F (Z)) because, in the case of the flow past an aerofoil, as studied below, the

velocity satisfies the same boundary condition at infinity in both the z and Z–planes.

4The transformation needs to be conformal for Laplace’s equation in the z–plane to be transformed

into Laplace’s equation in the Z–plane because, e.g.,

∇2Φ =
1

|f ′(z)|2
∇2φ,

which requires f ′(z) 6= 0.
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We now illustrate conformal mapping with the simple case of a uniform parallel flow.

We consider the transformation Z = f(z) =
√
z, with the inverse being z = F (Z) = Z2.

Writing z = |z|eiθ, with −π ≤ θ ≤ π, f(z) has two branch functions, f+(z) =
√
|z|eiθ/2

and f−(z) = −
√
|z|eiθ/2. Each of these functions is single–valued. However, they are not

continuous at points along the axis θ = ±π (x ≤ 0 axis), which is called the branch cut.

The end–point of the branch cut, which is z = 0 and where f+ and f− are both 0, is

called a branch point and is a singularity. If we exclude the branch cut, then each of these

functions is analytic. In what follows we consider f+, which is called the principal value.

Then the z–plane is mapped into the the right half of the Z–plane, in the way illustrated

in the figure below, where the thick dashed black line indicates the branch cut :

For a uniform parallel flow, the potential and stream function are given by φ(x, y) = Ux

and ψ(x, y) = Uy (see eq.[3.9] and [3.10]). Therefore, the complex potential is w(z) =

U (x+ iy) = Uz. For simplicity we take U = 1. Using the transformation f+(z), the

complex potential in the Z–plane can be written as:

W (Z) = w
(
Z2
)

= Z2 = (X + iY )2 = X2 − Y 2 + 2iXY.

Therefore Φ(X,Y ) = X2 − Y 2 and Ψ(X,Y ) = 2XY . In the z-plane, the streamlines

ψ = y = constant are horizontal lines, and the equipotentials φ = x = constant are vertical

lines. In the Z-plane, the streamlines become Ψ = 2XY = constant, which are hyperbo-

las with the coordinate axes as asymptotes, and the equipotentials are Φ = X2 − Y 2 =

constant, which are hyperbolas with either the X– or Y –axis as axis of symmetry. The

figure below shows the streamlines in red and the equipotentials in blue for this flow in

the z– and Z–planes. The colored dots illustrate how different points are mapped. We

can think of the thick black line just above the x–axis in the z–plane as a rigid boundary,

which maps into the thick black rigid boundary shown in the Z–plane. Therefore, this

mapping has transformed a uniform parallel flow into a flow in a right–angle corner, as

could be confirmed by calculating directly the potential and stream function in this latter

case.
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We notice on the figure above that the streamlines and equipotentials, which are per-

pendicular in the z–plane, as still perpendicular in the Z–plane, as they should from the

discussion in section 1.8. The transformation is indeed conformal as f ′ does not vanish,

and conformal mapping always preserves the angles.

We now discuss a transformation which is very important in the context of aerody-

namics.

3.3.4 The Joukowski transformation

The Joukowski transformation enables a two dimensional flow around a cylinder to be

mapped onto a two dimensional flow around the wing of an airplane. It is given by:

Z = f(z) = z +
c2

z
, (3.38)

where c is a real number. The inverse is then:

z = F (Z) =
1

2

(
Z +

√
Z2 − 4c2

)
, (3.39)

where we have not inserted ± in front of the square root as it is understood to have two

branch functions. To make this function continuous we exclude the branch cut which

is the segment along the X–axis between −2c and 2c. We also make it single–valued

by selecting the principal value of the square root. Therefore z ∼ Z when |Z| is large.

Excluding Z = ±2c is equivalent to excluding z = ±c, which are the only points where

f ′(z) = 0. Therefore, the transformation is conformal in the domain which excludes the

branch cut.

Using z = reiθ, the transformation can be written as:

Z = reiθ +
c2

r
e−iθ =

(
r +

c2

r

)
cos θ + i

(
r − c2

r

)
sin θ. (3.40)

The real and imaginary parts are equal to X and Y , respectively. Writing cos2 θ+sin2 θ =

1, we then obtain:
X2

(r + c2/r)2 +
Y 2

(r − c2/r)2 = 1.

If r is a constant, that is to say z moves along a circle of radius r centered at the origin

in the z–plane, then this equation is that of an ellipse. If r = c, Z = 2c cos θ, which is a
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segment along the X–axis, as illustrated on the figure below:

Here again, we can think of the circle of radius c in the z–plane as a rigid boundary

which maps into a plate segment which is also a rigid boundary in the Z–plane. Let us

consider a uniform parallel flow past this plate. The complex potential for this flow, as

seen above (section 3.3.3), is W (Z) = UZ, with U being the velocity. We can map this

flow back into the flow around the circle in the z–plane:

w(z) = W (f(z)) = U

(
z +

c2

z

)
. (3.41)

This is an elegant way to recover the result we have already obtained above (eq. [3.34]).

3.3.5 Potential flow past a finite plate and the Kutta condition

The complex potential corresponding to a flow past a circle of radius R when there is

a finite circulation is given by equation (3.36). This corresponds to the case when the

oncoming uniform flow is parallel to the x–axis.

If, instead, this flow was coming from below the x–

axis at an angle of attack α, the complex potential

would be obtained from equation (3.36) by changing

θ to θ − α or, equivalently, by changing z = reiθ to

ze−iα. This yields:

w(z) = U

(
ze−iα +

R2

z
eiα

)
− iΓ

2π
ln z, (3.42)

where we have ignored e−iα in the ln as it amounts to just adding a constant to the

potential. If we now map this flow into the Z–plane using Joukowski transformation (3.38)

with c = R, we get the complex potential W (Z) of a flow incident at an angle α onto a plate

segment, since the angles are preserved. The expression for W (Z) is rather complicated,

so instead of calculating it we derive the velocity components VX and VY in the Z–plane
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using VX − iVY = dW/dZ. Since W (Z) = w (F (Z)), with z = F (Z), we obtain:

VX − iVY =
dw

dz

dz

dZ
=

dw

dz

(
dZ

dz

)−1

. (3.43)

Using equations (3.38) with c = R and (3.42), this yields:

VX − iVY =

(
Ue−iα − UeiαR

2

z2
− iΓ

2πz

)
z2

z2 −R2
. (3.44)

These velocities represent the flow in the Z–plane and therefore need to be expressed as

a function of Z. However, keeping in mind the relation (3.38) between z and Z, we can

get useful information from the expression above.

We see that, if the term inside the brackets in the above equation is non zero, the flow

speed is infinite when z = ±R, which corresponds to Z = ±2R, that is to say the ends of

the plate. We call trailing edge the downstream edge of the plate, located at X = 2R, and

leading edge the upstream edge, located at X = −2R. The velocity at the trailing edge

can be made finite if the term in brackets vanishes for z = R, which implies:

Ue−iα − Ueiα − iΓ

2πR
= 0, (3.45)

that is to say:

Γ = −4πRU sinα. (3.46)

This is called the Kutta condition, and its meaning will be discussed in the next section

in the context of more realistic aerofoils. Writing z = R+ ε, with ε� R, equation (3.44)

then yields VX → U cosα and VY → 0 when ε → 0. The fluid is therefore parallel to

the plate at the trailing edge. The figure below shows the streamlines around the circle

in the z–plane and around the finite plate in the Z–plane for both the case where there

is no circulation and the case where there is circulation and the condition above it satisfied:

The Kutta condition implies |Γ| < 4πR|U |, so that in the z–plane there are two distinct

stagnation points s and s′ on the surface of the circle (see section 3.2.5), and since dw/dz =

0 when z = R (eq. [3.45]), s′ is on the x–axis when the Kutta condition is met.
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3.3.6 The Joukowski aerofoil

In the case of the plate considered above, the velocity at the trailing edge is finite when

the Kutta condition is met, but the velocity at the leading edge is still infinite. This is

why flat plates with sharp edges are not used to make aerofoils.

Instead, aerofoils have a rounded leading edge and

a sharp trailing edge, which yields a finite velocity

everywhere, as we are now going to show.

We can generate such an aerofoil by applying

Joukowski mapping on a circle in the z–plane which

center is not at the origin, as illustrated on the figure.

Since z = −a+(R+a)eiϕ along the circle, Joukowski

transformation (3.38) with c = R yields the shape of

the co–called Joukowski aerofoil in the Z–plane as:

Z = −a+ (R+ a)eiϕ +
R2

−a+ (R+ a)eiϕ
, (3.47)

which is represented on the figure.

The complex potential in the z–plane for an angle of attack α is the same as that given

by equation (3.42) but with z shifted to z+ a and the radius of the circle changed from R

to R+ a:

w(z) = U

[
(z + a)e−iα +

(R+ a)2

z + a
eiα

]
− iΓ

2π
ln (z + a) . (3.48)

We then redo the same calculation as above to obtain the velocities:

VX − iVY =
dw

dz

(
dZ

dz

)−1

, (3.49)

where w(z) is now given by equation (3.48) and Z is still given by equation (3.38) with

c = R. This yields:

VX − iVY =

(
Ue−iα − Ueiα (R+ a)2

(z + a)2 −
iΓ

2π (z + a)

)
z2

z2 −R2
. (3.50)

The denominator still vanishes at z = ±R, which still corresponds to Z = ±2R. From

equations (3.38) and (3.39), we see that points on the x–axis in the z–plane map into

points on the X–axis in the Z–plane. Therefore, the aerofoil intersect the X–axis at

points given by equation (3.47) with eiϕ = ±1, that is to say at Z = 2R and Z =

−2R
(
1 + 2a2/(2aR+R2)

)
. This means that the point Z = −2R is inside the aerofoil,
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and there is only one point in the flow where the denominator of equation (3.50) vanishes,

which is the trailing edge of the aerofoil. As in the case of the plate, this singularity

is removed if the term in brackets in equation (3.50) vanishes as well for z = R, which

requires:

Γ = −4π(R+ a)U sinα. (3.51)

This is the Kutta condition for the Joukowski aerofoil. As above, writing z = R+ ε, with

ε � R, equation (3.50) then yields VX → U cosα/(1 + a/R) and VY → 0 when ε → 0.

The fluid is therefore parallel to the plate at the trailing edge. When the Kutta condition

is met, there are no singularities and the flow is smooth everywhere.

The figure shows the streamlines relative to a Joukowski

aerofoil which is inclined with respect to the oncoming

flow. (Credit: Wikimedia)

We can now rephrase the Kutta condition by saying that, for an aerofoil moving

through a fluid with an angle of attack α, the circulation will adjust itself so that the

flow leaving the trailing edge of the aerofoil is smooth.

In other words, there are, mathematically, a number of solutions which are attainable

for the velocity of the flow around the aerofoil, but those giving an infinite velocity are

unphysical. Nature picks up the only physical solution by adjusting the circulation around

the aerofoil. We will describe below how this is achieved.

We have found above that VX is non zero at the trailing edge of the plate. However, this

is due to the particular symmetrical geometry of the aerofoil. For more realistic aerofoils,

the velocity does vanish at the trailing edge, which therefore coincides with a stagnation

point.

3.3.7 Forces on aerofoils and the Kutta–Joukowski theorem

A symmetrical aerofoil like that described above would not be the most efficient way of

getting a lift. As pointed out in section 3.2.5, the lift is due to the curvature of the stream-

lines, with pressure decreasing towards the centre of curvature. If the symmetrical aerofoil

is not inclined with respect to the incoming flow, the strealimes are identical above and

below the aerofoil and there is no lift. When the aerofoil is inclined however, a lift is pro-

duced because the curvature is larger above than below the aerofoil, as seen on the figure

above. But a larger lift would be obtained if the curvature below the aerofoil were giving a

pressure that increases as we approach the aerofoil. This is why cambered aerofoils are used.
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Cambered aerofoils can be generated using

Joukowski transformation by moving the center

of the circle not just along the x–axis, as done above,

but also along the y-axis. In this figure the center

has been moved in the upper left quadrant.

As illustrated on the figure, this aerofoil gives a much

larger lift than a symmetrical aerofoil. The lift is also

larger if the aerofoil is thinner, which is why birds

have thin wings. Airplanes however tend to have

thicker wings because there are other considerations

coming into play, such as design and fuel storage.

We are now going to calculate the force exerted by the flow on an aerofoil with any

shape. Here we assume that the Kutta condition is met, so that there are no singularities

in the flow. Although this condition has been derived above for a symmetrical aerofoil, it

is valid for any kind of aerofoil as could be shown by making a Joukowski transformation

of a circle with a centre not on the x–axis.

We take the x–axis to be along the direction of the

flow velocity at infinity and note C the (closed) con-

tour of the object. We consider a small element

δs along the boundary, as represented on the figure

(Credit: Acheson), where the dashed line is tangent

to the curve.

The components δFx and δFy of the force exerted on δs by the flow are given by (δFx, δFy) =

(−p sin θ, p cos θ)δs, so that: δFx − iδFy = −p (sin θ + i cos θ) δs = −pie−iθδs. Since C is a

rigid boundary, the flow velocity at δs is tangent to the curve, which implies vx = v cos θ

and vy = v sin θ. This yields vx − ivy = ve−iθ, and since vx − ivy = dw/dz, we obtain:

v2 =

(
dw

dz

)2

e2iθ,

along C. Assuming the flow to be steady, Bernoulli’s theorem (3.5) implies that ρv2/2 + p
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is constant throughout the fluid, as the gravitational potential is uniform throughout the

domain of the flow. We note k the constant, so that the expression above for δFx − iδFy

becomes:

δFx − iδFy =

(
1

2
ρv2 − k

)
ie−iθδs =

i

2
ρ

(
dw

dz

)2

eiθδs− ike−iθδs.

