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Chapter 1

Potentials

1.1 Static scalar and vector potentials

1.1.1 Definitions

As seen in the fist year course, for static fields in the presence of electric charges of density

ρ and electric currents of density J, Maxwell’s equations are:

∇ ·E =
ρ

ε0
, (1.1)

∇ ·B = 0, (1.2)

∇×E = 0, (1.3)

∇×B = µ0J. (1.4)

Equation (1.3) implies that there exists a scalar potential V such that:

E = −∇V. (1.5)

The scalar potential is not uniquely defined, as any function V ′ = V + K, where K is a

constant, also satisfies E = −∇V ′. The physical interpretation of equation (1.5) is that

the electric potential V evaluated at some position r is the work required to bring a unit

positive charge from some reference point to the position r in the presence of the field E.

In other words, V is the potential energy per unit charge.

Similarly, equation (1.2) implies that there exists a vector potential A such that:

B =∇×A. (1.6)

Here again, the vector potential A is not uniquely defined, as we can have different po-

tentials that give the same magnetic field. If both A and A′ are associated with the same

field, then: B = ∇×A = ∇×A′, which implies: ∇×(A′ −A) = 0. The vector A′ −A

is curl free, and therefore can be written as the gradient of a scalar φ: A′ −A = ∇φ, so

that A′ = A +∇φ.
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From the definition of the vector potential given by equation (1.6), it is not straightforward

to assign a physical meaning to A. However, it will be seen in third year that, in the same

way that the momentum p and the energy E combine to form the four–momentum (E/c,p)

in relativity, A and V combine to form the electromagnetic four–potential (V/c,A). Also,

in quantum electrodynamics, A and V , and not B and E, are the fundamental quantities

entering the equations that replace Maxwell equations (see Feynman, sections 15.4 and

15.5).

1.1.2 Poisson’s and Laplace’s equations

With E and B given by equations (1.5) and (1.6), Maxwell’s equations (1.2) and (1.3)

are satisfied. We now insert equation (1.5) into Gauss’s law (1.1) to obtain Poisson’s

equation for V :

∇2V = − ρ
ε0
. (1.7)

Finally, we insert equation (1.6) into Ampère’s law (1.4) to obtain:

∇× (∇×A) = µ0J.

Using the identity ∇× (∇×A) = ∇ (∇ ·A) − ∇2A, the above equation can be written

under the form:

∇2A−∇ (∇ ·A) = −µ0J. (1.8)

The curl of the vector potential is specified by equation (1.6), but its divergence can be

chosen freely. We have indeed ∇ ·A′ = ∇ ·A +∇2φ. By choosing φ appropriately, and

given A, we can obtain a vector potential A′ which has whatever divergence we want. To

simplify equation (1.8), we chose ∇ ·A = 0. This equation then becomes:

∇2A = −µ0J, (1.9)

which is equivalent to three Poisson’s equations for the cartesian components of A:

∇2Ax = −µ0Jx and similarly for the y– and z–components. Note, however, that the

cylindrical and spherical components of A do not satisfy Poisson’s equation1.

Using the potentials therefore enables us to replace Maxwell’s equations by Poisson’s

equations (1.7) and (1.9). Once they are solved, the fields E and B can be calculated

using equations (1.5) and (1.6).

1∇2A, defined through ∇2A = ∇ (∇ ·A) −∇× (∇×A), is a vector which x, y and z components

are ∇2Ax, ∇2Ay and ∇2Az. That is to say, the definition of ∇2A makes explicit reference to cartesian

coordinates. It follows that, in cylindrical coordinates for example, as the unit vectors depend on the

coordinates, the components of ∇2A are not ∇2Ar,θ,z. Therefore, Ar, for example, does not satisfy

Poisson’s equation ∇2Ar = −µ0Jr.
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In a region of space where there are no charges, that is to say away from the charges

which create the potential, Poisson’s equation for V reduces to Laplace’s equation:

∇2V = 0. (1.10)

Similarly, in a region of space where there are no currents, A satisfies:

∇2A = 0, (1.11)

which is equivalent to three Laplace’s equations for the cartesian components of A.

Solutions to Poisson’s equation:

The potential of a point charge q at a distance d from the charge is q/(4πε0d), taking the

reference point (zero of potential) at infinity. Using the superposition principle, we then

can write the scalar potential V created at a point M by a charge distribution as:

V (r) =
1

4πε0

˚
V

ρ(r′)

|r′ − r|
dτ ′, (1.12)

where the integration is over the volume V of the distri-

bution and the position vectors r and r′ are measured

from an origin O chosen arbitrarily.

In writing equation (1.12), we have assumed that the reference point for the potential is

the same for all the charge elements in the distribution, and is at infinity. This choice of

the reference point can be made only if the charge distribution does not extend to infinity.

Therefore, equation (1.12) only applies when the charge distribution is localized, that is,

when the volume V is finite.

The scalar potential V given by equation (1.12) has to be a solution of Poisson’s equa-

tion (1.7). As the cartesian components of the vector potential satisfy the same equation

but with the source term being −µ0Jx, −µ0Jy and −µ0Jz instead of −ρ/ε0, the solution

of equation (1.9) has to be the same as that given by equation (1.12) after doing the

appropriate replacement. Therefore, we obtain:

A(r) =
µ0

4π

˚
V

J(r′)

|r′ − r|
dτ ′, (1.13)

where the integration is over the volume V of the localized current distribution. This

expression is valid only when cartesian coordinates are used.

The vector potential above is a solution of Poisson’s equation (1.9), but we should check

that it also satisfies∇·A = 0, as this is required to get Poisson’s equation in the first place.

It could be shown that this is indeed statisfied provided that the current distribution is

steady (that is, when ∇ · J = 0).
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If the current flows through a wire which has a very

small thickness ε, then the integral above can be writ-

ten as:

A(r) =
µ0

4π

¨
Σ

J(r′)ε

|r′ − r|
dΣ′,

where we have assumed that J does not vary signif-

icantly over the thickness ε. We define the surface

current density (or current per unit width) as:

K = Jε =
dI

dl′
, (1.14)

where dI = J · dS′ and the vector dI is orientated in

the direction of the current.

Therefore, the vector pontential can be written as:

A(r) =
µ0

4π

¨
Σ

K(r′)

|r′ − r|
dΣ′. (1.15)

If the current flows through a wire which has a very small

cross sectional area s′, then the vector potential can be

written as:

A(r) =
µ0

4π

ˆ
Γ

I(r′)

|r′ − r|
dλ′, (1.16)

where I = J · s′ and we have assumed that J does not vary significantly over the area s′.

Here Γ is the path along the wire.

The scalar and vector potentials given above are the solutions of Poisson’s equa-

tions (1.7) and (1.9). However, the integrals are not in general easy to compute. Calculat-

ing these integrals is equivalent to solving directly Poisson’s equation with the appropriate

boundary conditions. As solving the equation directly is in general more tractable, this

is the method which is often used to calculate the potentials, and it will be presented in

section 1.1.3.

Uniqueness of solutions:

Consider a volume V bounded by a surface Σ. We specify the values of the potential V for

all points on the surface. Then the solution to Poisson’s (or Laplace’s) equation subject

to these so–called Dirichlet boundary conditions always exists and is unique.
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Although it is not straightforward to prove that the solution exists, we can demonstrate

easily that if it exists then it is unique. Let us assume that there are two solutions, V1

and V2, which satisfies Poisson’s equation and the specified boundary conditions on the

surface. Then W = V1−V2 itself satisfies Laplace’s equation and the condition that W = 0

on the surface. We consider the volume integral:

I =

˚
V

(∇W )2 dτ.

If W is not a constant in the volume, then I > 0, otherwise I = 0. We write the identity

∇ · (αU) = U ·∇α+ α∇ ·U, where U is a vector and α is a scalar, with U =∇W and

α = W . Using ∇2W = 0, we obtain ∇ · (W∇W ) = (∇W )2, so that I can be written as:

I =

˚
V
∇ · (W∇W )dτ =

¨
Σ
W∇W · dΣ,

where we have used the divergence theorem to obtain the surface integral. Since W = 0 on

the surface, the surface integral, and therefore I, is zero. This implies that W is a constant

in the volume V. As W = 0 on the surface and W is continuous, W = 0 everywhere in

the volume, and the solutions V1 and V2 are identical.

Similar result is obtained if we have Neumann boundary conditions instead of Dirichlet

boundary conditions, that is to say we specify the values of ∂V (r)/∂n ≡ n̂ ·∇V for all

points r on the surface, where n̂ is the unit vector perpendicular to the surface and pointing

outward from the surface at r.

1.1.3 Solutions to Laplace’s equation: separation of variables

Note that in general we are interested in calculating the potentials away from the distri-

bution of charges or currents, that is to say where ρ = 0 and J = 0. We are therefore

going to focus on Laplace’s, rather than Poisson’s, equations.