By integrating over the closed contour C, we then obtain:

Fx − iFy =
i

2
ρ

˛
C

(
dw

dz

)2

eiθδs− ik

˛
C

e−iθδs,

where Fx and Fy are the components of the total force exerted by the flow on the object

(the force here is implicitly meant to be per unit length in the direction perpendicular to

the plane of the flow). We have ie−iθδs = iδs cos θ+ δs sin θ = iδx+ δy, so that the second

integral on the right–hand side of the above expression is zero. We can re–write the first

integral by noting that eiθδs = δs cos θ + iδs sin θ = δx+ iδy ≡ δz, which yields:

Fx − iFy =
i

2
ρ

˛
C

(
dw

dz

)2

δz. (3.52)

This is known as Blasius’s theorem. As the function dw/dz is analytic everywhere in the

domain of the flow, Cauchy’s theorem and a deformation of contours (see appendix A)

imply that the value of the integral in equation (3.52) is actually the same if we replace

C by any closed contour surrounding the aerofoil.

We now choose the origin O of our coordinate system inside the aerofoil and define η as

the radius of the smallest circle centered on O which encloses the aerofoil. Because dw/dz

is analytic in the flow domain, it can be expressed as a Laurent series which converges on

the domain |z| > η:

dw

dz
=

+∞∑
n=1

an
zn

+

+∞∑
n=0

bnz
n,

where an and bn are constant complex numbers (see appendix A). Since dw/dz = vx− ivy

and the velocity stays finite in the flow domain, bn = 0 for all n ≥ 1. At infinity, vx = U

and vy = 0, so that b0 = U . The 1/z term corresponds to the vortex flow, so a1 = −iΓ/(2π)

(see eq. [3.35]). Therefore the series becomes:

dw

dz
= U − iΓ

2πz
+
a2

z2
+ . . .

which is the superposition of a uniform flow, vortex flow, dipole flow, etc. Blasius’s

theorem (3.52) with the contour C changed to a contour C ′ that encloses the circle of

radius η can then be written as:

Fx − iFy =
i

2
ρ

˛
C′

(
U − iΓ

2πz
+
a2

z2
+ . . .

)2

δz.

According to the residue theorem (see appendix A), only the 1/z term contributes to the

integral, which is equal to 2πi times the coefficient of this term. Therefore:

Fx − iFy =
i

2
ρ× 2πi×

(
−iUΓ

π

)
= iρUΓ,
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which implies the so–called Kutta–Joukowski lift theorem:

Fx = 0, Fy = −ρUΓ. (3.53)

This theorem generalizes the result which was obtained for the particular case of a flow

past a cylinder (eq. [3.30]). Note that the lift is the component of the force perpendicular

to the direction of the flow at infinity (which is inclined with respect to the aerofoil for non–

zero angles of attack), whereas the drag is the component of the force in that direction.

Here again, the absence of a drag is due to the fact that viscosity has been neglected.

Since Γ satisfies the Kutta condition (3.51), the lift can also be written as:

Fy = 4πρ(R+ a)U2 sinα. (3.54)

We define the dimensionless lift coefficient as:

CL =
Fy

1
2ρU

2d
, (3.55)

where d is the dimension of the aerofoil (in three dimensions, we would replace d by the

surface of the aerofoil, so we can think of CL above as being a lift coefficient per unit

length in the direction perpendicular to the flow). Using the above expression for Fy, we

obtain:

CL = 8π
R+ a

d
sinα. (3.56)

This coefficient is used to compare the performance of different aerofoils with different

dimensions and flying at different speeds. It can be obtained from measurements done in

wind tunnels.
The figure shows CL versus α. The dashed line is the

theoretical curve and the other curves correspond to

measurements. It can be seen that CL decreases for

values of α larger than about 12◦: the plane stalls!

This cannot be captured by the theory developed

here because we have neglected viscosity. Viscous

forces result in a boundary layer which detaches from

the wing for larger angles. This will be studied in sec-

tion 4.2.3 in the following chapter. (Credit: Daniel

Heathcote, PhD thesis, 2017.)

3.3.8 The origin of the circulation

As we have mentioned above, the flow adjusts itself and create a circulation so that the

velocity at the trailing edge of the aerofoil stays finite. We now describe how this happens.

When an aerofoil, e.g. the wing of an airplane, is accelerated from rest in a fluid, the

pressure becomes higher at the bottom of the wing than at the top, so that the air moves

from below the wing up around the trailing edge to the top in such a way that a so–called
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starting vortex is created. As the wing accelerates, this vortex is left behind and, due to

Kelvin’s theorem, the flow produces a circulation in opposite direction around the aerofoil.

This can be seen as a fictitious vortex and is bound to the wing.

These two vortices are shown in the figure.

Here the aerofoil was moved from right to

left.

From Van Dyke, Album of Fluid

Motion. The figure shows a

starting vortex produced when

a viscous fluid is moved impul-

sively past a wedge.

The air also moves from below the wing up around the tips to the top, and this creates

trailing, or tip vortices that extend for miles behind the wings. The trailing vortices on

both sides rotate in opposite directions due to Kelvin’s theorem. As illustrated on the

figure below, these vortices are such that the resultant vortex line is closed, as expected

from Helmholtz’s theorem.

It is the bound vortex that creates the circulation around the wing required to produce a

finite velocity at the trailing edge and which results in a lift. Note that although a vortex
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is the cause of the circulation, it is localized at the surface of the wing and therefore the

flow is still irrotational away from this boundary layer, which justifies the approximation

of potential and steady flow used in this chapter.
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Chapter 4

Boundary layers

As pointed out in section 2.3.1 of chapter 2, the no–slip boundary condition at a rigid

boundary holds however small the viscosity may be: molecular transport at the surface

prevents any slipping of the fluid parallel to the boundary.

This has important consequences for fluids with very small viscosity (like the air) mov-

ing past an aerofoil, as the velocity varies very rapidly near the surface of the aerofoil to

adjust to the boundary condition. This creates a significant stress according to equa-

tion (2.13), even if the viscosity is very small, and results in a so–called boundary layer

in which viscous forces cannot be neglected. As boundary layers are thin and localized

near rigid boundaries, a high Reynolds number flow can be approximated as ideal away

from the boundary, where techniques applicable to potential flows can be used if the flow is

irrotational. The solutions obtained for the ideal fluid can then be matched to those in the

boundary layers. Boundary layers were first studied experimentally and mathematically

by Prandtl (1905).

A boundary layer will develop whenever there is a boundary at which the flow has

to adjust to a condition which is different than what an inviscid solution would give.

Although in this chapter we will focus on flows near a rigid boundary, boundary layers

may then also occur, e.g., at a free surface, where the tangential stress is zero (as shown

in section 2.3.3).

The next section describes the boundary layer that develops in a uniform flow passing

past a thin plate. Although this is an idealization, it is a good approximation to the case

of a flow past an aerofoil.
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4.1 The boundary layer on a flat plate

We consider a steady two–dimensional incompressible flow with high Reynolds number in

the (x, y)–plane past a thin plate located at y = 0:

As the flow passes the leading edge of the plate (located at x = 0), it slows down. The flow

closest to the plate slows down first, and in turn slows down the flow higher up, so that a

layer with a velocity gradient is formed. If U(x) does not increase significantly with x, the

thickness of the boundary layer increases with distance from the leading edge because of

the cumulative effect of the frictional force from the plate: the momentum lost by the flow

increases with x. However, if U increases enough with x, the acceleration of the flow in the

boundary layer by the outer flow also increases with x and the boundary layer becomes

thinner. Another way to describe the boundary layer is through the vorticity of the flow.

The vorticity is non–zero in the boundary layer because of the shear: the rigid bound-

ary acts as a source of vorticity which spreads out vertically by viscous diffusion while

being advected horizontally with the flow.

Outside the boundary layer, the flow is potential (viscosity being negligible) with a velo-

city U(x) along the x–axis. Across the boundary layer, the velocity varies from 0 at the

surface of the plate to U(x).

4.1.1 Thickness of the boundary layer

The vorticity generated by the rigid boundary between 0 and x moves downstream of x in

a time t ∼ x/U(x), as advection along the x direction in the boundary layer occurs at a

velocity which is of order of magnitude U(x). During this time t when it is between 0 and

x, the vorticity diffuses viscously over a vertical distance1 δ ∼
√
νt. By definition, this is

the thickness of the boundary layer, and it can be written as:

1In the vertical direction, momentum is transported by viscosity only (as the average flow is going in

the horizontal direction). We neglect pressure to obtain an order of magnitude estimate of the diffusion

lengthscale. Navier–Stokes equation then gives gives ∂vy/∂t = ν∇2vy, from which it can be seen that

diffusion over a scale δ takes the time t ∼ δ2/ν.
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δ(x) ∼
√

νx

U(x)
. (4.1)

We note L the scale over which the velocity along x changes significantly (that would

typically be the length of the plate if it had a finite size). The Reynolds number for the

flow is defined as Re = UL/ν (see eq. [2.24]), and the expression above can be written

under the form:

δ(x)

x
∼
√
L

x

1√
Re
� 1, (4.2)

since L and x are typically of the same order of magnitude. This is the core of the bound-

ary layer approximation: its scale is much smaller than the horizontal scale.

The estimate above is only valid if the boundary layer is laminar, that it to say there

is no turbulence. When the flow is turbulent, there is convective in addition to molecular

transport of vorticity in the vertical direction, and the thickness of the boundary layer

becomes much larger. This will be discussed further below.

4.1.2 Equation of motion

Ignoring gravity, Navier–Stokes equation (2.21) in the x– and y–directions in the boundary

layer gives:

vx
∂vx
∂x

+ vy
∂vx
∂y

= −1

ρ

∂p

∂x
+ ν

(
∂2vx
∂x2

+
∂2vx
∂y2

)
, (4.3)

vx
∂vy
∂x

+ vy
∂vy
∂y

= −1

ρ

∂p

∂y
+ ν

(
∂2vy
∂x2

+
∂2vy
∂y2

)
. (4.4)

The incompressibility condition also has to be satisfied:

∂vx
∂x

+
∂vy
∂y

= 0. (4.5)

Since L and δ (where the x–dependence is implied) are the characteristic scales over which

the velocity changes in the x and y–directions, respectively, we have |∂vx/∂x| ∼ vx/L and

|∂vy/∂y| ∼ vy/δ. Therefore, equation (4.5) yields:

vy ∼
δ

L
vx � vx . (4.6)

Also, ∣∣∣∣∂2vx
∂x2

∣∣∣∣ ∼ vx
L2
� vx

δ2
∼
∣∣∣∣∂2vx
∂y2

∣∣∣∣ ,

with similar result for vy. This yields:

∇2vx '
∂2vx
∂y2

, and ∇2vy '
∂2vy
∂y2

. (4.7)
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In equation (4.3), all the terms involving the velocity are on the order of v2
x/L (since

ν ∼ Uδ2/L from eq. [4.1], and vx ∼ U); therefore, ∂p/∂x = O
(
ρv2
x/L

)
. Similarly, in

equation (4.4), all the terms involving the velocity are on the order of v2
xδ/L

2; therefore,

∂p/∂y = O
(
ρv2
xδ/L

2
)
. It follows that |∂p/∂y| � |∂p/∂x|, so that

p can be regarded as a function of x only, which means that the pressure is approxi-

mately uniform across the boundary layer.

The pressure can therefore be calculated from the velocity outside the boundary layer,

where ν = 0 and Navier–Stokes (or Euler) equation yields:

U(x)
dU

dx
= −1

ρ

dp

dx
. (4.8)

Using the approximation (4.7), Navier–Stokes equation (4.3) can be written under the

form:

vx
∂vx
∂x

+ vy
∂vx
∂y

= −1

ρ

dp

dx
+ ν

∂2vx
∂y2

. (4.9)

This is the boundary layer equation, also called Prandtl’s equation. It has to be solved

with the following boundary conditions:

vx = vy = 0 at y = 0, and vx(x, y) = U(x) for y/δ → +∞. (4.10)

The tangential shear stress in the boundary layer is:

σxy = ρν

(
∂vx
∂y

+
∂vy
∂x

)
.

Since |∂vx/∂y| ∼ vx/δ and |∂vy/∂x| ∼ vxδ/L2 = (vx/δ)(δ
2/L2)� vx/δ, we obtain:

σxy ' ρν
∂vx
∂y

. (4.11)

Although the above results have been derived for a flow past a flat plate, they still

apply if the boundary is curved. The coordinates x and y then represent the coordinates

along and perpendicular to the boundary, respectively. In that case, there is a pressure

gradient ∂p/∂y comparable to ∂p/∂x, to balance the centripetal acceleration induced by

the curvature of the boundary. However, changes of p along y in the boundary layer are

still δ/L smaller than changes of p along x, so that p can be regarded as uniform across

the (very thin) boundary layer.

4.1.3 Velocity profile in the boundary layer

Because the flow outside of the boundary layer is approximated as being inviscid, it is

unaffected by the presence of the plate. Therefore, if the velocity upstream of the plate is

uniform, it stays uniform everywhere outside of the boundary layer, which means U(x) =
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U0, where U0 is a constant. In that case, equation (4.8) yields dp/dx = 0, so that Prandtl’s

equation (4.9) becomes:

vx
∂vx
∂x

+ vy
∂vx
∂y

= ν
∂2vx
∂y2

. (4.12)

We take an arbitrary length scale x0 in the horizontal direction, associated with the vertical

length scale δ(x0) =
√
νx0/U0, and define the dimensionless variables:

x′ =
x

x0
, y′ =

y

δ(x0)
v′x =

vx
U0
, and v′y =

vy
U0

x0

δ(x0)
. (4.13)

The scaling is chosen so that x′ and y′ on the one hand, and v′x and v′y on the other hand,

are of the same order of magnitude (for v′y and v′x, this follows from eq. [4.6] which shows

that vy ∼ vx(δ/L)). The equation above then becomes:

v′x
∂v′x
∂x′

+ v′y
∂v′x
∂y′

=
∂2v′x
∂y′2

. (4.14)

This has to be solved together with the mass conservation equation (4.5) which, in dimen-

sionless form, is:
∂v′x
∂x′

+
∂v′y
∂y′

= 0. (4.15)

Using the dimensionless variables, the boundary conditions (4.10) can be expressed as:

v′x = v′y = 0 at y′ = 0, and v′x(x′, y′) = 1 for y′ → +∞. (4.16)

As Re does not enter the equations nor the boundary conditions, the solutions do not

depend on Re. The Reynolds number affects only the thickness of the boundary layer, not

the velocity profile.

The velocity cannot depend on the length scale x0 either, as it is arbitrary. Therefore,

since vx(x, y) = U0v
′
x(x′, y′), v′x cannot depend on x′ and y′ independently, but has to

depend on a combination of these two variables which cancels out x0. As x′ ∝ 1/x0 and

y′ ∝ 1/δ(x0) ∝ 1/
√
x0, the simplest combination that does not depend on x0 is:

η =
y′√
x′

=

√
U0

νx
y, (4.17)

which can also be written as η = y/δ(x). We therefore look for solutions of the form

v′x = g(η), which is equivalent to:

vx = U0 g (η) = U0 g

(√
U0

νx
y

)
. (4.18)

Similarly, vy(x, y) = U0(δ(x0)/x0) v′y(x
′, y′) =

√
U0ν/x0 v

′
y(x
′, y′) is independent of x0 if

v′y ∝
√
x0, which is achieved by taking v′y(x

′, y′) = h(η)/
√
x′. This then corresponds to:

vy =

√
U0ν

x
h(η) =

√
U0ν

x
h

(√
U0

νx
y

)
. (4.19)
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Such solutions, which have the same y–dependence, and therefore the same shape, at all

values of x except for a different scale factor
√
U0/(νx) = 1/δ(x), are called self–similar.

Since the flow is incompressible, we can introduce a stream function ψ such that

vx = ∂ψ/∂y and vy = −∂ψ/∂x. With the above expressions (4.18) and (4.19) for vx and

vy, ψ has to be of the form:

ψ =
√
U0νx f(η).

We then have:

vx =
∂ψ

∂y
=
√
U0νx f

′(η)
∂η

∂y
= U0 f

′(η),

vy = −∂ψ
∂x

= −1

2

√
U0ν

x
f(η)−

√
U0νx f

′(η)
∂η

∂x
=

1

2

√
U0ν

x

(
−f(η) + η f ′(η)

)
,

where f ′(η) ≡ df/dη. Substituting these expressions in Prandtl’s equation (4.12) then

yields the so–called Blasius’s equation:

f ′′′+
1

2
ff ′′ = 0, (4.20)

while the boundary conditions (4.10) become:

f = f ′ = 0 at η = 0, and f ′ = 1 for η → +∞. (4.21)

This boundary value problem has to be solved nu-

merically. The figure shows the solution obtained

for vx/U0 as a function of η = y/δ(x). The fact

that vx/U0 = 0.99 at η = 4.9 confirms quantita-

tively that δ(x) gives a measure of the thickness

of the boundary layer (this had been obtained by

a qualitative argument only in section 4.1.1).

4.1.4 Frictional force on a flat plate

We orientate the normal to the plate n̂ = ŷ in the positive y–direction, to be consistent

with the analysis above. Therefore, the viscous stress on the plate is given by equation (2.1)

as T = σxyx̂ + σyyŷ + σzyẑ, where the components of the stress tensor are evaluated at

y = 0. As vz = 0 and vy does not depend on z, equation (2.13) shows that σzy = 0, so

that the tangential stress is σxyx̂ with:

σxy = ρν

(
∂vx
∂y

+
∂vy
∂x

)
y=0

= ρU0

√
U0ν

x
f ′′(0), (4.22)

where f ′′(0) = 0.33.

If the plate is immersed in the flow, there is a boundary layer on each side, so that the

total frictional force F = Fxx̂ on a plate of length L per unit length in the z–direction is
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twice the force exerted on one side:

Fx = 2

ˆ L

0
Txdx = 1.33ρU0

√
U0νL = 1.33

ρU2
0L√
Re

, (4.23)

where we have used the fact that the scale over which vx varies is on the order of the

length of the plate, so that Re = U0L/ν. This force varies as
√
L rather than L because

the stress tensor decreases with x, due to the thickening of the boundary layer wich reduces

the velocity gradient. Here the plate is at rest and the fluid is moving. If instead the fluid

were initially at rest and the plate moving towards the left, the situation would be the

same and the force would oppose the motion of the plate: it is therefore a drag.

The presence of a boundary layer therefore accounts for the existence of a drag on

an object moving relative to a fluid, and solves the d’Alembert paradox presented in

section 3.2.5.

4.1.5 Vorticity in the boundary layer and wake

The vorticity is given by:

ω =

(
∂vx
∂y
− ∂vy
∂x

)
ẑ. (4.24)

We have shown when deriving equation (4.11) that the first term on the right side of the

equation above dominates over the second term, which yields:

ω ' ∂vx
∂y

= U0

√
U0

νx
f ′′(η). (4.25)

This vorticity, which is generated where the fluid is in contact with the rigid boundary, is

both diffused vertically by viscosity and advected downstream by the flow.

Therefore, the flow behind the plate also has vorticity.

It is called the wake. It can be seen together with the

boundary layer on the figure which shows streamlines

around an aerofoil immersed in a fluid.

4.1.6 Transition to turbulence

The velocity profile and drag obtained above are in excellent agreement with experiments

as long as the flow is laminar. However, it is an experimental fact that the flow becomes

turbulent when the Reynolds number exceeds a critical value. This can be understood

by noting that, for lower Reynolds numbers, viscosity is efficient enough that any small

disturbances present in the fluid are damped out. At higher Reynolds numbers how-

ever, viscosity becomes more ineffective and small perturbations can grow. The flow then

becomes unstable and there is a transition to turbulence.
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The flow becomes unstable when the local Reynolds number, defined asRex = Uδ(x)/ν,

becomes larger than about 600. This typically corresponds to the global Reynolds number

Re = UL/ν being larger than a few 105. Because Rex ∝ δ(x) ∝
√
x, the transition occurs

at some distance from the leading edge of the plate.

As already pointed out above, when the flow becomes turbulent, the boundary layer

is much thicker, because vertical transport of vorticity by turbulent motion is much more

effective than molecular diffusion. This can be understood in the following way. We have

seen that the transport of momentum perpendicularly to the direction of the main flow is

due to the correlation between the fluctuations of the velocity in the fluid (see eq. [2.8]).

In the case of molecular transport, which yields the viscous stress, these fluctuations are

caused by the kinetic energy of the molecules associated with the finite temperature.

When the flow is turbulent though, these fluctuations and their correlation are usually

much larger. The associated stress, which is called the Reynolds stress, is then usually

orders of magnitude larger than the viscous stress.

Therefore, vertical mixing is much more efficient

in the turbulent case, and the flow is accelerated

much more efficiently through the boundary layer, as

shown by the velocity profile on the figure. (Credit:

https://aerospaceengineeringblog.com/boundary-

layers/)

The figure below gives a schematic view of the boundary layer when the flow becomes

turbulent:

When the flow is turbulent, there is still a laminar sub–layer near the plate. This is

because the flow is stationary at the boundary so that turbulent eddies cannot exist very

close to it. Therefore, the tangential stress on the plate is still the viscous stress σxyx̂,

with σxy = ρν(∂vx/∂y) evaluated at y = 0 (eq. [4.11]). Since vertical mixing is much more

efficient in a turbulent boundary layer, the increase of velocity near the boundary is much

sharper in the turbulent than in the laminar case. Therefore, the drag is much larger in

the turbulent case, and it decreases less sharply when the Reynolds number increases.
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The figure shows the drag FD

normalized to ρU2L/2 as a

function of the Reynolds num-

ber in a turbulent boundary

layer.

As the lift increases with the velocity (see eq. [3.54]), commercial aircrafts fly at high

velocities to produce a lift sufficient to balance their weight. That leads to high Reynolds

numbers at which the boundary layers over the wings are turbulent, which yields an

enhanced drag. Keeping a boundary layer laminar though is a very complicated problem,

because all laminar boundary layers can be made to ’trip’ (that it to say, to transition)

to turbulence by any inhomogeneities (like insects) on the wing. Tests in wind tunnels

are therefore not very helpful as they tend to be too idealised. One way of preventing the

boundary layer from becoming turbulent is to remove a small amount of air by suction

through porous materials, multiple narrow surface slots or small perforations. That way,

the thickness of the boundary layer, and hence the Reynolds number, does not increase

along the wing, and the flow stays laminar. This has been used for some supersonic cruise

aircrafts (see Problem Set 4).

4.2 Boundary layer separation

In the analysis above, we have assumed that the flow velocity was uniform outside of the

boundary layer, so that the pressure gradient ∂p/∂x was zero. Let us now assume that

there is a finite pressure gradient.

4.2.1 Condition for separation

As shown in section 4.1.2, p only depends on x, so that the pressure gradient inside the

boundary layer is the same as that in the outer flow.

Because vx = vy = 0 at y = 0, Prandtl’s equation (4.9) near the rigid boundary gives:

dp

dx
= ρν

∂2vx
∂y2

. (4.26)

At the surface y = δ of the boundary layer, vx matches

the velocity U(x) of the outer flow. For the stress to

be continuous at y = δ (and therefore volume forces to

stay finite), vx has to approach U(x) following the blue

curve and not the red curve.
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This implies that ∂2vx/∂y
2 < 0 at the surface of the boundary layer. Therefore, depending

on whether dp/dx is positive or negative, we can have either of the two cases represented

on the figure below (where α = ∂vx/∂y at y = 0):

The fluid near the rigid boundary is subject to the following forces: (i) it is decelerated by

the frictional force from the boundary, (ii) it is accelerated by the viscous stress from the

upper layers, that is to say by the transfer of momentum from the outer flow which moves

at velocity U(x), (iii) it is accelerated or decelerated by the pressure gradient, depending

on whether it is negative or positive.

When dp/dx < 0, U(x) increases with x, and the transfer of momentum from the

upper layers down to the flow in the boundary layer increases as the flow moves along the

boundary. In addition, in that case, the pressure gradient also accelerates the flow directly

in the boundary layer. Therefore, the boundary layer becomes thinner as the flow moves

along x.

By contrast, when dp/dx > 0, U(x) decreases with x. The transfer of momentum

from the upper layers then decreases with x, and the flow in the boundary layer is also

directly decelerated by the pressure gradient. Therefore, at some point along x, the pos-

itive acceleration from the outer layer is cancelled out by the adverse pressure gradient

and viscous force from the boundary. The acceleration then becomes negative, so that

the flow velocity near the boundary decreases. At some point xs (stagnation point), the

velocity becomes zero and the flow stalls. Further downstream, the velocity is negative so

that the flow reverses direction. At xs, the angle α on the right–hand side panel of the

figure above is zero. The fact that vx changes sign for x > xs is due to the fact that the

inflexion point which has to be present on the graph above for dp/dx > 0 can only exist

if vx becomes negative near the boundary.

When dp/dx > 0, separation of the boundary layer from the rigid boundary at some

distance xs from the leading edge of the plate is therefore unavoidable.

This is illustrated on the figure below, which shows both the evolution of the velocity

profile in the boundary layer along the rigid boundary for dp/dx > 0, and the streamlines

around an aerofoil from which the boundary layer has separated. As indicated on the

figure, the combination of flows in two directions induces a wake of turbulent vortices.
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When separation occurs, Prandtl’s equation (4.9) does not apply anymore, as vx is no

longer very large compared to vy. In fact, separation occurs at the point where this

equation becomes singular (see Landau & Lifshitz, Chapter IV, §40, for more details).

As we have seen in the previous chapter, an object immersed in a flow does induce a

pressure gradient in the flow, so that the conditions for boundary layer separation may be

created by the object itself. For example, as shown in section 3.2.5, the pressure around

a cylinder immersed in a flow first decreases along the rigid boundary as the flow ’climbs’

from the leading stagnation point up to the top of the cylinder, and then increases as the

flow goes from the top down to the trailing stagnation point. Similar pressure gradients are

created on the upper surface of an aerofoil, as can be seen from the numerical simulations

displayed below, and which show the pressure contours for an angle for attak of 5◦ on the

left panel and 15◦ on the right panel (Credit: Kandil & Elnady, Int. J. Aerospace Sci.,

2017, 5, 1):

The pressure is maximum at the edges, where there are stagnation points, and has a

minimum on the upper side. Therefore, we expect the boundary layer to separate at some

point along the upper surface of the aerofoil, and separation occurs closer to the leading

edge for higher angles of attack.

4.2.2 Effect of the Reynolds number on the separation

When the Reynolds number is low, molecular transport of momentum from the outer

layers down into the boundary layer is more efficient. Therefore, separation occurs further

downstream or can be prevented altogether when the Reynolds number is small enough.

Similarly, in a turbulent flow, as pointed out above, the flow near the rigid boundary is

accelerated by transport of momentum from the outer layers more efficiently than in a

laminar boundary layer. Therefore, turbulence also results in separation occurring further

downstream. Separation is said to be delayed. This yields to a narrower wake behind the

object.

The different situations which arise depending on the Reynolds number are indicated

on the figure below, which also shows the flow around a cylinder for Reynolds numbers of
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0.2, 26 and 105 (from An Album of Fluid Motion, M. Van Dyke):

What is seen at Re = 105 is called a von Kármán vortex street. It appears when vortices

are emitted alternatively by the flow on top and on the bottom of the object. The emission

is periodic. This leads to a lift on the cylinder which oscillates with time. In a realistic set

up, when the frequency of the oscillation matches some natural frequency of the object,

structural damage to the object may occur2.