Laplace’s equation is a second–order partial differential equation, and does not have

explicit solutions in three dimensions. However, solutions can be calculated when the

variables are separable, as we are going to see in this section. The idea is to try to find

a solution which is a product of independent functions, each of which depending on only

one of the variables.

13



Cartesian coordinates:

We illustrate the method of variable separation in cartesian coordinates by studying a

particular example. We consider a rectangular pipe which is infinite in the z–direction

(meaning the length of the pipe in this direction is very large compared to the dimensions

of its cross section).

The pipe is bounded by metal plates. The plates at

y = 0 and y = a are grounded, so that their potential

is V = 0. The potential of the plates at x = −b and

x = b is maintained at V = V0. We want to calculate

the potential V everywhere in the pipe. Cartesian

coordinates are here a natural choice.

First we note that V does not depend on z, so Laplace’s equation reduces to the two–

dimensional equation:
∂2V

∂x2
+
∂2V

∂y2
= 0. (1.17)

We look for solutions in the form V (x, y) = F (x)G(y). Substituting into equation (1.17)

and dividing by FG, we obtain:

1

F

d2F

dx2
+

1

G

d2G

dy2
= 0.

As the first term on the left–hand–side can depend only on x, and the second term only

on y, their sum is zero only if they are both constant. We therefore have:

1

G

d2G

dy2
= C,

1

F

d2F

dx2
= −C.

Let us assume that the constant C is positive, so that it can be written as C = k2, where

k = +
√
C. Then the solutions of the above equations are F (x) = A1 cos(kx) +A2 sin(kx)

and G(y) = B1eky + B2e−ky. The boundary conditions at y = 0 and y = a, which are

G(0) = G(a) = 0, imply B1 +B2 = 0 and B1eka +B2e−ka = 0, so that 2B1 sinh(ka) = 0.

This can be satisfied only if B1 = 0, and therefore B2 = 0. As V = 0 everywhere in the

pipe is not a solution, it means that C cannot be positive.

We then consider C = −k2, so that F (x) = A1ekx +A2e−kx and G(y) = B1 cos(ky) +

B2 sin(ky), with k > 0. The potential is symmetric with respect to x, that is to say

F (−x) = F (x), which implies A1 = A2. The boundary conditions at y = 0 and y = a
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imply B1 = 0 and B2 sin(ka) = 0, which requires ka = nπ, with n a positive integer. The

solutions to equation (1.17) which satisfy the boundary conditions at y = 0 and y = a are

then:

V (x, y) =

∞∑
n=1

Cn cosh(nπx/a) sin(nπy/a), (1.18)

where the Cn are constant. The solution we are looking for has to satisfy also the boundary

condition at x = b (the condition at x = −b will then be satisfied automatically since the

solution is symmetric with respect to x):

V (b, y) =

∞∑
n=1

Cn cosh(nπb/a) sin(nπy/a) = V0. (1.19)

To calculate the Cn, we multiply the above equation by sin(mπy/a), with m a positive

integer, and integrate over y from 0 to a:

∞∑
n=1

Cn cosh(nπb/a)

ˆ a

0
sin(nπy/a) sin(mπy/a)dy = V0

ˆ a

0
sin(mπy/a)dy.

Since:

sin
nπy

a
sin

mπy

a
=

1

2

[
cos

(n−m)πy

a
− cos

(n+m)πy

a

]
,

the integral over y on the left–hand–side of the equation above is a/2 if n = m and 0

otherwise. Therefore, this equation gives: Cm cosh(mπb/a) = 0 if m is even and 4V0/(mπ)

if m is odd.2

Finally, the potential is:

V (x, y) =
4V0

π

∞∑
p=0

1

2p+ 1

cosh[(2p+ 1)πx/a]

cosh[(2p+ 1)πb/a]
sin[(2p+ 1)πy/a].

Cylindrical coordinates:

An example of the method of variable separation in cylindrical coordinates will be studied

in tutorial (Problem set 1).

2The method described here is rooted in the fact that the sine functions sin(nπy/a) are complete on

the interval 0 ≤ y ≤ a and are orthogonal. Completeness means that any function f(y) can be written as

a linear combination of the sine functions in the interval [0, a]:

f(y) =

∞∑
n=1

αn sin(nπy/a),

where the αn are constant. It is this property that ensures that the coefficients Cn satisfying equation (1.19)

exist. Orthogonality means that the product of any two sine functions is zero:

ˆ a

0

sin(nπy/a) sin(mπy/a)dy = 0 for m 6= n.

It is this property that enables the Cn to be calculated.
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Spherical coordinates:

Laplace’s equation in spherical coordinates (r, θ, ϕ) takes the form:

1

r2

∂

∂r

(
r2∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂ϕ2
= 0. (1.20)

We look for solutions that are separable in the variables: V (r, θ, ϕ) = F (r)G(θ)H(ϕ).

Note that G and H have to be periodic with a period 2π. Substituting in equation (1.20)

and multiplying by r2/(FGH), we obtain:

1

F

d

dr

(
r2dF

dr

)
+

1

G sin θ

d

dθ

(
sin θ

dG

dθ

)
+

1

H sin2 θ

d2H

dϕ2
= 0. (1.21)

If we multiply this equation by sin2 θ, the last term on the left–hand–side, (d2H/dϕ2)/H,

depends only on ϕ, whereas the first two terms depend on r and/or θ. Therefore, this last

term has to be a constant:
1

H

d2H

dϕ2
= K.

If K > 0, H is a linear superposition of e±
√
Kϕ terms, and cannot be 2π–periodic. There-

fore, the constant has to be negative and we write K = −m2, with m either positive or

negative. This implies:

H(ϕ) = Ceimϕ, (1.22)

where C is a constant and we have used complex notations. For H to be 2π–periodic, m

has to be an integer. Substituting this solution into equation (1.21), we obtain:

1

F

d

dr

(
r2dF

dr

)
+

1

G sin θ

d

dθ

(
sin θ

dG

dθ

)
− m2

sin2 θ
= 0. (1.23)

The first term on the left–hand–side depends only on r, whereas the second and third

terms depend only on θ. Therefore, the first term and the sum of the two other terms

must each be a constant:

1

F

d

dr

(
r2dF

dr

)
= l(l + 1), (1.24)

1

G sin θ

d

dθ

(
sin θ

dG

dθ

)
− m2

sin2 θ
= −l(l + 1). (1.25)

(We write the constant in this form for reasons that will become clear later). Using the

variable x = cos θ instead of θ, equation (1.25) can be written in the form:

d

dx

[
(1− x2)

dG(x)

dx

]
+

[
l(l + 1)− m2

1− x2

]
G(x) = 0. (1.26)

This a well–known differential equation called the associated Legendre equation. The

solutions are the associated Legendre polynomials:

G(x) = Pml (x), with x = cos θ. (1.27)

The constant l has to be a positive integer, otherwise the solution of equation (1.25)

diverges for θ = 0 or π. This is why we wrote the constant above as l(l + 1). Also m
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can only take the integer values between −l and l. The product of G and H is called a

spherical harmonic and noted Y m
l :

Y m
l (θ, ϕ) = CPml (cos θ)eimϕ, (1.28)

where the constant C depends on how the spherical harmonics are being normalised.

Finally, the radial equation (1.24) has the general solution:

F (r) = αrl +
β

rl+1
, (1.29)

where α and β are two constants.

The general solution of Laplace’s equation (1.20) is obtained by summing over all the

possible values of l and m:

V (r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

(
αlmr

l +
βlm
rl+1

)
Y m
l (θ, ϕ). (1.30)

In this course, we will in general focus on systems which have an azimuthal sym-

metry, which implies that V does not depend on ϕ. This corresponds to m = 0 in the

expression of H given by equation (1.22). The solutions of equation (1.26) with m = 0 are

called Legendre polynomials and are noted Pl(x), with x = cos θ. They are lth–order

polynomials in x which contain only even or odd powers depending on wether l is even or

odd, respectively. The first four Legendre polynomials are:

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x). (1.31)

The general solution of Laplace’s equation (1.20) in the axisymmetric case is therefore:

V (r, θ) =

∞∑
l=0

(
αlr

l +
βl
rl+1

)
Pl(cos θ). (1.32)

The constants αl and βl are determined by the boundary conditions. We are guaranteed

that these coefficients can always be calculated because, like the sine functions in the case

of cartesian coordinates, the Legendre polynomials constitute a complete set of functions

on the interval −1 ≤ x ≤ 1 (or, equivalently, 0 ≤ θ ≤ π).
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An important property of the Legendre polynomials is that they are orthogonal:

ˆ +1

−1
Pn(x)Pm(x)dx =

ˆ π

0
Pn(cos θ)Pm(cos θ) sin θdθ =

0, if n 6= m,

2
2n+1 , if n = m.

(1.33)

This property is useful for calculating the constants αl and βl in equation (1.32) knowing

the boundary conditions, in the same way the orthogonality of the sine functions was used

to calculate the constants Cn in equation (1.19).