4.2.3 Enhanced drag

As pointed out above, separation of the boundary layer results in the creation of a turbu-

lent wake on the downstream side of the object. Because of turbulent mixing, the pressure

in this wake is uniform and equal to that at the point where separation occurs. Therefore,

pressure in the flow downstream is lower than when there is no separation. This results

in a larger pressure drag on the object. This comes in addition to the viscous drag calcu-

lated above and due to the laminar sublayer at the surface of the plate which is always

present because of the no–slip condition. As seen on one of the figures in section 4.2.1,

the pressure distribution around aerofoils is such that boundary layer separation happens

closer to the leading edge at higher angles of attack, which causes airplanes to stall (see

2This led to the collapse of the Tacoma Narrows span Bridge in the USA in 1940, four months after

it had been opened. In that case, vortices were shed by the cylindrical cables in a periodic manner when

strong cross–wind were present. The ensuing resonance vibrations in the bridge resulted in its collapse.

It is this event that led von Kármán to discover this periodic shedding of vortices. One of the insurance

policies could not be collected by the state of Washington, where the bridge was, because the insurance

agent had pocketed the premium believing that the bridge would never collapse...
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the discussion in section 3.3.7). This is illustrated on the figure below, which shows the

streamlines around an aerofoil for two different angles of attack:

Delaying boundary layer separation is therefore a major goal in the design of airplanes

or fast vehicles. This can be done by streamlining the aerofoil (or any fast vehicles), that

is to say by aligning its back surface with the unperturbed streamlines of the outer flow.

That is why many sea mammals or fishes have tapered caudal fin shaped like a crescent

moon.

However, even if boundary layer separation over a wing can be prevented at small

angles of attack α, it does eventually occur when this angle gets larger than some critical

value αc, as suggested by the figure above. When an aircraft cruises, it usually keeps a low

angle of attack. For take off or landing though, equation (3.54) indicates that α has to be

increased for a lift to be produced at low velocity, which is required to keep the lenghts

of runaways reasonably short. In order to get a lift as large as possible, wing flaps and

slats are used. These are small curved aerofoils that are fitted near either the leading or

trailing edge of the wing. When the flap with slat is at the leading edge, the flow coming

from below the wing and which passes through the gap between the flap and the wing

replenishes the boundary layer with high speed fluid, which opposes the adverse pressure

gradient and delays the separation of the boundary layer, increasing αc. When the flap is

near the trailing edge, the air passing through the gap adds momentum to the flow which

circulates around the wing and which is slowed down by the adverse pressure gradient.

This does not change αc significantly, but it increases the circulation and therefore the

lift, so that higher altitudes can be reached before the plane stalls.

Another strategy is to delay boundary separation by making the flow turbulent. We

have seen that drag from a non–separated boundary layer is smaller when it is laminar.

However, the total drag produced by a laminar boundary layer which ends up separating is
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usually larger than the total drag produced by a turbulent boundary layer which separates

later. Therefore, devices tripping the boundary layer to turbulence can be installed near

the leading edge of the wings, so that separation is delayed and the drag can be controlled.

It is also to generate a turbulent boundary layer and reduce the pressure drag that

dimples are added on golf balls, for example. As can be seen on the figure below, which

shows the result of a numerical simulation, the separation occurs earlier and the wake is

larger when the ball is smooth (Credit: https://www.cradle-cfd.com/media/column/a170):

Adding dimples reduce the drag by a factor of about two.
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Chapter 5

Waves

A wave is produced when a system at equilibrium is perturbed and subsequently oscillates

around its equilibrium state, as a result of a balance between the inertial force, which is

ρDv/Dt for a unit volume of a fluid, and a restoring force. In this chapter, we will consider

sound waves, gravity waves, and gravity–capillary waves, for which the restoring force is

the compressibility of the fluid, gravity, and a combination of surface tension and gravity,

respectively. We will restrict ourselves to the linear theory of waves, which is valid for

small amplitude disturbances.

Gravity waves occur when a fluid at equilibrium is displaced vertically and subsequently

oscillates under the action of its intertial force and the external gravitational force. These

waves only exist if the fluid is stratified, that is to say if the density varies vertically.

When the variation is continuous, with the density decreasing with increasing altitude,

as in the atmosphere or in the oceans because of the gradients of temperature and/or

salinity, internal gravity waves are produced.

When the variation is discontinuous and confined to a surface, as at the interface

between the ocean and the atmosphere, surface gravity waves are produced. For these

waves, gravity is the only restoring force. However, if the wavelength of the disturbance is

short, surface tension becomes important and acts as an additional restoring force. The

waves are then called gravity–capillary waves. Both gravity and gravity–capillary waves are

produced by wind on the surface of oceans. In the opposite regime of a long wavelength

disturbance, as caused by the gravitational attraction of the Moon on the oceans, the

Coriolis force acts as an additional restoring force and we have tidal waves.

5.1 Sound waves

As the restoring force for sound waves is the compressibility of the fluid itself, we consider

the simplest case of an inviscid fluid with no external force. It is described by Euler

equation (2.30) where only the pressure force is present:

ρ

(
∂v

∂t
+ (v ·∇) v

)
= −∇p, (5.1)
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and the mass conservation equation (1.21):

∂ρ

∂t
+∇ · (ρv) = 0. (5.2)

We consider an equilibrium state in which the pressure and density are constant

throughout the fluid: v = 0, p = p0 and ρ = ρ0. This equilibrium is then perturbed,

meaning that the fluid is displaced and some fluid elements are compressed while others

are expanded. As we have four scalar equations for five variables, which are the three

components of the velocity, pressure and density, an energy equation is needed to close

the system of equations. We now consider in turn the case of a perfect gas like the air and

the case of a liquid like water.

5.1.1 Wave equation in a perfect gas

It was originally proposed by Newton that heat would flow very rapidly from the com-

pressed to the rarefied regions so that the temperature would stay essentially constant and

the perturbation would be isothermal. However, as argued later by Laplace, the opposite

actually occurs: as long as the scale over which the fluid is perturbed (that is to say, the

wavelength of the perturbation) is large compared to the mean free path of the molecules

in the fluid, heat flows from compressed to rarefied regions on a timescale long compared

to the period of the oscillations, so that the perturbation is essentially adiabatic (there

is negligible exchange of energy). Fluid elements therefore retain their entropy as they

move, which means that pρ−γ stays constant for each fluid element, where γ is the ratio

of the specific heat at constant pressure to the specific heat at constant volume. (In the

case where the wavelength is smaller than the mean free path, viscous forces cannot be

neglected and disturbances are damped).

If the perturbation is small, we can write v = v1, p = p0 + p1 and ρ = ρ0 + ρ1, with

p1 � p0 and ρ1 � ρ0, and where the perturbed quantities depend on location r and time

t. Inserting into equation (5.1) yields:

(ρ0 + ρ1)

(
∂v1

∂t
+ (v1 ·∇) v1

)
= −∇ (p0 + p1) .

For small perturbations, we linearize the equation1 by retaining only the terms which are

first order in the perturbed quantities v1, p1 and ρ1. Therefore, we neglect ρ1 (∂v1/∂t)

and (v1 ·∇) v1, which are both quadratic in the perturbation. Since in addition p0 is

uniform, the equation above gives:

ρ0
∂v1

∂t
= −∇p1. (5.3)

1In principle, we should write the equation in a dimensionless form and do an expansion using a small

parameter. However, the result would be the same as that obtained by the linearization process presented

here.
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Similarly, linearization of the mass conservation equation (5.2) yields:

∂ρ1

∂t
+ ρ0∇ · v1 = 0. (5.4)

Each fluid element retains its value of pρ−γ as it moves with the flow. Since this is equal to

p0ρ
−γ
0 initially, before the fluid is perturbed, it means that pρ−γ stays constant throughout

the fluid and equal to p0ρ
−γ
0 , yielding:

(p0 + p1) (ρ0 + ρ1)−γ = p0ρ
−γ
0 .

This can also be written as: (
1 +

p1

p0

)(
1 +

ρ1

ρ0

)−γ
= 1,

or, to first order in the perturbed quantities:

p1

p0
− γ ρ1

ρ0
= 0. (5.5)

We now take the divergence of equation (5.3) and substitute ∇ · v1 using equation (5.4),

to obtain:
∂2ρ1

∂t2
= ∇2p1.

Replacing ρ1 by its expression as a function of p1 as given by equation (5.5) then yields

the wave equation:

∂2p1

∂t2
− γp0

ρ0
∇2p1 = 0. (5.6)

5.1.2 Wave equation in a liquid

Variations in pressure and variations in density are related to each other through the bulk

modulus, which measures the liquid’s resistance to compression and is defined as:

K = ρ
dp

dρ
. (5.7)

K has the dimension of a pressure. Integrating this equation between a time when the

system is at equilibrium, with p = p0 and ρ = ρ0, and a subsequent time, when p = p0 +p1

and ρ = ρ0 + ρ1, gives:

p1 = K
ρ1

ρ0
, (5.8)

where we have used ρ1/ρ0 � 1. We can therefore carry out the same calculation as for the

perfect gas, but replacing equation (5.5) by equation (5.8). This yields the wave equation:

∂2p1

∂t2
− K

ρ0
∇2p1 = 0. (5.9)
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5.1.3 The speed of sound

Equations (5.6) and (5.9) show that the perturbed pressure p1 propagates as a wave with

the phase velocity:

cs =

√
K ′

ρ0
, (5.10)

which is the speed of sound in the fluid. Here K ′ is the bulk modulus K if the fluid is a

liquid, and K ′ = γp0 if the fluid is a gas (this is also called the bulk modulus for a gas).

The speed of sound is a constant, that is to say it does not depend on the perturbation

itself, so that sound waves are non–dispersive (they keep their shape as they propagate).

In a perfect gas:

Air at sea level has a pressure P0 = 1 atm ' 105 Pa and a density ρ0 = 1.2 kg m−3.

Using γ = 7/5 (diatomic gas) then yields cs = 342 m s−1, in excellent agreement with

experimental values.

For a perfect gas, P0 = NkBT/V , where V is the volume occupied by the gas, N is

the number of molecules in this volume, T is the temperature and kB is the Boltzmann

constant. Since ρ0V is equal to the mass Nm of gas in the volume, with m being the mass

of a molecule, equation (5.10) becomes:

cs =

√
γkBT

m
.

Therefore, the sound speed in a perfect gas only depends on temperature. Due to the finite

temperature, the molecules have a random velocity with a mean square value
〈
u2
〉

given

by:

kBT =
1

3
m
〈
u2
〉
,

so that we obtain:

cs =

√
γ

3

√
〈u2〉. (5.11)

For γ = 5/3 (monoatomic gas) or γ = 7/5 (diatomic gas), this gives cs ' 0.7
√
〈u2〉.

This result is not surprising since it is the motion of the molecules itself which propagates

disturbances involving compression of fluid elements.

This also justifies a posteriori that we have identified the fluctuating velocity of the

molecules in a gas with the sound speed in section 2.1.4.

In water:

The bulk modulus of water is K = 2.2 × 109 Pa at a temperature of 20◦ C. The high

value of K is a consequence of the near incompressibility of water. It is nearly constant

for temperatures up to about 300 K and decreases at higher temperatures. Since for water

ρ0 = 103 kg m−3, we obtain cs = 1483 m s−1, which again is in excellent agreement with

experimental values.
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5.1.4 Solutions to the wave equation

For a one dimensional wave p(x, t), corresponding to a compression occurring along the

x–axis, the wave equation becomes:

∂2p1

∂t2
− c2

s

∂2p1

∂x2
= 0. (5.12)

The solutions are plane waves propagating with the velocity cs:

p1(x, t) = f(x− cst) + g(x+ cst), (5.13)

where f and g describe waves propagating towards x positive and x negative, respectively.

If the compression is spherically symmetric, then p(r, t) and the wave equation becomes:

∂2p1

∂t2
− c2

s

1

r2

∂

∂r

(
r2∂p1

∂r

)
= 0. (5.14)

Using the new variable h(r, t) ≡ rp1(r, t) yields:

∂2h

∂t2
− c2

s

∂2h

∂r2
= 0, (5.15)

which solutions are the same as above, after replacing x with r. Therefore:

p1(r, t) =
1

r
[f(r − cst) + g(r + cst)] . (5.16)

If the wave is produced by a sound emitted at some location, then the wave propagates

towards increasing values of r and g = 0.

As can be seen from equation (5.3), the fluid elements oscillate in the direction of the

pressure gradient, which is also the direction of propagation of the wave. Therefore, sound

waves are longitudinal.

5.1.5 Energy in sound waves

Although waves do not transport matter, they transport energy. Establishing an energy

equation for linear waves, which are calculated to first order in the perturbation, is subtle,

as the terms describing energy are second order in the perturbation. This will not be

presented here, but details can be found in Waves in Fluids, by James Lighthill (CUP).

In linear sound waves, the energy is equally divided between kinetic energy and the

potential energy associated with the restoring force, due to compressibility. This potential

energy is supplied by the work done by the excess pressure p−p0 on a fluid which density is

increased from ρ0 to ρ. The total energy is transported by the wave at the group velocity,

which is equal to the phase velocity cs as sound waves are non–dispersive.

5.2 Surface waves

As mentioned in the introduction to this chapter, surface waves are produced at the

(free) surface of a liquid when the liquid–gas interface is perturbed. If gravity is the only
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restoring force, we obtain gravity waves. At short wavelengths however, the surface tension

is important and the waves become gravity–capillary waves. We start this section by a

general analysis of surface waves, and then consider in turn these different types of waves.

The velocity and pressure satisfy Euler equation (2.30) with both pressure and gravi-

tational forces included:

ρ

(
∂v

∂t
+ (v ·∇) v

)
= −∇p− ρgẑ, (5.17)

where g > 0. Surface tension forces only act at the free surface, and therefore only enter

the boundary conditions.

5.2.1 Equilibrium state

We consider an interface between water and air which is flat when at equilibrium. Water

can be approximated to be incompressible, and here we take its density ρ = ρ0 to be

constant. Viscosity is also negligible, and we assume that the flow is irrotational. This

is the case, for example, if the fluid is at rest initially (at equilibrium) as, according to

Kelvin’s theorem, a flow with constant density and subject to conservative forces retains

its vorticity at all times.

In the equilibrium state, v0 = 0, so that Euler equation (5.17) in the z–direction gives

∂p0/∂z = −ρ0g, where p0 is the pressure at equilibrium. Since the surface is flat, there

are no surface tension forces acting along its normal. Therefore, continuity of the stress

at the surface (see section 2.3.3) implies p0(z = 0) = patm, where patm is the gas pressure

at the interface. The solution of Euler equation is then:

p0(z) = −ρ0gz + patm. (5.18)

5.2.2 Boundary conditions

We consider two dimensional waves. The axis

z = 0 corresponds to the flat surface at equi-

librium and the equation of the perturbed free

surface is z = η(x, t). The depth of water is h.

The boundary conditions are as follows:

• the velocity at z = −h satisfies the no–penetration condition vz = 0,

• the velocity at the surface satisfies the kinematic boundary condition (2.38):

vz (x, η, t) =
dz

dt
=
∂η

∂t
+ vx

∂η

∂x
, (5.19)
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• as seen in section 2.3.3, when both the fluid and the gas are inviscid, continuity of

the stress implies that, at the free surface, the net pressure force is equal and opposite

to the component of the surface tension force normal to the surface.

We now calculate explicitly this latter boundary condition.

We consider a line of length L at the surface

of the water. The molecules on one side of

this line exert a pulling force (tension) on the

molecules on the other side.

This force F is tangent to the surface and perpendicular to the line. Its value per unit

length is the surface tension γ.

We now consider the forces exerted on the

dashed surface element which is between x and

x+ dx and for which the length L is along the

y–axis.

Tension forces give a resultant force dF =

F(x+ dx)−F(x) which component normal to

the surface element has to be balanced by pres-

sure forces, as seen in section 2.3.3.

In the figure above, the amplitude of the wave has been exaggerated for clarity but, in the

linear regime, this amplitude is small, so that the normal n̂ to the surface element is equal

to ẑ to first order. Therefore, the component of the tension force normal to the surface

element can be approximated by dFz = F(x+ dx) · ẑ− F(x) · ẑ. Since F(x) is tangent to

the curve η(x), the angle between F(x) and the x–axis is θ such that tan θ = ∂η/∂x. This

angle is small, so that tan θ ' sin θ ' θ, and F(x) · ẑ = F (x) (∂η/∂x). Doing a similar

calculation for the force at x+ dx, and using F (x) = F (x+ dx) = γL, we obtain:

dFz = γL

[
∂η

∂x

)
x+dx

− ∂η

∂x

)
x

]
= γLdx

∂2η

∂x2
. (5.20)

The pressure force acting on the surface element is (p(x, η, t)− patm)Ldxẑ. Since the

sum of the forces in the vertical direction is zero (see eq. [2.36]), we obtain the following

boundary condition:

p(x, η, t)− patm = −γ ∂
2η

∂x2
. (5.21)

If surface tension is negligible, that is to say γ = 0, the equation above indicates that the

pressure in the fluid is equal to the pressure in the air at the free surface.
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5.2.3 Equation and boundary conditions for the velocity potential

Since the flow is both irrotational and incompressible, we can define a velocity potential

φ which satisfies Laplace’s equation:

∇2φ = 0. (5.22)

Instead of solving Euler and the incompressibility equations for v and p, we can solve

Laplace’s equation for φ. However, this requires to derive boundary conditions for φ from

the boundary conditions written above for v and p. This is the object of this section.

As for sound waves, we assume that the velocity and pressure in the perturbed state

can be written as v = v0 + v1(x, z, t) = v1(x, z, t) and p = p0(z) + p1(x, z, t). Then, Euler

equation (5.17) yields:

ρ0
∂v1

∂t
= −∇ (p0 + p1)− ρ0gẑ, (5.23)

where we have neglected the quadratic terms in the perturbation on the left–hand side.

Since the pressure at equilibrium satisfies −∇p0−ρ0gẑ = 0, the zeroth order terms cancel

out and the equation above becomes:

ρ0
∂v1

∂t
= −∇p1. (5.24)

Using v1 =∇φ, this equation can be written as:

∇
(
ρ0
∂φ

∂t
+ p1

)
= 0, (5.25)

which gives:

p1(x, z, t) = −ρ0
∂φ

∂t
(x, z, t). (5.26)

Any function of time could be added to p1, but it does not need to be written explicitly as

any function of time could be added to φ anyway without changing the velocity. At the

surface z = η(x, t), the pressure p(x, η, t) ≡ p0(η) + p1(x, η, t) is given by the boundary

condition (5.21). As p0(η) is given by equation (5.18) with z = η, this yields:

p1(x, η, t) = ρ0gη(x, t)− γ ∂
2η

∂x2
, (5.27)

so that equation (5.26) at z = η can be written as:

∂φ

∂t
(x, η, t) = −gη(x, t) +

γ

ρ0

∂2η

∂x2
. (5.28)

Expanding the left–hand side in Taylor series gives:

∂φ

∂t
(x, η, t) =

∂φ

∂t
(x, 0, t) + η

∂2φ

∂z∂t
(x, 0, t) + · · · (5.29)

Since ∇φ = v1, φ is first order in the perturbation, and the second term on the right

hand–side of the equation above is quadratic in the perturbation. To first order, we then

neglect it and substitute into equation (5.28) to obtain:

∂φ

∂t
(x, 0, t) = −gη(x, t) +

γ

ρ0

∂2η

∂x2
. (5.30)
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We now use the boundary condition (5.19) which, to first order in the perturbation,

becomes:

v1,z (x, η, t) =
∂η

∂t
. (5.31)

(Both the displacement η and the velocity v1,x are small quantities, so v1,x(∂η/∂x) is

quadratic in the perturbation). Expanding the left–hand side in Taylor series gives:

v1,z (x, η, t) = v1,z (x, 0, t) + η
∂v1,z

∂z
(x, 0, t) + · · · (5.32)

Identifying with equation (5.31) and keeping only first order terms in the perturbation

then yields:

v1,z (x, 0, t) =
∂η

∂t
. (5.33)

Using v1,z = ∂φ/∂z, this equation can be written as:

∂φ

∂z
(x, 0, t) =

∂η

∂t
. (5.34)

Finally, the no–penetration condition at the bottom of the water becomes:

∂φ

∂z
(x,−h, t) = 0 . (5.35)

Surface gravity waves are the solutions of Laplace’s equation (5.22) for −h ≤ z ≤ 0

subject to the boundary conditions (5.30) and (5.34) at z = 0 and (5.35) at z = −h.

5.2.4 Dispersion relation

We look for a surface displacement under the form of a sinusoidal wave travelling in the

positive x–direction, that it to say:

η(x, t) = A cos (kx− ωt) , (5.36)

where A is the amplitude of the displacement, k > 0 is the wavenumber and ω is the

frequency. Note that here we cannot think of the equilibrium state being perturbed at

some time t = 0 for example, as η cannot be zero at all values of x at a given time. The

form of η above tells us about the perturbation after it has been set up, but not about

how it was set up.

With η of the form above, equation (5.30) becomes:

∂φ

∂t
(x, 0, t) = −

(
g +

γk2

ρ0

)
A cos (kx− ωt) , (5.37)

and equation (5.34) becomes:

∂φ

∂z
(x, 0, t) = Aω sin (kx− ωt) . (5.38)

This indicates that φ is of the form:

φ(x, z, t) = f(z) sin (kx− ωt) . (5.39)
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Substituting into Laplace’s equation (5.22), we obtain:

f ′′(z)− k2f(z) = 0.

The solutions are f(z) = C1ekz + C2e−kz, where C1 and C2 are two constants. The no–

penetration boundary condition (5.35) then yields: C1e−kh − C2ekh = 0, so that f(z) =

C cosh [k(z + h)], where C is a constant. This gives:

φ(x, z, t) = C cosh [k(z + h)] sin (kx− ωt) . (5.40)

Equation (5.37) then yields:

C =
A

ω cosh(kh)

(
g +

γk2

ρ0

)
. (5.41)

Substituting this expression for φ into equation (5.38) then gives the dispersion relation:

ω2 = gk
(
1 + λ2

ck
2
)

tanh(kh), (5.42)

where we have introduced the capillary length:

λc =

√
γ

gρ0
. (5.43)

It is the length below which surface tension forces dominate over gravity2. For water,

λc ' 3× 10−3 m at T ' 20◦C, and it varies only weakly with temperature.

At some time t and some position x along the x–axis, the phase of the wave is kx−ωt.
At a time t+dt, this phase has advanced to x+dx such that k(x+dx)−ω(t+dt) = kx−ωt.
Therefore, kdx = ωdt, and the phase velocity (speed at which the phase of the wave travels)

is given by vϕ = dx/dt = ω/k. Using the dispersion relation above, this gives:

vϕ =

√
g

k
(1 + λ2

ck
2) tanh(kh). (5.44)

The waves are dispersive: waves with different wavenumbers travel at different speeds.

Let us assume that λc � h, which is reasonable since for water λc is a few mm. We then

have the following different regimes:

• capillary waves: λ� λc � h,

• gravity–capillary waves on deep water: λ ' λc � h,

• gravity waves on deep water: λc � λ� h,

• gravity waves on shallow water: λc � h� λ.

Since v1 = ∇φ and φ given by equation (5.40) depends both on x and z, fluid elements

oscillate in both the x and z directions so that surface waves are neither longitudinal nor

transverse.

2For example, water droplets with a radius smaller than the capillary length have a shape determined

solely by surface tension effects, and are therefore spherical.
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5.2.5 Dispersion and group velocity

To understand the effect of dispersion, we now consider a disturbance which is the super-

position of sinusoidal waves travelling in the positive x–direction3:

η(x, t) =

ˆ +∞

0
|a(k)| cos (kx− ωt) dk. (5.45)

This is the real part of:

η̃(x, t) =

ˆ +∞

0
a(k)ei(kx−ωt)dk. (5.46)

Since ω(k), each Fourier component travels with a different speed velocity.

We assume that the coefficients a(k) are

non zero only in a narrow interval of

wavenumbers centered on k0. Such a dis-

turbance is called a wave packet and is

represented on the figure.

Performing a Taylor expansion of ω in the vicinity of k0 to first order yields:

ω(k) = ω0 + (k − k0)vg(k0), (5.47)

where we have defined:

vg =
dω

dk
. (5.48)

Therefore, equation (5.46) becomes:

η̃(x, t) = A(x, t)ei(k0x−ω(k0)t), (5.49)

with:

A(x, t) =

ˆ +∞

0
a(k)ei(k−k0)(x−vg(k0)t)dk, (5.50)

where we have kept the integral from 0 to +∞, even though the Taylor expansion above is

valid only in the vicinity of k0, because the values of k outside of a narrow band centered

on k0 correspond to negligible a(k) and therefore do not contribute to the integral. This

expression shows that η̃ can be approximated by a sinusoidal wave with wavenumber

k0 and frequency ω(k0), travelling at the speed vϕ = ω(k0)/k0, which amplitude A is a

function of x and t through the combination x− vg(k0)t.

3According to the Fourier integral theorem, any function f(x) which is absolutely integrable can be

written as:

f(x) =
1√
2π

ˆ +∞

−∞
f̂(k)eikxdk,

with

f̂(k) =
1√
2π

ˆ +∞

−∞
f(x)e−ikxdx.

The function f̂ is the Fourier transform of f , and f is the inverse Fourier transform to f̂ .
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Therefore, the amplitude, which is called the envelope of the wave packet, is also a

wave and it travels at the velocity vg(k0), which is called the group velocity of the

wave packet.

If the wave is non–dispersive, then vϕ = ω/k is a constant, which implies that ω ∝ k and

therefore vg = vϕ. In that case, the envelope travels at the same speed as the phase of the

individual components.

The effect of dispersion can be seen by continuing the Taylor expansion of ω(k) in

equation (5.47) to second order in k − k0:

ω(k) = ω0 + (k − k0)vg(k0) +
1

2
(k − k0)2ω′′(k0). (5.51)

With this extra term included, the amplitude A becomes:

A(x, t) =

ˆ +∞

0
a(k)ei(k−k0){x−[vg(k0)+ 1

2
(k−k0)ω′′(k0)]t}dk. (5.52)

This shows that the velocity at which the envelope travels is:

vg(k0) +
1

2
(k − k0)ω′′(k0).

Remembering that k is in a narrow interval centered on k0, this means that the velocity

is vg(k0) for the main component which is at k = k0, but that the velocity is slightly

decreased or increased for values of k on either side of k0. Therefore, the different Fourier

components of the wave packet travel with slightly different velocities, which results in the

envelope spreading with time: this is the effect of dispersion. If ω ∝ k, ω′′ = 0 and there

is no dispersion.

The figure below shows a wave packet travel-

ling in the x–direction. Dispersion results in a

flattening and broadening of the envelope.

( Credit:

http://www.jick.net/ jess/hr/skept/GWP/)

5.2.6 Surface gravity waves on deep water

Here we focus on waves such that λc � λ� h, that is to say for which the surface tension

does not play a role and which wavelength is small compared to the depth of water.
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Phase and group velocities:

When kh � 1, tanh(kh) ' 1. Therefore, the dispersion relation (5.42) can be approxi-

mated by:

ω2 = gk. (5.53)

This yields the phase velocity:

vϕ =

√
g

k
=

√
gλ

2π
. (5.54)

This shows that longer wavelengths travel faster than shorter wavelengths. The difference

between the speeds of different wavelengths is significant, as
√
g/(2π) = 1.25 m1/2 s−1.

Surface gravity waves in the oceans have wavelength typically in the range 1–100 m, for

which the phase velocity varies from 1.25 to 12.5 m s−1. The corresponding periods are

T = λ/vϕ in the range 0.8 to 8 s.