Note that each of the term in the sum (1.32) is itself a solution of Laplace’s equation. Of

course, a similar expression can be obtained for the three cartesian components of A, as

they satisfy Laplace’s equation.

1.1.4 Multipole expansion and dipoles

Legendre polynomials were first introduced as the coefficients in the expansion of the

1/|r′−r| term which occurs in the expression of the gravitational potential, which has the

same form as the electrostatic potential given by equation (1.12).

For r′ < r:

1

|r′ − r|
=

1

r

∞∑
l=0

(
r′

r

)l
Pl(cos γ), (1.34)

where γ is the angle between the vectors r and r′. This

so–called multipole expansion is equivalent to a Taylor–

Maclaurin series of 1/|r′ − r| about r′/r = 0.

Electric dipole:

Using the expansion (1.34), the electrostatic potential due to a localised charge distribution

and given by equation (1.12) can be written as:

V (r) =
1

4πε0

∞∑
l=0

1

rl+1

˚
V

(r′)lPl(cos γ)ρ(r′)dτ ′. (1.35)

If we are calculating the potential far away from the charge distribution, then we can

choose the origin O close to or in the distribution so that r′ � r. In that case, the term

l = 0 in the expansion is dominant. It is called the monopole term and it is given by:

V0(r) =
1

4πε0r

˚
V
ρ(r′)dτ ′ =

Q

4πε0r
,
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where Q is the total charge of the distribution. This is consistent with the fact that, from

far away, the distribution is seen as a point charge.

The next term, which corresponds to l = 1, is called the dipole term and is the dominant

term if Q = 0. It is given by:

V1(r) =
1

4πε0r2

˚
V
r′ cos γρ(r′)dτ ′ =

1

4πε0r2
r̂ ·

˚
V

r′ρ(r′)dτ ′,

where r̂ = r/r and we have used r′ cos γ = r̂ · r′. By definition, the electric dipole

moment of the charge distribution is:

p =

˚
V

r′ρ(r′)dτ ′, (1.36)

so that the dipole term in the expansion of the potential is:

V1(r) =
1

4πε0

p · r̂
r2

. (1.37)

If the distribution is made of point charges, the dipole moment is written as:

p =
∑
i

qir
′
i, (1.38)

where the sum is over all the charges.

In general, the dipole moment as defined by equation (1.36) depends on the choice of

the origine O from which the position vector r′ is measured. If we chose an other origin

O′ from which the position vector is r′′, then the dipole moment becomes p′ such that:

p′ =

˚
V

r′′ρ(r′′)dτ ′′ =

˚
V

(
−OO′ + r′

)
ρ(r′)dτ ′ = −OO′Q+ p.

Therefore, the dipole moment is independent of the choice of the origin of the coordinate

system if Q = 0 (like in neutral molecules).

Let us consider a charge distribution which is a physical dipole,

namely two equal and opposite charges +q and −q very close

to each other (which means we are interested in the field at a

distance from the charges large compared to their separation).

The dipole moment is then p = qr′+ − qr′− = q(r′+ − r′−), that is

to say:

p = qd. (1.39)

where d is the vector from the −q charge to the +q charge.

For this distribution of charges, V0 = 0 as Q = 0. The dominant term is therefore the

dipole term V1.

By taking the gradient of V1, we obtain the electric field due to the dipole:

E1 =
1

4πε0r3
[3 (p · r̂) r̂− p] . (1.40)
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If we define a coordinate system with p at the origin

O and along the z–axis, then the components of E in

spherical coordinates (r, θ, ϕ) are:

Er =
2p cos θ

4πε0r3
,

Eθ =
p sin θ

4πε0r3
,

Eϕ = 0.

Magnetic dipole:

Here we focus on the vector potential due to a current loop, which is given by the inte-

gral (1.16), with Γ being the contour delimiting the loop. Using the expansion in Legendre

polynomials given by equation (1.34), we can write this integral as:

A(r) =
µ0I

4π

∞∑
l=0

1

rl+1

˛
Γ
(r′)lPl(cos γ)dλ′, (1.41)

where I is the current through the loop. As for the electric scalar potential, we define the

monopole term corresponding to l = 0:

A0(r) =
µ0I

4πr

˛
Γ
dλ′.

As the loop is closed, the integral is zero, so that the monopole term is always zero.

The dominant term in the expansion is therefore the l = 1 dipole term, and it will give

an approximate expression of the vector potential at a point located far away from the

loop (which means at a distance r from the loop large compared to the dimensions of the

loop).

The dipole term is given by:

A1(r) =
µ0I

4πr2

˛
Γ
r′ cos γdλ′,

=
µ0I

4πr2

˛
Γ
(r̂ · r′)dλ′.

We use the equality3: ˛
Γ
(r̂ · r′)dλ′ = −r̂×Σ,

3 We write Stokes’s theorem for the vector (r̂ · r′)V, where V is a constant vector:

˛
Γ

(r̂ · r′)V · dλ′ =

"
Σ

∇′×
[
(r̂ · r′)V

]
· dΣ′.
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where Σ is the vector which modulus is the surface delimited by the loop and which ori-

entation is given by the right–hand rule.

We define the magnetic dipole moment as:

m = IΣ, (1.42)

so that the dipole term in the expansion of the potential is:

A1(r) =
µ0

4π

m×r̂

r2
. (1.43)

By taking the curl of A1, we obtain the magnetic field due to the dipole:

B1 =
µ0

4πr3
[3 (m · r̂) r̂−m] . (1.44)

This is very similar to the electric field due to an electric dipole and given by equa-

tion (1.40).

If we define a coordinate system with m at the origin

O and along the z–axis, then the components of B in

spherical coordinates (r, θ, ϕ) are:

Br =
2µ0m cos θ

4πr3
,

Bθ =
µ0m sin θ

4πr3
,

Bϕ = 0.

The derivatives in∇′ are taken with respect to the coordinates of r′. Since V is constant,∇′× [(r̂ · r′)V] =

−V×∇′(r̂ · r′). If we write r̂ · r′ = (xx′+yy′+ zz′)/r, we see easily that ∇′(r̂ · r′) = r̂. Therefore, Stokes’s

theorem can be written as:

V ·
˛

Γ

(r̂ · r′)dλ′ = −
"

Σ

(V×r̂) · dΣ′ = −V ·
"

Σ

r̂×dΣ′.

As this equality is satisfied for all constant vectors V, it implies:

˛
Γ

(r̂ · r′)dλ′ = −
"

Σ

r̂×dΣ′ = −r̂×
"

Σ

dΣ′ = −r̂×Σ.
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1.2 Time–dependent scalar and vector potentials

For time–dependent fields in the presence of electric charges of density ρ and electric

currents of density J, Maxwell’s equations are:

∇ ·E =
ρ

ε0
, (1.45)

∇ ·B = 0, (1.46)

∇×E = −∂B

∂t
, (1.47)

∇×B = µ0J + µ0ε0
∂E

∂t
. (1.48)

In electrostatics, we have shown that, because ∇×E = 0, we can define a scalar

potential V such that E = −∇V (eq. [1.5]). In electrodynamics, ∇×E is non zero and

therefore the scalar potential cannot be defined that way.

In magnetostatics we have established that, since ∇ · B = 0, we can define a vector

potential A such that B = ∇×A (eq. [1.6]). This is still valid in electrodynamics, as B

is always divergence free.

Substituting equation (1.6) into Faraday’s law (1.47), we obtain:

∇×E = − ∂

∂t
(∇×A) ,

which is equivalent to:

∇×
(

E +
∂A

∂t

)
= 0.

Since the quantity in parenthesis is curl free, it can be written as the gradient of a scalar

potential V :

E +
∂A

∂t
= −∇V.

Therefore, in electrodynamics, the scalar potential V and vector potential A are defined

through:

B =∇×A,

E = −∂A

∂t
−∇V.

(1.49)

(1.50)

When the fields are static, we recover E = −∇V .

1.2.1 Gauge transformations

As we have shown in section 1.1.1, the magnetic field is unchanged if we replace A by

A′ = A + ∇φ, where φ is a scalar. But then, for E given by equation (1.50) to be

unchanged, we must replace V by V ′ such that:

∂A′

∂t
+∇V ′ = ∂A

∂t
+∇V,
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which can also be written as:

∇V ′ =∇V − ∂

∂t
(∇φ) .

This is satisfied if V ′ = V − ∂φ/∂t.
Therefore, B and E are unchanged if A and V are subject to the so–called gauge trans-

formation4:

A′ = A +∇φ, V ′ = V − ∂φ

∂t
. (1.51)

As pointed out in section 1.1.2, the divergence of the vector potential can be chosen

freely. Specifying the divergence of the vector potential is called choosing a gauge.

In magnetostatics, we chose the Coulomb gauge ∇ · A = 0. In electrodynamics, the

divergence of the vector potential is chosen such as to simplify Maxwell’s equations, as

shown in the next section.