Differentiating the dispersion relation above yields 2ωdω = gdk, and therefore the

group velocity (5.48) is vg = dω/dk = g/(2ω), which can also be written as:

vg =
1

2

√
g

k
=
vϕ
2
. (5.55)

As with sound waves, the energy in linear gravity waves is equally divided between

kinetic energy and the potential energy associated with the restoring force, which here is

the gravitational potential energy, and is transported at the group velocity.

Motion of fluid elements:

The velocity potential φ is given by equations (5.40), in which C is given by equa-

tion (5.41) with the surface tension term being negligible. Since kh � 1, we have

cosh(kh) ' sinh(kh) ' ekh/2, so that:

cosh [k(z + h)]

cosh(kh)
=

cosh(kz) cosh(kh) + sinh(kz) sinh(kh)

cosh(kh)
' ekz.

Therefore:

φ(x, z, t) =
Ag

ω
ekz sin (kx− ωt) . (5.56)

The components of the velocity v1 =∇φ are then given by:

v1,x(x, z, t) = Aωekz cos (kx− ωt) , v1,z(x, z, t) = Aωekz sin (kx− ωt) , (5.57)

where we have used gk = ω2. We consider a fluid element which at equilibrium is at

(x0, z0). It is displaced by the perturbation so that its location becomes (x = x0 + x1, z =

z0 + z1), where |x1| and |z1| are small. We perform a Taylor expansion for v1,x:

v1,x(x, z, t) = v1,x(x0, z0, t) + x1
∂v1,x

∂x
(x0, z0, t) + z1

∂v1,x

∂z
(x0, z0, t) + · · ·
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Therefore, to first order in the perturbation, v1,x(x, z, t) = v1,x(x0, z0, t), and similarly for

v1,z. The velocities then only depend on time, and we can replace x by x0 and z by z0 in

equations (5.57) to obtain:

v1,x(t) = Aωekz0 cos (kx0 − ωt) , v1,z(t) = Aωekz0 sin (kx0 − ωt) . (5.58)

As v1,x = dx1/dt and v1,z = dz1/dt, we then obtain:

x1(t) = −Aekz0 sin (kx0 − ωt) +D1, z1(t) = Aekz0 cos (kx0 − ωt) +D2, (5.59)

where D1 and D2 are two constants. As mentioned above, given the form of η we have

assumed, the system is not at equilibrium at t = 0, and therefore we cannot use this

condition to calculate D1 and D2. However, the equations above yield:

(x1(t)−D1)2 + (z1(t)−D2)2 = A2e2kz0 , (5.60)

which indicates that the perturbed fluid elements move along a circle centered on (D1, D2).

Physically, this center has to be the equilibrium position of the fluid element, since x1 and

z1 are departure from equilibrium. Therefore, D1 = x0 and D2 = z0, and a fluid element

which is displaced from its equilibrium position (x0, z0) subsequently moves along a circle

centered on this point and with radius Aekz0.

The figure illustrates the path

of fluid elements displaced from

their equilibrium position. The

radius of the circles decreases

exponentially with depth.

(Credit:

https://www.nortekgroup.com/)

5.2.7 Surface gravity waves on water of finite depth

We now consider the case where we still have λc � λ, that is to say surface tension does

not play a role, but when the wavelength is not small compared to the depth of water.

The dispersion relation (5.42) then becomes:

ω2 = gk tanh(kh), (5.61)

and the phase velocity is:

vϕ =

√
g

k
tanh(kh), (5.62)

so that here again the waves are dispersive.
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The case corresponding to h � λ, that is to say kh � 1, is called the shallow water

regime. Using tanh(kh) ' kh then yields:

vϕ =
√
gh, (5.63)

which indicates that surface gravity waves on shallow water are non–dispersive. The

fact that vϕ decreases when the depth of water decreases explains the breaking of waves

on a steep beach. This happens because, as the wave approaches the beach, its velocity

decreases, and therefore so does its wavelength. The wave is then ‘squeezed’ into a nar-

rower volume, and its amplitude has to increase for mass to be conserved (this can also

be understood from the point of view of energy conservation, as potential energy has to

increase to compensate for the decrease in kinetic energy). This process is called shoaling.

When the amplitude of the wave is large enough, a crest overtakes the trough which is

directly in front of it and goes slower (as it reaches shallower depths first), which results

in the wave spilling or plunging forward: the wave breaks.

In the same way that we have shown that fluid elements displaced from their equilib-

rium position move along a circle in the case of deep–water, it could be shown that the

fluid elements move along ellipses in the case of finite depth. This is illustrated on the

figure below (from Ahmed et al., JMST, 2010, 24, 943), which shows that the ellipses

become more flattened as the depth of water decreases.

5.2.8 Gravity–capillary waves

Surface tension becomes important when λ is on the order of or smaller than the capillary

length λc. Such waves are called ripples. As λc is a few mm in water, the deep water

approximation is usually relevant, so that kh� 1. Therefore, the dispersion relation (5.42)

becomes:

ω2 = gk
(
1 + λ2

ck
2
)
. (5.64)

When λck � 1, gravity is negligible and we have capillary waves, for which the disper-

sion relation is ω2 = gλ2
ck

3 = γk3/ρ0, where we have used equation (5.43) for λc. Their

phase and group velocities are vϕ =
√
γk/ρ and vg = 3vϕ/2, respectively, so that the en-

velope of wave packets travel faster than the phase of the individual Fourier components.
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This figure shows the phase velo-

city vϕ as a function of wavelength

λ for the different type of surface

waves mentioned above. The phase

velocity has a minimum for λ ∼ λc.

5.3 Internal gravity waves

We now consider the waves for which the restoring force is gravity acting in a fluid in

which the density varies continuously with height. In general, the density decreases with

height, and this is what we assume here.

The flow satisfies Euler equation with both pressure and gravity included:

ρ

(
∂v

∂t
+ (v ·∇) v

)
= −∇p− ρgẑ. (5.65)

We assume that the fluid is incompressible, so that we have:

∇ · v = 0. (5.66)

Using this condition, the mass conservation equation (1.22) yields:

Dρ

Dt
=
∂ρ

∂t
+ (v ·∇) ρ = 0. (5.67)

It expresses the fact that, in an incompressible flow, fluid elements retain their density

as they move. This is a good approximation for describing internal gravity waves in the

oceans, but not in the atmosphere where, instead of retaining their mass density, fluid

elements retain their entropy as they move, as in the case of sound waves (section 5.1.1).

5.3.1 Buoyancy frequency

We consider a fluid element located at z and which moves upwards to z + δz while con-

serving its density ρ0(z), where ρ0 is the density at equilibrium. The density of the fluid

surrounding it at z + δz is smaller, being ρ0(z) + (dρ0/dz)δz. The fluid element, there-

fore, has an excess density over that of the surrounding fluid which is −(dρ0/dz)δz. This

results in an excess weight g(dρ0/dz)δz (directed downwards) per unit volume of fluid for

the element, so that the equation of motion for the fluid element can be written as:

ρ0
d2(δz)

dt2
= g

dρ0

dz
δz. (5.68)
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Therefore, the fluid element oscillates with the buoyancy frequency N defined as:

N2 = − g

ρ0

dρ0

dz
. (5.69)

Here we have assumed that the displacement of the fluid element was purely vertical. As

we will see below, any additional horizontal component would reduce the frequency of

the oscillations, so that N is the maximum frequency for oscillations under gravity. The

analysis above is still valid if dρ0/dz > 0, but in that case N2 < 0 and, as will be discussed

in chapter 6, the displacement is then unstable: the fluid element keeps moving upwards

after it is displaced4.

5.3.2 Dispersion relation

We now solve the full equations above satisfied by the flow for a general linear perturbation.

We consider an equilibrium in which the velocity is zero. The density ρ0 and pressure p0

vary only with z, so that Euler equation gives:

dp0

dz
+ ρ0(z)g = 0. (5.70)

As for surface waves, we consider two dimensional small perturbations in the (x, z) plane so

that v(x, z, t) = v1(x, z, t), p(x, z, t) = p0(z) +p1(x, z, t) and ρ(x, z, t) = ρ0(z) +ρ1(x, z, t),

with p1 � p0 and ρ1 � ρ0. Substituting in equations (5.65), (5.66) and (5.67) and keeping

only terms of first order in the perturbed quantities yield:

ρ0
∂v1,x

∂t
= −∂p1

∂x
, ρ0

∂v1,z

∂t
= −∂p1

∂z
− ρ1g,

(5.71)

∂v1,x

∂x
+
∂v1,z

∂z
= 0 ,

∂ρ1

∂t
+ v1,z

dρ0

dz
= 0.

Note that the zeroth order terms in equation (5.65) drop as they themselves satisfy Euler

equation.

4Here we have considered an incompressible fluid in which fluid elements retain their mass density as

they move. As mentioned already, this is a good approximation in the oceans, but not in the atmosphere

or in a star, where the fluid is a gas. A similar analysis can still be done by considering that fluid elements

retain their entropy as they move, for the same reason that we have assumed adiabatic perturbations in

the case of sound waves in section 5.1.1. On the other hand, pressure balance between the fluid element

and its new surrounding as it is displaced is achieved on a timescale shorter than the timescale on which

the displacement occurs (as it is given by the sound crossing time through the fluid element). Writing the

condition for stability in that context leads a similar result as that described in this section, but with the

buoyancy frequency (5.69) replaced by the so–called Brunt–Väisälä frequency N and defined as:

N2 = g

(
1

γ

d ln p0
dr

− d ln ρ0
dr

)
,

where r is the local radius and g the local gravitational acceleration. When N2 < 0, the equilibrium is

unstable and convective motions persist. The Sun, for example, has a large convective envelope in its outer

parts in which the flow rises from below as described here.
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We look for plane wave solutions of the form:

ṽ1,x(x, z, t) = Ṽx ei(kxx+kzz−ωt), (5.72)

ṽ1,z(x, z, t) = Ṽz ei(kxx+kzz−ωt), (5.73)

p̃1(x, z, t) = P̃ ei(kxx+kzz−ωt), (5.74)

ρ̃1(x, z, t) = R̃ ei(kxx+kzz−ωt), (5.75)

where a tilde indicates a complex quantity. The real parts have to be taken to obtain the

physical quantities. Substituting into the linearized equations (5.71) yields:

ωρoṼx − kxP̃ = 0, (5.76)

iωρ0Ṽz − ikzP̃ − gR̃ = 0, (5.77)

kxṼx + kzṼz = 0, (5.78)

dρ0

dz
Ṽz − iωR̃ = 0. (5.79)

This system has a non–trivial solution only if the determinant of the coefficient matrix is

zero, which yields the dispersion relation:

ω =
Nkx
k

= N sin θ, (5.80)

where k =
√
k2
x + k2

z and θ is the angle between the wavenumber k = kxx̂ + kzẑ and

the z–axis. If there is no stratification, N = 0 and ω = 0, which makes it clear that

the restoring force is due to stratification. If kz = 0, ω = N , as expected since in that

case equation (5.78) implies that vx = 0 and the fluid elements oscillate as described in

section 5.3.1. If kx = 0, ω = 0, again as expected since in that case equation (5.78)

implies that vz = 0, which means that the motion is in the x–direction in which there

is no restoring force. For that reason as well, the frequency of the oscillations is smaller

when the motion is not purely vertical, so that ω ≤ N .

Here we have considered a free oscillation, that is to say an oscillation that results from

some initial disturbance and occurs with the system own natural frequency. If instead the

oscillation were forced, then both k and ω would be given by the forcing process. For

example, when the waves are produced by water flowing over a ridge in the ocean or air

moving over hills in the atmosphere, k is given by the geometry of the ridge/hills and ω

by the speed of the flow. The result above then shows that only waves with frequencies

smaller than N can propagate.

The phase velocity is vϕ = ω/k and is in the direction of k, so that we can write:

vϕ =
Nkx
k2

k

k
. (5.81)

In the same way that we have shown that the group velocity for a one dimensional wave

is vg = dω/dk (section 5.2.5), we could show that, in two dimensions:

vg =
∂ω

∂kx
x̂ +

∂ω

∂kz
ẑ. (5.82)
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Therefore, here, we obtain:

vg =
Nkz
k3

(kzx̂− kxẑ) . (5.83)

This shows that the group velocity is perpendicular to the direction in which the wave

propagates!

In other words, the envelope of wave packets and the

energy propagate in a direction which is perpendicu-

lar to the direction of propagation of the crests and

troughs, as illustrated on the figure.

(Credit: http://www.po.gso.uri.edu )

5.3.3 Motion of fluid elements

Equation (5.78) can also be written as k · ṽ1 = 0, which means that the waves are trans-

verse: fluid elements oscillate along lines perpendicular to the direction of propagation k,

that is to say along lines of constant phase.

The figure illustrates the motion of a fluid ele-

ment (represented by the blue dot). The pres-

sure force Fp = −∇p = −kp is perpendicular

to the lines of constant phase and directed up-

wards (since pressure decreases upwards). The

weight W is downwards, and the resultant net

force is along the line of constant phase, as this

is the line along which the fluid element moves.

We can recover the frequency of the oscillations by doing the same analysis as in sec-

tion 5.3.1. A displacement δl along a line of constant phase corresponds to a vertical

displacement δz = δl sin θ. Therefore, the weight W acting on the excess mass that

the fluid element has relative to its surrounding is W = −N2δz = −N2δl sin θ per unit

mass of the fluid element. The component of the weight perpendicular to the line of

constant phase balances the pressure force, so the net force acting on the fluid element

is W sin θ = −N2δl sin2 θ. Therefore, writing an equation of motion similar to equa-

tion (5.68) (replacing δz by δl), we obtain that the frequency of the oscillations is N sin θ,

in agreement with equation (5.80).
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The figure illustrates the motion of fluid

elements and propagating internal grav-

ity waves.

(Credit: http://www-eaps.mit.edu )
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Chapter 6

Instabilities and turbulence

In chapter 5, we have discussed the propagation of small perturbations in a fluid. As

already mentioned, using the Fourier integral theorem, it is always possible to write a

perturbation as a linear combination of Fourier components ei(kx−ωt), the physical quantity

being the real part of this complex function. We obtain a relation between ω and k

(dispersion relation) by writing that the perturbed quantities satisfy Euler’s equation,

the incompressibility condition and the boundary conditions. For surface waves, we have

found that ω was always real, which means that the perturbation is a wave propagating

in the positive x direction. However, in the case of internal gravity waves, when N2 given

by equation (5.69) is negative, which is the case when the mass density increases with

height, the dispersion relation (5.80) yields the imaginary frequency ω = ±i
√
−N2kx/k.

The term e|ω|t is then present in the expression of the perturbation, which means that

the perturbation grows with time: it is unstable. This is not surprising as a heavy fluid

element displaced downwards, where the fluid is lighter, will continue to sink instead of

oscillating around its equilibrium position.

Linear stability theory deals with the growth of very small perturbations which can be

treated in the same way as we have treated waves in the previous chapter, by keeping only

first order terms in the perturbation in the equations. Of course, after the perturbations

grow beyond some amplitude, linear theory is not valid anymore. Therefore, this theory

only allows to study the onset of instabilities, and cannot be used to describe the develop-

ment of the instability when non–linear terms become important. As we are going to see

in this chapter, there are a number of instabilities which develop starting with very small

perturbations. However, in some cases, instabilities arise only when perturbations reach

a certain amplitude. These are called finite amplitude instabilities and will not be studied

here.

6.1 Kelvin–Helmholtz instability

We consider a fluid of density ρ2 which is above another fluid or density ρ1 > ρ2. Both

fluids are inviscid and incompressible, and we take their densities to be constant. When the

interface between them is perturbed, we obtain stable surface gravity waves, as studied
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in chapter 5. However, the perturbation may become unstable if the two fluids move

with respect to each other. In other words, a gravitationally stable stratification may be

destabilized by shear. This is called a Kelvin–Helmholtz instability and is the focus of this

section.

We assume that the fluid on top moves with velocity U x̂, where U is a constant,

whereas the fluid at the bottom is at rest. At equilibrium, the interface between the two

fluids is flat and in the z = 0 plane.

The interface between the two fluids is

perturbed such that its equation becomes

z = η(x, t), with η being the real part of:

η̃(x, t) = Aei(kx−ωt). (6.1)

6.1.1 Boundary conditions

The analysis presented here follows closely that done for surface waves in section 5.2. We

take into account gravitational, pressure and surface tension forces. Both fluids satisfy

Euler equation (2.30):

ρ

(
∂v

∂t
+ (v ·∇) v

)
= −∇p− ρgẑ, (6.2)

where g > 0.

The boundary conditions at the interface are as follows:

• the kinematic condition (2.34) yields:

vi,z =
dz

dt
=
∂η

∂t
+ vi,x

∂η

∂x
, (6.3)

where vi,x and vi,z are the components of the velocity in fluid i, for i = 1, 2;

• pressure forces are equal and opposite to surface tension forces (see section 2.3.3).

As shown in chapter 5, this yields (see eq. [5.21]):

p1(x, η, t)− p2(x, η, t) = −γ ∂
2η

∂x2
, (6.4)

where p1 and p2 are the pressures in fluids 1 and 2, respectively, and γ is the surface

tension.

6.1.2 Dispersion relation

We note vi = vi,0 + v′i the velocity in fluid i, where vi,0 is the velocity at equilibrium

and v′i is the perturbed velocity. We have v2,0 = U x̂ and v1,0 = 0. Since the fluids are
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incompressible, we can then define the velocity potential φi such that vi = ∇φi. Given

that the fluids at equilibrium are also incompressible, we can write φi = φi,0 + φ′i, with

vi,0 =∇φi,0 and v′i =∇φ′i. Similarly, we have pi = pi,0 + p′i, where pi,0 is the pressure at

equilibrium and p′i is the perturbed pressure in fluid i.

In equation (6.3), vi,z is the perturbed velocity since the equilibrium velocity has no

vertical component. Therefore, this equation gives:

∂φ′1
∂z

(x, η, t) =
∂η

∂t
, (6.5)

∂φ′2
∂z

(x, η, t) =
∂η

∂t
+ U

∂η

∂x
, (6.6)

to first order in the perturbation. To this order, we also have that ∂φ′i/∂z at (x, η, t) is

equal to its value at (x, 0, t) (see section 5.2.3). Therefore, we obtain:

∂φ′1
∂z

(x, 0, t) =
∂η

∂t
,

∂φ′2
∂z

(x, 0, t) =
∂η

∂t
+ U

∂η

∂x
.

(6.7)

(6.8)

Since the flows are irrotational and with constant densities, Bernoulli’s theorem can

be expressed as (eq. [2.59]):

ρi
∂φi
∂t

+
1

2
ρiv

2
i + pi + ρigz = 0, (6.9)

which can be written as:

ρi
∂

∂t

(
φi,0 + φ′i

)
+

1

2
ρi

[(
vi,0 + v′i,x

)2
+ v′2i,z

]
+ pi + ρigz = 0. (6.10)

For fluid 1, this gives at z = η:

ρ1
∂φ′1
∂t

(x, η, t) + p1 (x, η, t) + ρ1gη (x, t) = 0, (6.11)

where we have neglected v′21,z and v′21,x, as they are second order in the perturbation. To

first order, ∂φ′1/∂t at (x, η, t) is equal to its value at (x, 0, t) (see section 5.2.3). Therefore,

equation (6.11) yields:

p1(x, η, t) = −ρ1

(
∂φ′1
∂t

(x, 0, t) + gη (x, t)

)
. (6.12)

For fluid 2, equation (6.10) at z = η becomes:

ρ2
∂φ′2
∂t

(x, η, t) +
1

2
ρ2U

2 + ρ2U
∂φ′2
∂x

(x, η, t) + p2 (x, η, t) + ρ2gη (x, t) = 0, (6.13)

where we have used v′2,x = ∂φ′2/∂x and neglected second order terms. Since any function

of time can be added to φ′2 without changing the velocities, the term ρ2U
2/2 can be

subsumed into ∂φ′2/∂t by adding U2t/2 to φ′2. Replacing ∂φ′2/∂t and ∂φ′2/∂x at (x, η, t)by

their values at (x, 0, t) then yields:

p2(x, η, t) = −ρ2

(
∂φ′2
∂t

(x, 0, t) + U
∂φ′2
∂x

(x, 0, t) + gη (x, t)

)
. (6.14)
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Substituting equations (6.12) and (6.14) into the boundary condition (6.4) then gives:

ρ1

(
∂φ′1
∂t

(x, 0, t) + gη

)
− ρ2

(
∂φ′2
∂t

(x, 0, t) + U
∂φ′2
∂x

(x, 0, t) + gη

)
= γ

∂2η

∂x2
. (6.15)

As in the case of surface waves (section 5.2.4), we look for complex solutions under the

form:

φ̃′1 = f1(z)ei(kx−ωt), φ̃′2 = f2(z)ei(kx−ωt). (6.16)

Since both φ′1 and φ′2 satisfy Laplace’s equation, we have:

f ′′i(z)− k2fi(z) = 0.

The solutions are a linear combination of ekz and e−kz. We assume that the height of fluid

on both sides of the interface is large compared to the wavelength of the perturbation, so

that φ′1 and φ′2 go to zero when z go to −∞ and +∞, respectively. This implies f1 = K1ekz

and f2 = K2e−kz, where K1 and K2 are two constants.

Inserting in equations (6.7), (6.8) and (6.15) then yields:

K1k = −iωA,

−K2k = iωA(−ω + Uk),

ρ1 (−iωK1 + gA)− ρ2 (−iωK2 + iUK2k + gA) = −γk2A.

This system has a non–trivial solution for K1, K2 and A only if the following dispersion

relation is satisfied:

(ρ1 + ρ2)ω = ρ2Uk ±
{

(ρ1 + ρ2)
[
γk3 + (ρ1 − ρ2) gk

]
− ρ1ρ2U

2k2
}1/2

. (6.17)

6.1.3 Instability condition

If the term in the square root in equation (6.17) is negative, then ω is complex and can

be written as ω = ωR± iωI . In that case, the term e|ωI |t is present in the expression of φ̃′1

and φ̃′2 given by equation (6.16): the perturbation grows exponentially with time, which

means it is unstable1.

Therefore, the instability condition is:

(ρ1 + ρ2)
[
γk3 + (ρ1 − ρ2) gk

]
− ρ1ρ2U

2k2 < 0, (6.18)

1Any general disturbance can be written as:

ˆ +∞

−∞
a(k)ei(kx−ω(k)t)dk.

Therefore, if there exists a value of k for which ω(k) is complex, the perturbation will grow exponentially

with time. Instability can only be avoided if a(k) = 0 for the unstable wavenumbers, which requires the

perturbation to select particular values of k.
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which can also be written as:

ρ1ρ2U
2

(ρ1 + ρ2)2 > c2
0, (6.19)

where we have defined:

c2
0 =

ρ1 − ρ2

ρ1 + ρ2

g

k

(
1 +

γk2

g (ρ1 − ρ2)

)
. (6.20)

c0 is the phase velocity of the surface wave which propagates as a result of the perturbation

when U = 0 (when ρ2 � ρ1, we recover ω/k with ω given by eq. [5.64]).

The figure shows the region of instability

in the (k, U) plane.

The minimum velocity c0,min is given by:

c0,min =
2

ρ1 + ρ2

√
γg (ρ1 − ρ2), (6.21)

and it corresponds to the wavenumber kc = 1/λc, where λc is the capillary length:

λc =

√
γ

g (ρ1 − ρ2)
. (6.22)

This is equivalent to equation (5.43) when ρ2 � ρ1.

6.1.4 Physics of the instability

When the interface is perturbed, the

streamlines are brought closer to each

other above the crests and below the

troughs, so that the flow velocity in-

creases there (due to mass conservation),

which implies that the pressure decreases

(due to Bernoulli’s theorem).
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Similarly, the velocity decreases and the pressure increases under the crests and above the

troughs. Therefore, pressure forces amplify the perturbation, which is the basis of the

instability. Gravitational forces tend to stabilize the flow, as they oppose the upwards

motion of the heavier fluid which is at the bottom. Similarly, surface tension stabilizes

the flow by opposing the deformation of the interface. Gravitation and capillarity are

more effective at large and small wavelengths, respectively, with comparable contribution

at λ ∼ λc.

When the perturbation starts growing, the upper part of the interface moves with the

velocity of the fluid at the top whereas the lower part moves with the velocity of the fluid

at the bottom, which results in the deformation of the fronts and produces a rolling up of

the interface, as indicated on the figure below:

The evolution of the flow can also be understood in terms of the vorticity. At equilibrium,

the circulation
´
C v ·dl around a rectangular contour C across the interface with two sides

parallel to the interface is equal to ±UL, where L is the length of the sides along the

x–axis. Using Stokes theorem, this is equal to the flux of vorticity through the surface

delimited by the contour. Since the flows on both sides are irrotational at equilibrium, the

vorticity is localized on the interface, where the shear is present (as U varies discontinu-

ously at the interface). When the interface is perturbed, this vorticity sheet is deformed,

and the subsequent evolution is constrained by Kelvin’s theorem.

This instability may also occur when

there is a continuous gradient of density

and velocity, instead of a sudden jump at

an interface, as in layers of clouds.

6.2 Rayleigh–Taylor instability

See Problem Set 5.
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6.3 Turbulence

In some cases, the growth of perturbations due to instabilities in the non–linear regime

leads to a transition to turbulence. The instabilities described in the above sections are

due to a particular gradient of density or velocity. However, it is an experimental fact

that every shear flow becomes turbulent when its Reynolds number exceeds a critical

value Rec ∼ 103. The structure of a turbulent flow is very complex and non predictable.

However, statistical methods can be used to derive some properties of turbulence. In this

section, we assume that the density ρ is constant (in space and time), which implies that

the fluid is incompressible.

6.3.1 The Reynolds stress

In a turbulent flow, velocities have random fluctuations around a mean value. This is

expressed by the co–called Reynolds decomposition:

v = V + v′, (6.23)

where V = 〈v〉 and 〈v′〉 = 0, with the brackets denoting an average. The different

quantities depend both on location r and on time t. In general, if the flow is time–

dependent, 〈v〉 corresponds to the average of the velocity over a large ensemble of flows

with the same properties. However, if the flow varies on a timescale T long compared

to the characteristic timescale τ of the fluctuations, or if the flow is time–independent

(infinite T ), the average may be calculated over a time large compared to τ and small

compared to T . A similar decomposition can be made for the pressure and the viscous

stress tensor (2.13):

p = P + p′, σij = Sij + σ′ij , (6.24)

where P = 〈p〉, Sij = 〈σij〉 and 〈p′〉 =
〈
σ′ij

〉
= 0. Given the way average quantities are

calculated, it is straightforward to show that the spatial derivative of an average quantity

is equal to the average of the spatial derivative of that quantity:

∂ 〈〉
∂xi

=

〈
∂

∂xi

〉
.

This is also valid for the time–derivative:

∂ 〈〉
∂t

=

〈
∂

∂t

〉
,

but, when the flow is time–dependent, this requires τ � T .

Interchanging the average and space derivatives, we can write the average of the viscous

stress as:

Sij = ρν

(
∂Vi
∂xj

+
∂Vj
∂xi

)
. (6.25)

The flow satisfies Navier–Stokes equation (2.20):

ρ
∂vi
∂t

+ ρ (v ·∇) vi = − ∂p

∂xi
+
∂σij
∂xj

+ fi, (6.26)
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where f includes all the forces per unit volume which act on the fluid. Using the Reynolds

decomposition above, this equation can be re–written as:

ρ
∂

∂t

(
Vi + v′i

)
+ ρ

[(
V + v′

)
·∇
] (
Vi + v′i

)
= − ∂

∂xi

(
P + p′

)
+

∂

∂xj

(
Sij + σ′ij

)
+ fi. (6.27)

We now average this equation over a time long compared to τ but small compared to T .