1.2.2 Lorenz gauge and Maxwell’s equations

With B and E given by equations (1.49) and (1.50), Maxwell’s equations (1.46) and (1.47)

are satisfied. We now insert equation (1.50) into Gauss’s law (1.45):

∇2V +
∂

∂t
(∇ ·A) = − ρ

ε0
. (1.52)

Finally, we insert the expressions of E and B into equation (1.48):

∇× (∇×A) = µ0J− µ0ε0
∂

∂t

(
∂A

∂t
+∇V

)
.

Using the identity ∇× (∇×A) = ∇ (∇ ·A) − ∇2A, the above equation can be written

under the form::

∇2A− µ0ε0
∂2A

∂t2
−∇

(
∇ ·A + µ0ε0

∂V

∂t

)
= −µ0J. (1.53)

Using the Coulomb gauge ∇ · A = 0 would enable equation (1.52) to be written as

Poisson’s equation: ∇2V = −ρ/ε0. However, equation (1.53) could not be simplified with

this gauge. Therefore, we instead use the Lorenz gauge given by:

∇ ·A = −µ0ε0
∂V

∂t
. (1.54)

Substituting into equations (1.52) and (1.53), we obtain Maxwell’s equations under the

form:

∇2V − 1

c2

∂2V

∂t2
= − ρ

ε0
,

∇2A− 1

c2

∂2A

∂t2
= −µ0J,

(1.55)

(1.56)

4The word “gauge” was originally used to mean “size” or “scale” , as the “track gauge” used in rail

transport, and which is the distance between the inner faces of the rails.
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where we have used 1/c2 = µ0ε0. The operator:

� ≡ ∇2 − 1

c2

∂2

∂t2
,

which appears in the two equations above, is called the d’Alembertian. These equations

are inhomogeneous wave equations. If the source terms on the right–hand–side are

zero, we obtain homogeneous wave equations of the type that will be studied in chapter 4.

Instead of solving Maxwell’s equations (1.45)–(1.48) for E and B, we can therefore solve

equations (1.55) and (1.56) for V and A, and then calculate B and E using equations (1.49)

and (1.50).

1.2.3 Retarded potentials

When the fields are static, the Lorenz gauge reduces to the Coulomb gauge, and equa-

tions (1.55) and (1.56) reduce to Poisson’s equations ∇2V = −ρ/ε0 and ∇2A = −µ0J.

The solutions of these equations in integral form are given by equations (1.12) and (1.13).

If the fields are time–dependent, changes in the

charges or currents contained in the volume element

dτ ′ that occur at a time t are “felt” at the location of

the point M only after a time ∆t = |r′ − r|/c, where

c is the speed of light, since the electromagnetic field

travels at the speed c.

Therefore, there is a delay between changes in the sources and the adjustment of the field

at a given location. It can be shown that the solutions of equations (1.55) and (1.56) in

the time–dependent case are the so–called retarded potentials:

V (r, t) =
1

4πε0

˚
V

ρ(r′, t−∆t)

|r′ − r|
dτ ′, (1.57)

A(r, t) =
µ0

4π

˚
V

J(r′, t−∆t)

|r′ − r|
dτ ′. (1.58)
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Chapter 2

Electric fields in matter

In first year, we studied electrostatic potentials and fields in the presence of charges and

conductors. In conducting materials, there are charges which are free to move in the whole

volume of the material. When an external electric field is applied, the free charges move

under the action of the electric force. They re–arrange themselves in such a way that they

create an internal electric field which cancels the applied field: the total electric field in

the conductor is therefore zero.

In this chapter, we are going to study electric fields in insulators, also called di-

electrics, in which electrons are bound to atoms or molecules. When an external field is

applied, it can displace the electrons only to some extent. Therefore, the induced charge

creates an internal field that opposes the external field, but does not cancel it entirely.

The term di–electric comes from the greek δια which means through, as electromagnetic

fields can penetrate inside the material.

2.1 Polarization in dielectrics

2.1.1 Atomic dipoles

We first consider a dielectric made of neutral atoms. When an external electric field is

applied in such a dielectric, the nucleus and the electron cloud that constitute an atom

are moved in opposite directions. An equilibrium is reached when the electric force due

to the external field balances the force of interaction between the nucleus and the electron

cloud.
This is illustrated in the figure on the left,

which gives a schematic view of an atom.

The + sign indicates the centre of mass of

the nucleus and the shaded cloud represents

the electron distribution. The dot in the

centre of the ellipse is the centre of mass of

the electron distribution.

The nucleus reaches an equilibrium at a distance d from the centre of mass of the electron
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distribution such that E = −E′, where E is the external field and E′ is the field due to the

electrons at the position of the nucleus. Note that the electron cloud becomes distorted as

it moves under the action of the electric field. We neglect this distorsion, and will justify

this approximation below. Assuming the electron cloud to be a uniformly charged sphere

of radius a with total charge −q, Gauss’s law gives:

E′ =
qd

4πε0a3
.

Therefore, at equilibrium:

E =
qd

4πε0a3
.

As the centre of mass of the electron distribution and the nucleus do not coincide, the

atom has a dipole moment p = qd pointing toward the nucleus. Therefore:

p = αE, (2.1)

with α = 4πε0a
3 being the atomic polarizability.

As noted above, the electron distribution is distorted by the external field. The flattening

of the distribution (or ratio of the axes of the ellipse) is on the order of the ratio of the

external field E to the field exerted by the nucleus on the electrons, which is on the order

of q/(4πε0a
2). Using the above expression for E, we obtain that the flattening is ∼ d/a.

For a ∼ 10−10 m (typical atomic dimension), the internal field |q|/(4πε0a2) is on the order

of 1011 V m−1. As this is much larger than any external large–scale steady field that could

be imposed, the flattening d/a is very small and can therefore be neglected.

The model presented above is of course a very crude approximation. However, it

gives a rather good prediction for the polarizability of atoms. The approximate size

of a ground state hydrogen atom is given by the Bohr radius, which is ' 0.5 Å. The

corresponding polarizability is therefore α/(4πε0) ∼ 10−31 m3, close to the experimental

value of 0.67 × 10−30 m3. For atoms in their ground state, the measured polarizability

ranges from about 0.2 × 10−30 m3 for helium to about 60 × 10−30 m3 for cesium. Noble

gases, with filled valence shells, have low polarizability. By contrast, alkali metals, with

only one electron in the valence shell, have high polarizability.

2.1.2 Molecular dipoles

Nonpolar molecules:

Some molecules do not have a permanent electric dipole moment. This is the case of the

carbon dioxide molecule CO2 for example, as represented in the figure below.

Lewis structure of the CO2 molecule: the dots repre-

sent electrons, and the lines joining the atoms represent

chemical bonds (each made of an electron pair). Carbon

and oxygen have 4 and 6 valence electrons, respectively.
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Because oxygen is more electronegative than carbon (which is indicated by the symbols

δ+ and δ− on the figure above), there is an excess of positive charge on the carbon atom

and an excess of negative charges on the oxygen atoms. But because of the symmetry of

the molecule, there is no net electric dipole.

However, like neutral atoms, the molecule can become polarized when an electric field

is applied, because the centres of mass of the negative and positive charges are moved in

opposite directions. The polarizability depends on the direction of the applied field. For

the CO2 molecule, α/(4πε0) is measured to be 4× 10−30 or 1.8× 10−30 m3 depending on

whether the electric field is applied parallel or perpendicular to the axis of the molecule.

Polar molecules:

Some molecules have a permanent electric dipole moment, like the water molecule H2O

represented on the figure below.

Lewis structure of the H2O molecule. Hydrogen and

oxygen have 1 and 6 valence electrons, respectively. The

excesses of negative and positive charges on the oxy-

gen and hydrogen atoms, respectively, induce the dipole

moments p1 and p1. There is therefore a net dipole

moment p = p1 + p2.

The dipole moment of water, p = 6.2 × 10−30 C m, is rather large. If we had p = ed,

then d would be about 0.4 Å. This makes water a very good solvent, as ionic compounds

become dissociated in their positive and negative ions (the cations are attracted by the

oxygen atoms of the water molecules whereas the anions are attracted by the hydrogen

atoms).

In a dielectric made of polar molecules, the electric dipole moments are oriented ran-

domly when no external electric field is applied. Therefore, no large scale polarization is

present. When an external field is applied, it exerts a torque on the molecular dipoles. As

a result, the molecules rotate until their dipoles align with the field. So, even though the

applied field does not induce the molecular dipoles, it induces a large scale dipole.

2.1.3 Polarization

When an external electric field is present in a dielectric material, it either induces atomic or

molecular dipole moments parallel to its own direction, or aligns already existing molecular

dipoles along its own direction. In all cases, a large scale electric dipole moment is induced.

The dipole moment per unit volume is called the polarization vector (or just

polarization) and is noted P. If there are N dipole moments p per unit volume, then

P = Np.
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2.2 Polarization charges and current

When an external field is applied, charges move slightly. As we have seen, this results in

an induced polarization in the dielectric material. It also causes a net charge to appear in

the material, while a charge with the opposite sign accumulates at the surface. They are

called polarization or bound charges, as they cannot leave the material.

Moreover, if the polarization varies with time, charges keep moving and create a so–

called polarization current.

2.2.1 Polarization charges

We consider an arbitrary domain of the dielectric material with a volume v and delimited

by a closed surface σ. As we have seen above, the electric dipole moment pi of an atom

or a molecule can be modelled as the displacement di of a charge qi. If there are ni atoms

or molecules of charge qi per unit volume, then the polarization if given by:

P =
∑
i

niqidi. (2.2)

We are now going to calculate the flux of charges through the surface σ due to the dis-

placements di.
The charges qi which cross the surface element dσ are con-

tained in a cylinder of length di parallel to the vector di and

cross–sectional area dσ. The volume of this cylinder is di ·dσ.

Therefore, the total charge which crosses the surface element

dσ is
∑

i niqidi · dσ. Using the expression of P given above,

this can be written as P·dσ. The total charge which leaves the

volume v is therefore
˜
σ P · dσ. As the volume was initially

neutral, it is left with a net charge Qp = −
˜
σ P · dσ.

Using the divergence theorem, we can also write:

Qp =

˚
v
−∇ ·Pdτ.

As this is valid for any volume v of the dielectric, it follows that the dielectric contains a

density of polarization charges per unit volume given by:

ρp = −∇ ·P. (2.3)

If we now consider the whole volume of the dielectric, we get that the total charge

which accumulates at the surface Σ of the dielectric is
˜

Σ P ·dΣ (the displacements di are

very small, so charges move only locally and dot not leave the material). This corresponds

to a density of polarization charges per unit surface:

σp = P · n̂, (2.4)

where n̂ is the unit vector perpendicular to the surface area and directed outward.
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2.2.2 Polarization current

The calculation we have done above is valid whether the polarization is static or not.

When P varies with time, the displacement di of a charge qi also varies with time. The

charge therefore has a velocity vi = ddi/dt. This corresponds to a so–called polarization

current which density per unit volume is:

Jp =
∑
i

niqivi =
∑
i

niqi
ddi
dt
.

Using the expression of the polarization given by equation (2.2), we obtain:

Jp =
∂P

∂t
. (2.5)

This current is macroscopic and is an average of all the microscopic currents produced

by the small displacements of the polarization (bound) charges. The polarization current

is also called bound current, because it can flow only in the dielectric. It cannot be made to

flow in wires outside the material, contrary to conduction curents, as polarization charges

are bound. Like a current produced by the charges in a conductor, the polarization current

induces magnetic effects.

To define the macroscopic quantities P and Jp, which are continuous, we have implicitly

assumed that the quantities could be averaged over a scale D small compared to the size

of the dielectric but large compared to the size of atoms or molecules. Let us consider

the case where the polarization is produced by an electromagnetic wave of period T and

wavelength λ. The average cannot be done if λ is smaller than D or, equivalently, if T

is smaller than the time it takes for electromagnetic waves to travel through the distance

D. With D on the order of a few nm (10−9 m), it means that the dielectric cannot be

described in terms of a macroscopic polarization to study the propagation of waves in the

X–ray domain of the spectrum. For these waves, the discontinuous nature of the material

has to be taken into account.

Charge conservation:

By taking the divergence of equation (2.5) and using equation (2.3), we obtain:

∇ · Jp = −∂ρp
∂t

, (2.6)

which is a continuity equation expressing the conservation of the polarization charge. This

can be seen by writing the integral form of this equation:"
Σ

Jp · dΣ = −
˚
V

∂ρp
∂t

dτ,

where we have used the divergence theorem, and the second integral is over the volume V
delimited by the surface Σ. As the surface delimiting the volume is fixed, the term on the

right–hand–side can also be written −dQp/dt, where Qp is the total polarization charge

in the volume. Therefore, the rate of change of Qp is equal to the negative of the flux of

current density outward through the surface which delimits the volume.
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2.3 The electric field caused by polarized matter

As a dielectric contains (polarization) charges, it produces an electric field, which will be

superposed to the field that has produced the polarization in the first place. We are now

going to calculate, in the static case, the electric potential from which the field produced

by the polarization charges can be derived.

2.3.1 Field outside the dielectric

As we have seen in electrostatics, the electric potential created by a dipole moment p at

a point M is:

V =
1

4πε0

p · r̂
r2

,

where r is the vector position of M measured from the dipole and r̂ = r/r (see eq. [1.37]).

In a dielectric, the dipole moment is P per unit volume,

so that the total potential at point M is:

V (r) =
1

4πε0

˚
V

P(r′)dτ ′ · (r− r′)

|r− r′|3
, (2.7)

where the position vectors r and r′ are measured from

a fixed origin O and the integration is over the volume

V of the dielectric.

We note that:
r− r′

|r− r′|3
=∇′

(
1

|r− r′|

)
, (2.8)

where the derivatives are taken with respect to the coordinates r′ defined from O (it can

be shown easily by using cartesian coordinates). In addition, if α is a scalar and A a

vector, we have the identity ∇ · (αA) = α(∇ ·A) + A · (∇α). The potential at M can

therefore be written as:

V (r) =
1

4πε0

{˚
V
∇′ ·

[
1

|r− r′|
P(r′)

]
dτ ′ −

˚
V

1

|r− r′|
[
∇′ ·P(r′)

]
dτ ′
}
.

Using the divergence theorem, we obtain:

V (r) =
1

4πε0

{"
Σ

1

|r− r′|
P(r′) · dΣ′ −

˚
V

1

|r− r′|
[
∇′ ·P(r′)

]
dτ ′
}
,

where Σ is the closed surface that delimits the volume V of the dielectric. With the

expressions of the polarization charges given by equations (2.3) and (2.4), the potential

becomes:

V (r) =

"
Σ

σp(r
′)dΣ′

4πε0|r− r′|
+

˚
V

ρp(r
′)dτ ′

4πε0|r− r′|
. (2.9)

The two terms on the right–hand side give the contributions from the surface charge

density and volume charge density, respectively.

The corresponding electric field can be calculated from: E(r) = −∇V , where the

derivatives are taken with respect to the coordinates r defined from O.
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This calculation confirms that the dielectric can be described either as a material

having an induced polarization P or as a material with a distribution of charges given by

equations (2.3) and (2.4). The two representations are equivalent.

2.3.2 Field inside the dielectric

This section may be skipped on first reading.

In the previous section, we have adopted an idealised representation of a dielectric as a

continous distribution of dipoles or charges. This is a good approximation when calculating

the potential outside the dielectric, as the distance to the molecules or atoms is then large

compared to their separation, and inhomogeneities within the dielectric average out.

However, the situation is a priori more complicated when we study the electric field inside

the dielectric, as it varies hugely over very short distances. For example, the field at a

distance of 1 Å from an electron is enormous, on the order of 1011 V m−1. A little further

away from the electron, the field may become very small if contributions from different

charges cancel. For most purposes, this so–called microscopic field is not of interest, as

instruments detect only a value of the field averaged over many atomic distances, namely

over a volume large compared to the size of an atom but small compared to the scale

of the material. This averaged field is called macroscopic. Following Griffiths (section

4.2.3) and Feynman (volume II, chapter 11, section 4), we now show that the macroscopic

electric field inside the material can be calculated in the same way as the electric field

outside.

To calculate the macroscopic electric field E at a point Q in the material, we average

the microscopic fields over a sphere of appropriate radius R around Q. Using the principle

of superposition, we can write E as the sum of the average fields over the sphere due to the

charges outside and inside the sphere: E = Eout + Ein. The calculation we present below

is a bit lengthy but does not require complicated integrals to be computed. See Jackson,

Section 4.1, for a more elegant but more technical calculation of the average field over a

sphere.

Contribution from the charges outside the sphere:

The field produced in a small volume element dv in

the sphere by a charge qi located at a point Mi out-

side the sphere is qid/(4πε0d
3), where d is the vector

position of dv measured from Mi. The average field

over the volume of the sphere due to the charge is

therefore:

〈Ei〉 =
1

V

˚
V

qid

4πε0d3
dv,

where V is the volume of the sphere.
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But this is also the field that would be produced at Mi by a uniform charge density −qi/V
inside the sphere (the minus sign in the charge density comes from the orientation of d).

Using Gauss’s theorem, we can therefore write 4π|r′i − r|2〈Ei〉 = (−qi/ε0)(r′i − r)/|r′i − r|,
where the position vectors r and r′i are measured from an origin O. The total field Eout

is obtained by summing over the charges outside the sphere, so that:

Eout =
∑

i,outside

〈Ei〉 =
∑

i,outside

qi(r− r′i)

4πε0|r− r′i|3
.