Using the fact that the time and space derivatives can be interchanged with the averages,

and that the average of the fluctuations is zero, this yields:

ρ
∂Vi
∂t

+ ρ (V ·∇)Vi + ρ
〈(

v′ ·∇
)
v′i
〉

= − ∂P
∂xi

+
∂Sij
∂xj

+ fi. (6.28)

We have assumed that the flow is incompressible, that is to say:

∇ ·
(
V + v′

)
= 0. (6.29)

Taking a time–average of this equation yields:

∇ ·V = 0, (6.30)

which means that the average flow is incompressible. Subtracting from equation (6.29)

then gives:

∇ · v′ = 0, (6.31)

which means that the fluctuations are also incompressible. Therefore, the term ρ (V ·∇)Vi

in equation (6.28) can be written as:

ρVj
∂Vi
∂xj

=
∂

∂xj
(ρVjVi) ,

where we have used the incompressibility of the average velocity. Similarly, the term

ρ 〈(v′ ·∇) v′i〉 in equation (6.28) can be written as:

ρ

〈
v′j
∂v′i
∂xj

〉
=

〈
∂

∂xj

(
ρv′jv

′
i

)〉
=

∂

∂xj

〈
ρv′jv

′
i

〉
,

where we have used the incompressibility of the fluctuations and interchanged the space

derivatives and average. Therefore, equation (6.28) becomes:

ρ
∂Vi
∂t

+
∂

∂xj

(
ρVjVi + ρ

〈
v′jv
′
i

〉)
= − ∂P

∂xi
+
∂Sij
∂xj

+ fi, (6.32)

which can also be written in the form:

ρ
∂Vi
∂t

+
∂

∂xj

(
ρVjVi + ρ

〈
v′jv
′
i

〉
+ Pδij − Sij

)
= fi. (6.33)

This equation expresses the fact that the rate of change of momentum in a fixed volume

(∂/∂t term) is due to the divergence of the momentum flux (∂/∂xj term) and to the forces

acting on the volume. This is similar to equation (2.19), but with the addition of the

Reynolds stress, also called turbulent stress:

τij = −ρ
〈
v′jv
′
i

〉
. (6.34)

Therefore, in a turbulent flow, momentum is transported by the mean velocities, by viscos-

ity and pressure, as in a laminar flow, but also by the correlations between the components

of the fluctuations.
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6.3.2 Mixing length theory

As we have no expression for the components of τij (six of which are independent, as the

tensor is symmetrical), the problem has more unknowns than equations. This is the well–

known closure problem of turbulence. Since τij appears in the same way as Sij = 〈σij〉
in equation (6.33), it is tempting to express τij by analogy with 〈σij〉, which is given by

equation (6.25). This is the basis for the mixing length theory, in which τij is written as:

τij = ρνt

(
∂Vi
∂xj

+
∂Vj
∂xi

)
. (6.35)

where νT is the so–called turbulent, or eddy viscosity. By analogy with expression (2.5)

for the molecular viscosity, it is supposed that:

νT ∼ vTΛ, (6.36)

where vt is a characteristic velocity of the turbulent eddies and Λ is the so–called mixing

length, which is the “mean free path” of the eddies, i.e. the distance they travel through

before they mix with their environment. Both vt and Λ depend on the flow under consid-

eration. Mixing length theory is widely used, for example to model the convective zone

of stars. However, although in this context it describes well the transport of energy by

the turbulent flow, it fails to give an accurate description of the transport of momentum.

This is a problem when modelling the interaction between the convective flow and tidal

oscillations excited by a stellar companion in binary systems, for example. One of the

limitation of the model is that the scale of the largest turbulent eddies is comparable to

the scale on which the average quantities vary. This is in constrast to kinetic theory, where

the calculation of the viscosity relies on the separation between the scale on which random

motions occur and the scale over which quantities are averaged.

6.3.3 Energy conservation

The kinetic energy per unit mass is:

1

2
v2
i =

1

2

(
Vi + v′i

)2
=

1

2

(
V 2
i + v′2i + 2Viv

′
i

)
.

Therefore, the average kinetic energy per unit mass is:

1

2

(
V 2
i +

〈
v′2i
〉)
,

which is the sum of the kinetic energy of the mean flow and that of the fluctuations.

We obtain an energy conservation equation for the mean flow by multiplying equa-

tion (6.28) by Vi:

∂

∂t

(
1

2
V 2
i

)
+ ViVj

∂Vi
∂xj

+ Vi

〈
v′j
∂v′i
∂xj

〉
= −Vi

ρ

∂P

∂xi
+ νVi

∂

∂xj

(
∂Vi
∂xj

+
∂Vj
∂xi

)
, (6.37)
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where we have neglected gravity, and where summation over i and j is implicit. Using the

incompressibility of the average velocity (eq. [6.30]), we have:

Vi
ρ

∂P

∂xi
=

∂

∂xi

(
ViP

ρ

)
,

and:

Vi
∂

∂xj

(
∂Vi
∂xj

+
∂Vj
∂xi

)
= Vi

∂2Vi
∂x2

j

=
∂

∂xj

(
Vi
∂Vi
∂xj

)
−
(
∂Vi
∂xj

)2

.

Using the incompressibility of the fluctuations (eq. [6.31]) yields:

Vi

〈
v′j
∂v′i
∂xj

〉
= Vi

〈
∂

∂xj

(
v′jv
′
i

)〉
.

Interchanging the average and space derivatives, this can be written as:

Vi
∂

∂xj

〈
v′jv
′
i

〉
=

∂

∂xj

(
Vi
〈
v′jv
′
i

〉)
−
〈
v′jv
′
i

〉 ∂Vi
∂xj

.

Therefore, equation (6.37) becomes:

∂

∂t

(
V 2
i

2

)
+Vj

∂

∂xj

(
V 2
i

2

)
=

∂

∂xj

(
−VjP

ρ
+ νVi

∂Vi
∂xj
− Vi

〈
v′jv
′
i

〉)
− ν

(
∂Vi
∂xj

)2

+
〈
v′jv
′
i

〉 ∂Vi
∂xj

. (6.38)

This equation expresses the conservation of kinetic energy for the mean flow. It indicates

that the Lagrangian derivative of V 2
i /2 (left hand–side) is equal to the divergence of a

flux, which represents the work done by pressure forces, viscous and Reynolds stresses,

plus a term expressing dissipation of energy in the mean flow due to viscosity, which

is ν (∂Vi/∂xj)
2, plus a term which represents the transport of mean momentum by the

Reynolds stress, which is
〈
v′jv
′
i

〉
(∂Vi/∂xj).

A similar conservation equation for the fluctuations can be obtained by multiplying

equation (6.26) by v′i:

v′i
∂vi
∂t

+ v′ivj
∂vi
∂xj

= −v
′
i

ρ

∂p

∂xi
+ νv′i

∂

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
. (6.39)

Using the Reynolds decomposition and averaging over time yields:

∂

∂t

(
v′2i
2

)
+

〈
v′iVj

∂v′i
∂xj

〉
+

〈
v′iv
′
j

∂v′i
∂xj

〉
+

〈
v′iv
′
j

∂Vi
∂xj

〉
=

−
〈
v′i
ρ

∂p′

∂xi

〉
+ ν

〈
v′i

∂

∂xj

(
∂v′i
∂xj

+
∂v′j
∂xi

)〉
. (6.40)

As above, we use the incompressibility of the average and fluctuating velocities to re–write

this equation as:

∂

∂t

(〈
v′2i
〉

2

)
+ Vj

∂

∂xj

(〈
v′2i
〉

2

)
=

∂

∂xj

−
〈
v′jp
′
〉

ρ
+ ν

〈
v′i
∂v′i
∂xj

〉
−

〈
v′jv
′2
i

〉
2

− ν〈( ∂v′i
∂xj

)2
〉
−
〈
v′jv
′
i

〉 ∂Vi
∂xj

. (6.41)
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Here again, this equation expresses the conservation of kinetic energy for the fluctua-

tions. It indicates that the Lagrangian derivative of
〈
v′2i
〉
/2 (left hand–side) is equal to

the divergence of a flux, which represents the average of the work done by the fluctuat-

ing pressure forces, viscous and Reynolds stresses, plus a term expressing dissipation of

energy in the fluctuations due to viscosity, which is ν
〈

(∂v′i/∂xj)
2
〉

, plus the same term

as in equation (6.38) which represents the transport of mean momentum by the Reynolds

stress, which is −
〈
v′jv
′
i

〉
(∂Vi/∂xj). This term has a positive sign in equation (6.38),

and a negative sign here. It means that energy is transferred from the mean flow to the

fluctuations.

6.3.4 Kolmogorov scaling

When the fluctuations are stationary and vary slowly in space, equation (6.41) gives:

〈
v′jv
′
i

〉 ∂Vi
∂xj

= −ν

〈(
∂v′i
∂xj

)2
〉
, (6.42)

which shows that the energy received by the fluctuations from the mean flow (left hand

side) is dissipated by viscosity (right hand side).

We now present the Kolmogorov model, which describes how the energy which is

fed into the fluctuations from the mean flow is ultimately dissipated by viscosity. The

turbulence can be modelled as a superposition of vortices, also called turbulent eddies,

of different sizes. The Kolmogorov model, which applies to homogeneous and isotropic

turbulence, assumes that the energy from the mean flow is fed into the largest eddies,

and that it subsequently cascades down to the smallest eddies where it is dissipated by

viscosity.

The largest eddies have a characteristic size and velocity that we note l and vl, re-

spectively. Let ε be the energy per unit mass which is transferred by the mean flow to

the largest eddies per unit time. The units of ε are J kg−1 s−1, which is equal to m2 s−3.

Dimensional analysis then yields:

ε ∼ v3
l /l. (6.43)

This energy is then passed on continuously to smaller eddies. Therefore, the same argu-

ment applies to an eddy of size λ and velocity vλ receiving the energy ε per unit mass and

per unit time, so that:

ε ∼ v3
λ/λ. (6.44)

When the energy reaches the smalles eddies, which have a size l0 and a velocity v0, it

is dissipated by viscosity, Therefore, ε is equal to the term on the right hand side of

equation (6.42) evaluated for the smallest eddies, which gives:

ε ∼ νv2
0/l

2
0. (6.45)

Writing equation (6.44) for vλ = v0 and λ = l0 and comparing with equation (6.45) then

yields the Komolgorov length and velocity::

l0 ∼ ν3/4ε−1/4, v0 ∼ (νε)1/4. (6.46)
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The kinetic energy per unit mass of an eddy of size λ and velocity vλ is v2
λ/2, which

according to equation (6.44) is proportional to (ελ)2/3. Therefore, larger eddies have more

energy.

The range of scales λ ∼ l is called the energy range, as this is where most of the energy

is. The scales λ ∼ l0 are called dissipation range, and the intermediate scales l0 � λ� l

are called the inertial range.

A very important law in the theory of turbulence is the so–called Kolmogorov’s sim-

ilarity law, which is obtained by introducing the wavenumber k such that λ ∼ 1/k. We

then note E(k)dk the kinetic energy per unit mass in the eddies with wavenumber between

k and k + dk. The quantity E(k) is the spectral energy density and is associated with

the Fourier decomposition of the turbulent velocities. In the inertial range, this energy

cannot depend on l, l0 or ν. Therefore, it can only depend on ε and on k. Since it has the

dimensions m3 s−2, dimensional analysis yields:

E(k) ∼ ε2/3k−5/3. (6.47)

Note that, for k = 1/λ:

ˆ +∞

k
E(k′)dk′ ∝ ε2/3k−2/3 ∼ (ελ)2/3 ∼ v2

λ.

This means that the total energy in all the eddies with sizes smaller than λ is roughly

equal to the energy of the eddies with size λ, which is consistent with the result that the

energy is in the largest eddies.
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Appendix A

Complex variables

A.1 The Cauchy–Riemann relations

A function is analytic in a domain if it is single–valued and differentiable at all points in

this domain. For the function w(z) to be differentiable, the limit:

L = lim
∆z→0

w(z + ∆z)− w(z)

∆z
,

must exist and be unique. With z = x + iy and w(z) = φ(x, y) + iψ(x, y), this limit can

also be written as:

L = lim
∆x,∆y→0

φ(x+ ∆x, y + ∆y) + iψ(x+ ∆x, y + ∆y)− φ(x, y)− iψ(x, y)

∆x+ i∆y,
.

This limit should not depend on the direction along which we approach the point (x, y).

Therefore, the result corresponding to ∆z being purely real (∆y = 0), which is:

L = lim
∆x→0

φ(x+ ∆x, y) + iψ(x+ ∆x, y)− φ(x, y)− iψ(x, y)

∆x
=
∂φ

∂x
+ i

∂ψ

∂x
,

should be identical to the result corresponding to ∆z being purely imaginary (∆x = 0),

which is:

L = lim
∆y→0

φ(x, y + ∆y) + iψ(x, y + ∆y)− φ(x, y)− iψ(x, y)

i∆y
= −i

∂φ

∂y
+
∂ψ

∂y
.

By equating the real and imaginary parts of these two expressions, we see that φ and ψ

have to satisfy the Cauchy–Riemann relations:

∂φ

∂x
=
∂ψ

∂y
, and

∂ψ

∂x
= −∂φ

∂y
. (A.1)

It is straightfoward to see that these relations imply ∂2φ/∂x2 +∂2φ/∂y2 = 0, and similarly

for ψ, so that both the real and imaginary parts of an analytic function satisfy Laplace’s

equation. A function that satisfies Laplace’s equation is called a harmonic function.

The derivative of w can then be calculated by keeping y constant:

dw

dz
=
∂φ

∂x
+ i

∂ψ

∂x
. (A.2)
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A.2 Cauchy’s theorem

A.3 Laurent series
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