We approximate the distribution of charges by a continuous distribution, so that qi =

ρ(r′i)dτ
′, with ρ(r′i) being the charge density in a small volume element dτ ′ around Mi.

We can then write the field as:

Eout =

˚
outside

ρ(r′)(r− r′)dτ ′

4πεo|r− r′|3
,

where we have dropped the subscript i.

We can see from the above expression that the average field over the sphere due

to the charges outside is equal to the field produced at the centre of the sphere.

We can equivalently represent the distribution of charges by a distribution of dipoles.

Therefore, we can write Eout = −∇Vout (evaluated at Q) with:

Vout(r) =
1

4πε0

˚
outside

P(r′)dτ ′ · (r− r′)

|r− r′|3
, (2.10)

(see eq. [2.7]) where P(r′) ≡ r′ρ(r′) is the electric dipole moment per unit volume (eq.[1.36]).

Contribution from the charges inside the sphere:

Following the same argument as above, we note that the average field 〈Ei〉 over the sphere

due to a charge qi located at a point Mi inside the sphere is equal to the field that would

be produced at Mi by a uniform charge density −qi/V inside the sphere. Gauss’s theorem

then gives:

4π|r′i − r|2〈Ei〉 =
1

ε0

4

3
π|r′i − r|2(r′i − r)

(
−qi
V

)
.

With V = 4πR3/3, we obtain:

〈Ei〉 =
−qi(r′i − r)

4πε0R3
,

and the field due to all the charges inside the sphere is therefore:

Ein =
∑
i,inside

〈Ei〉 =
∑
i,inside

−qi(r′i − r)

4πε0R3
.

By definition, the dipole moment of the sphere is:

P =
∑
i,inside

qi(r
′
i − r)
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(see eq. [1.38] with the position of the charges being measured from the center of the

sphere). We can then write the field under the form:

Ein = − P
4πε0R3

= − P

3ε0
, (2.11)

where P = 3P/(4πR3) is the dipole moment per unit volume that we assume here to

be uniform (as the sphere is very small). The field given by equation (2.11) is the field

produced by a uniformly polarized sphere inside the sphere1.

Therefore, the average field over the sphere due to the charges inside is the

same as the (uniform) field that would be produced in the sphere by assuming

it to be uniformly polarized.

The potential produced by the uniformly polarized sphere at a point with position

vector r inside the sphere is:

Vin(r) =
1

4πε0

˚
inside

Pdτ ′ · (r− r′)

|r− r′|3
, (2.12)

which is the same as equation (2.10) with the integral being over the sphere and P assumed

to be uniform. The electric field can be calculated from Ein = −∇Vin.

Total average field:

From the calculations above, we see that the macroscopic electric field at Q, which we

define as being the average field over the sphere of radius R centered on Q, derives from

a potential Vout + Vin which can be written in exactly the same form as that given by

equation (2.7).

Therefore, the electric field can always be calculated by summing over the

contribution from the dipoles (or equivalently the charges) which are in the

dielectric. This is true whether the field is calculated outside or inside the dielectric.

2.4 The electric displacement vector D

As we have seen above, an external field present in a dielectric induces a polarization of

the material, which in turn produces an electric field. The total electric field, which is the

superposition of these two fields, then modifies the polarization, which in turn affects the

field, etc. In general, we are only interested in the total field, which is produced by all the

charges present.

2.4.1 Gauss’s law

The total charge density is ρ = ρp + ρf , where ρp are the polarization, or bound,

charges, and ρf are all the other, free, charges. Free charges may be electrons in a

1This result will be shown in Problem Set 1.

33



conductor (outside the dielectric), or ions contained within the dielectric and not bound

to atoms or molecules. The total field is given by Gauss’s law:

∇ ·E =
ρ

ε0
=
ρp + ρf
ε0

. (2.13)

Using equation (2.3), this is equivalent to: ∇ · (ε0E + P) = ρf .

We define the electric displacement vector D (where ’D’ stands for ’displacement’)

by:

D ≡ ε0E + P, (2.14)

so that Gauss’s law can be written in terms of the free charges only:

∇ ·D = ρf . (2.15)

The integral form of this equation is:

"
Σ

D · dΣ = Qf , (2.16)

where Qf is the total free charge enclosed by the surface Σ over which the integral is

calculated.

It may seem from equation (2.15) that D depends only on the distribution of free charges.

It is incorrect, as ∇×D depends on P. In the case where the fields are static, we have

∇×D =∇×P, so that even if P is uniform in the volume of the dielectric, a discontinuity

of P at the surface of the dielectric may induce a discontinuity of D there (see below).

2.4.2 Ampère’s law

As we have mentioned in section 2.2.2, the polarization current due to a time–dependent

electric field induces a magnetic field which has to be included in Ampère’s law. The total

current is J = Jp + Jf , where Jp is the polarization, or bound, current, and Jf is the free

current, that is to say the current produced by free (non bound) charges. Ampère’s law

therefore becomes:

∇×B = µ0 (Jp + Jf ) + µ0ε0
∂E

∂t
. (2.17)

Using equations (2.5) and (2.14), we obtain:

∇×B = µ0Jf + µ0
∂D

∂t
. (2.18)

As above, using D instead of E enables the equation to be written in terms of the free

current only. The name electric displacement field comes from the fact that D generates

a displacement current ∂D/∂t, as can be seen from the above equation.
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2.4.3 Boundary conditions on E and D

We consider a surface with a charge density σ = σp + σf separating two media. Locally,

the surface is flat.

We apply the integral form of

Gauss’s law:
"

E · dΣ =

˚
ρ

ε0
dτ,

with the surface being that of a

cylinder with length 2ε and cross

sectional area dΣ and ρ is the

charge density in the cylinder.

The indices 1 and 2 refer to the regions of space below and above the surface, respectively.

We note n̂12 the unit vector perpendicular to the surface and pointing from medium (1)

to medium (2). From the above equality we obtain: E2 · n̂12dΣ−E1 · n̂12dΣ = (σ/ε0)dΣ,

where the minus sign before E1 comes from the orientation of the unit vector n̂12 and dΣ

is small enough that σ is uniform over this surface element. We have taken the limit ε→ 0

so that the flux of E through the lateral surface of the cylinder is negligible. If we note

E⊥ = E⊥n̂12, with E⊥ = E · n̂12, the component of E perpendicular to the surface and

very close to it, the above equality can be written in the following way:

E⊥2 −E⊥1 =
σ

ε0
n̂12. (2.19)

Gauss’s law applied to D similarly gives:

D⊥2 −D⊥1 = σf n̂12. (2.20)

If there are no free charges on the surface, D⊥ is continuous.

If both regions 1 and 2 are dielectrics, we have D⊥2 = ε0E
⊥
2 + P⊥2 and D⊥1 = ε0E

⊥
1 + P⊥1 ,

where P1 and P2 are the polarization vectors. With ε → 0, P⊥1 = P1 · n̂12 = σ1,p and

P⊥2 = P2 · n̂12 = −σ2,p, with σ1,p and σ2,p being the densities of polarization charges

at the surface of the dielectrics 1 and 2, respectively. Equation (2.20) then becomes

ε0E
⊥
2 − ε0E⊥1 = σpn̂12 (we assume there is no free charges), with σp = σ1,p + σ2,p. This is

the same as equation (2.19) with σf = 0.

We suppose that the fields are static so that ∇×E = 0.
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Therefore
¸

E·dl = 0 along the contour rep-

resented on the figure, where the horizontal

sides of the loop are parallel to the tangen-

tial component of the field E‖. Then, taking

ε→ 0, we obtain

E
‖
2 −E

‖
1 = 0, (2.21)

which means that E‖ is continuous.

Using equation (2.14), this gives:

D
‖
2 −D

‖
1 = P

‖
2 −P

‖
1. (2.22)

2.5 Linear dielectrics

Some dielectrics, called electrets, have a permanent polarization. However, such materials

are rare. Most of the time, as we have seen in section 2.1, the polarization results from

atomic or molecular dipoles lining up with an applied electric field. The polarization itself

produces a field which in turn modifies the alignment of the microscopic dipoles. In many

materials, the final state is a polarization that is proportional to the total electric field:

P = ε0χeE, (2.23)

where χe is a (positive) dimensionless constant called the electric susceptibility. This

relation holds only when the electric field is not too large. For (very) large fields, at least

on the order of a few 106 V m−1, breakdown occurs, that is to say the dielectric material

becomes conducting and the relation above is no longer valid.

The materials in which this relation is satisfied are called linear, homogeneous and

isotropic, as χe does not depend on E , is the same everywhere in the material and in all

directions, respectively.

When the electric field varies with time, the above relation holds only if the polarization

adjusts instantaneously to the variations of the field. This is in general not the case

when the field varies very rapidly, as it takes a finite time for the atomic or molecular

dipoles to be modified. When there is a delay between the variation of the field

and the adjustment of the polarization, the electric susceptibility depends on

frequency (we will study this case later in the course, in section 5.6). In atoms and

molecules, electrons can be moved on very short timescales, comparable to the period

of visible light waves. Therefore, in a dielectric made of atoms or non polar molecules,

the polarization can keep up with a changing field up to frequencies close to those of

visible light, and the electric susceptibility is independent of frequency. However, in a

dielectric made of polar molecules, dipoles have to re-oriente themselves when the electric

field varies. The timescales involved are rather long, so that the electric susceptibility may

be dependent on frequencies even when those are rather low. In liquid water for example,
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the electric susceptibility is constant below 1010 Hz (microwaves) and becomes negligible

at higher frequencies, when the dipoles cannot re-oriente themselves fast enough to keep

up with the changes in the field. In ice just below 0◦ C, the transition is at around 103 Hz.

Using the expression of D given by equation (2.14), we obtain:

D = ε0 (1 + χe) E,

which is also written:

D = εE, (2.24)

with:

ε ≡ ε0 (1 + χe) . (2.25)

The constant ε is the permittivity of the material. In vacuum, P is zero, which implies

χe = 0, so that ε = ε0. Therefore ε0 is called the permittivity of free space. We further

define the dimensionless relative permittivity, also called dielectric constant, by:

εr ≡
ε

ε0
= 1 + χe. (2.26)

Note that the relation between D and E is a constitutive relation and cannot be derived

from first principles.

2.6 Energy in the presence of dielectrics

Let us consider a dielectric which acquires some polarization P when placed in a static

external field, itself generated by free charges. In the first year course, we have defined

the energy of a system of charges as the work that has to be done to bring all the charges

into the system, one by one, this energy being stored in the electric field. However, in

the presence of a dielectric, if we were to define the energy as the work needed to bring

both polarization and free charges into the system, we would not take into account the

work needed to establish the polarization, that is to say the work needed to distort the

atoms and molecules to create dipoles. Therefore, we instead define the energy as the

work needed to build up the polarization (or, equivalently, the displacement vector) from

zero to its final value, by bringing the free charges into the system, one by one.

The potential in which the free charges are

moved in is due to both free and polariza-

tion charges. These free charges are dis-

tributed at the surface Σ of conductors and

in some volume V outside the conductors

(which is also occupied at least partially by

the dielectric) . We note ρf and σf their

volume and surface densities.
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The work done to increase the charge densities by δρf and δσf is:

δW =

˚
V
V (r)δρf (r)dτ +

"
Σ
V (r)δσf (r)dΣ,

where V (r) is the potential (due to both free and polarization charges) at the position r

of the charges.

From equation (2.20), with medium (2) being the conductor, we obtain: σfdΣ = −D ·dΣ,

where D is the displacement vector outside the conductor (inside a conductor, D = 0).

Using also equation (2.15), we can write δW as:

δW =

˚
V
V∇ · (δD)dτ −

"
Σ
V δD · dΣ,

where δD is the variation of D induced by the changes in the charges (which induce a

change in the polarization).

If we call S the surface that delimits the outer parts of the volume V, then the divergence

theorem gives: "
Σ
V δD · dΣ +

"
S
V δD · dS =

˚
V
∇ · (V δD)dτ.

We put the surface S at infinity. At large distances, V and D vary like r−1 and r−2,

respectively, while dS increases as r2. Therefore, the integral over S vanishes, and we

obtain:

δW =

˚
V
V∇ · (δD)dτ −

˚
V
∇ · (V δD)dτ.

Substituting the identity ∇ · (V δD) = V∇ · (δD) + δD ·∇V and E = −∇V , this gives:

δW =

˚
V

E · δDdτ. (2.27)

The work that has to be done to establish the displacement vector from 0 to D is:

W =

ˆ D

0
δW =

˚
V
dτ

ˆ D

0
E · δD.

When the field is decreased back to zero, if the curve E(D) is the same as when D was

increased, then: ˚
V
dτ

ˆ D

0
E · δD = −

˚
V
dτ

ˆ 0

D
E · δD.

Therefore, the total work done to increase D from zero to its final value and decrease it

back to zero is zero. The work done to establish the field can be viewed as being stored

in the field reversibly: the energy is given back when the field is returned to zero.

If the dielectric is linear, that is to say D is proportional to E:

E · δD =
1

2
δ (E ·D) ,

so that:

W =
1

2

˚
V

E ·Ddτ.
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Since E = 0 in conductors, this energy is stored in the field which is in the dielectric and

vacuum (if any) that surround the conductors. From the expression of W , we obtain the

energy density for a linear dielectric:

U =
1

2
E ·D. (2.28)

In vacuum, D = ε0E, so that we recover the expression of the energy density U = ε0E
2/2

seen in the first year course.
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Chapter 3

Magnetic fields in matter

When placed in a strong non–uniform field like that produced by a solenoid, materials are

repelled or attracted by the field, even if only very weakly. These materials have become

magnetic by interacting with a magnetic field.

In this chapter, we study how materials respond when placed in a magnetic field, and

how the field is changed by the presence of the material.

3.1 Magnetic materials

They are three types of magnetic materials: diamagnetic materials, which are weakly

repelled by a solenoid, paramagnetic materials, which are more strongly attracted, and

ferromagnetic materials, which are strongly pulled into the solenoid. These materials

are able to respond to a magnetic field because they contain electric charges in motion,

which are the electrons orbiting around nuclei and with a spin. These orbital motions and

spins can be viewed as producing microscopic magnetic dipole moments which align

with each other when an external magnetic field is applied, so that the material becomes

magnetically polarized, or magnetized.

In paramagnetic materials, the magnetization induced by the external field is parallel

to and in the same direction as the field, whereas it is opposite to the field in diamagnetic

materials. Ferromagnetic materials stay magnetized even after the external field has been

removed, so that the magnetization is not simply related to the external field. In this

section, we discuss diamagnetic and paramagnetic materials. Ferromagnetism will be

discussed later in the chapter.
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3.1.1 Review: Torque and force on a magnetic dipole

In this paragraph, we review results which have been derived in the first year course.

We call magnetic dipole a loop in which flows a

steady current I and with dimensions small com-

pared to the distance at which we calculate its

effects. The vector potential and magnetic field

due to a dipole have been derived in section 1.1.4.

The magnetic dipole moment is:

m = IΣ, (3.1)

(see eq.[1.42]) where Σ is the vector perpendicular to the plane of the loop and in a

direction related to the current by a right–hand–screw rule. The modulus of Σ is equal

to the area delimited by the loop.

If the loop is placed in a magnetic field B, it experiences a torque given by:

N = m×B. (3.2)

To derive this expression, we have assumed that B was uniform, that is to say we have

neglected the variations of B across the (small) loop.

The mechanical energy of the magnetic dipole in the field B is:

U = −m ·B. (3.3)

This is the mechanical work that has to be done to bring the steady current dipole into

the field. It is the total energy of the dipole in the field only when B is uniform. When

B is nonuniform, work is done on the conduction electrons in the loop when it is brought

into the field. This is due to the emf induced in the current loop by the changing magnetic

field through the surface of the dipole. Therefore, that electrical energy has to be provided

or absorbed to maintain the current steady (see Feynman, chapter 15).

Even though U is not the total energy of the dipole in a nonuniform field, it can be

used to derive the force F that acts on the dipole when the current I is steady: F = −∇U ,

that is to say:

F =∇ (m ·B) . (3.4)

In the absence of any other effect, when a magnetic dipole is placed in an external

magnetic field, it tends to align with B. The situation where m and B are parallel

corresponds indeed to zero torque and the lowest mechanical energy.

42



3.1.2 Diamagnetism

We can understand diamagnetism by adopting

a simple classical model of an electron in orbit

around a nucleus. We consider an electron i of

charge −e which moves with speed vi on a circu-

lar orbit of radius ri.

The electron completes vi/(2πri) orbits per second, so that the current around the circle

(that is to say, the charge that passes through a fixed point on the circle per second) is:

I =
evi

2πri
.

The current flows in the direction opposite to the electron’s motion. The magnetic field

produced far away from the atom by this electron is that of a magnetic dipole with moment:

mi = πr2
i I =

eviri
2

.

The orbital angular momentum of the electron is Li = meri×vi, where ri is the position

vector and me is the mass of the electron. As the orbit is circular, Li = merivi. The

dipole moment can therefore be written as:

mi = − e

2me
Li. (3.5)

The dipole moment of the atom is obtained by summing over all the electrons in the atom:

m = − e

2me

∑
i

Li.

In general, the orbital angular momenta of all the electrons in the atom are randomly

oriented, so that
∑

i Li = 0. If, in addition, the resultant angular momentum due to

the spin of the electrons is zero (see next section), the atom has no permanent dipole

moment. Such an atom is called diamagnetic.
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We now apply an external field B. We suppose

that B is perpendicular to the plane of the orbit

of the electron, and we also assume that the ra-

dius r of the orbit does not change1(we drop the

subscript ’i’ for simplicity).

In the absence of an external magnetic field, the velocity v of the electron can be calculated

by writing that the centripetal acceleration is due to the electrostatic force FE exerted by

the nucleus:
Ze2

4πε0r2
=
mev

2

r
, (3.6)

where Z is the number of charges of the nucleus. When a magnetic field is present, there

is an extra force FB = −ev×B in the radial direction. In the case illustrated above, FB

is opposite to FE , so that the velocity of the particle is decreased by an amount ∆v such

that:
Ze2

4πε0r2
− e(v −∆v)B =

me(v −∆v)2

r
. (3.7)

Substituting equation (3.6), we obtain:

e(v −∆v)B =
me

r

[
−(v −∆v)2 + v2

]
. (3.8)

Using ∆v � v, which is always satisfied on Earth2, this equation gives:

∆v =
eBr

2me
. (3.9)

This decrease of the velocity leads to a change in angular momentum:

∆L = mer×∆v =
er2

2
B,

which is aligned with B. According to equation (3.5), the corresponding change in the

dipole moment is:

∆m = − e

2me
∆L = −e

2r2

4me
B, (3.10)

which is opposite to the field. It is straightforward to show that the same result is

obtained when the velocity of the electron is reversed. In that case indeed, the velocity is

increased rather than decreased, and ∆m is still opposite to B. This result is consistent

1See Purcell, Chapter 11, Section 5, for a proof of the fact that the radius of the orbit is not changed

when a magnetic field is applied if the atom is not moving.
2The change in velocity is small compared to v if FB � FE . Writing F 2

B � F 2
E and using equation (3.6),

this is equivalent to B2 � Zme/(4πε0r
3). With r ∼ 1 Å, the condition is that B has to be small compared

to about 105 T, which is met by far on Earth, where the strongest field ever produced is close to 103 T .
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with Lenz’s law, which states that when a field is introduced the current in the loop is

modified in such a way as to oppose the effect of the field.

We have assumed above that the field was perpendicular to the orbit of the electron.

Of course, in general, this is not the case, and the electric and magnetic forces make the

orbit of the electron precess around the direction of B. In other words, in this situation

where the magnetic moment is produced by an electron in orbit around a nucleus, the

torque exerted by the magnetic field does not align the magnetic moment with B but

makes it precess around B (this is called Larmor precession). However, it is possible to

show that equation (3.10) is still valid in this case. As the calculation in the general case

is lengthy, we will not give it in these notes.

The conclusion of this section is that, when a material is placed in a magnetic

field, all the atoms or molecules acquire a small dipole moment antiparallel

to the field, so that a net dipole moment appears. This is the phenomenon called

diamagnetism, and it is due to the orbital angular momentum of the electrons. It

is universal, meaning it always happens when a magnetic field is present. However,

in materials in which atoms have a permanent dipole moment (due to the spin of the

electrons), diamagnetism is a small effect as the moment induced by the field is negligible

compared to the intrinsic moment of the atoms (see next section).

To obtain the total dipole moment due to diamagnetism, ∆m given by equation (3.10)

has to be multiplied by the total number of electrons. The number of nucleons per unit

mass is the same in all materials (the mass of a nucleon being 1.6× 10−27 kg), and in all

atoms and molecules there is about 1 electron per 2 nucleons. In addition, if we take for

r2 in equation (3.10) the average value in an atom, then it is essentially the same in all

atoms. Therefore, for a given external field, the total dipole moment per unit mass due

to diamagnetism is roughly the same in all materials.

Although it is possible to gain some understanding of how diamagnetism is created

using a classical model, as done in this section, it is important to point out that diamag-

netism is inherently a quantum phenomenon.

3.1.3 Paramagnetism

In addition to their orbital angular momentum, electrons possess a spin, which is associ-

ated with an angular momentum ~/2, where ~ ≡ h/(2π) and h is the Planck’s constant.

Although this is a purely quantum property, its effects, as far as we are concerned in this

section, are similar to those that would be produced if the electron were spinning around

its own axis. In particular, the electron spin produces a magnetic field which, far enough

away from the electron, is that of a magnetic dipole moment. The ratio of magnetic mo-

ment to angular momentum for the spin is −e/me, instead of −e/(2me) as we have found

for the orbital motion (eq. [3.5]). This cannot be explained with a classical model. When

the electron is placed in an external magnetic field B, it experiences a torque given by

equation (3.2), like in the classical case. This torque tends to align the dipole moment

with B.
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If electrons are associated in pairs, as is the case in most atoms and molecules, as

spins within a pair are equal and opposite, there is no net dipole moment associated with

the spin. In that case, a dipole moment can be created only through diamagnetism. But

if unpaired electrons are present, either because the molecules have an odd number of

electrons (which is rare) or because the electronic structure is such that some electrons

remain unpaired, their spin dipole moments can reorient themselves when a magnetic

field is applied, and a net moment parallel to B and in the same direction is

obtained. This phenomenon is called paramagnetism. Although diamagnetism is also

present in such a material, it produces a moment which is smaller than that produced by

paramagnetism. The magnetic moment associated with the spin is indeed eh/(4πme) =

0.93× 10−23 J T−1, whereas ∆m given by equation (3.10) is 2× 10−29B J T−1. However,

note that, at high temperature, the dipole moment associated with the spin is prevented

from aligning completely with B by thermal motions. Therefore, the total dipole moment

is not just the number of unpaired electrons times the spin dipole moment (see Purcell,

Chapter 11, Section 6, for a more thorough discussion).

3.1.4 Magnetization

When a material is placed in an external magnetic field, it becomes magnetic. We have

seen above that this is due to a net dipole moment induced in the material by the external

field.

The magnetic dipole moment per unit volume is called the magnetization vector

(or just magnetization) and is noted M.

We have discussed diamagnetic and paramagnetic materials, in which M is parallel

and opposite to or in the same direction as B, respectively. Later in this chapter, we

will also discuss ferromagnets, which sustain a magnetization even in the absence of an

external magnetic field.

3.2 Magnetization currents

In chapter 2, we have found that polarization bound charges appeared in a material placed

in an external electric field. Similarly, we are now going to see how currents are produced

in a material placed in an external magnetic field.

3.2.1 Surface currents

We first consider a magnetic material that has a uniform magnetization M, and take a

slice of this material perpendicular to M and of thickness ∆z. An element of surface area

a on this slice has a volume a∆z and therefore contains a dipole moment Ma∆z. The

magnetic field it produces is the same as that produced by a loop of same surface area

and thickness and with a current I = M∆z.
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The total magnetization is the same as that we

would get if the slice of material were paved with

such loops, as illustrated on the figure. We can

see that there is no current in the volume of the

material, as the current from one loop is cancelled

by that of an adjacent loop. However, there is a

current I at the surface of the slice.

It is not due to a single charge moving all around the slice, but to lots of charges each

moving a little bit.

I is the current that flows along the surface.

Therefore, the surface current density is Km =

I/∆z′, where ∆z′ is the height of the surface mea-

sured perpendicularly to the direction in which

the current flows. The subscript ’m’ indicates that

the current is due to magnetization. It is bound,

which means that it cannot be used outside of the

surface.

On the figure above, the lateral surface of the slice is parallel to M, so that ∆z′ = ∆z.

However, this is not the most general case.

In general, the lateral surface is inclined, and ∆z′ =

∆z/ cos θ. Therefore Km = (I/∆z) cos θ = M cos θ.

In vector form, the surface current density due to magnetization can be written as:

Km = M×n̂, (3.11)

where n̂ is the unit vector perpendicular to the surface and directed outward (Km = 0 on

the top and bottom surfaces of the slice, where M and n̂ are parallel). Like the bound

polarization current, the current associated with the magnetization of the material induces

magnetic effects.
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3.2.2 Volume currents

When the magnetization is non uniform, the different loops which pave the slice of mate-

rial no longer have the same current. We take the loops to be small enough so that the

magnetization is uniform over the volume of each of them. The surface current derived

above is unchanged, except that now M depends on the space coordinates, so that Km

may vary along the surface of the slice. But now there is also a current in the volume of

the material, as the current from one loop is no longer cancelled by the current from an

adjacent loop.

Let us assume that the magnetization is in

the z direction and varies along the y direc-

tion. On the surface where two loops join,

there is a current in the x direction which is

given by:

Ix = [Mz(y + dy)−Mz(y)] dz =
∂Mz

∂y
dydz.

A component of the magnetization in the y direction and varying along the z direction

would also produce a current in the x direction given by:

Ix = −∂My

∂z
dydz.

The volume current density in the x direction, Jx, is the current per unit area flowing

in the x direction. Therefore, Jx is equal to Ix times the number of loops per unit area,

which is 1/(dydz). This gives:

Jx =
∂Mz

∂y
− ∂My

∂z
,

which is the x component of ∇×M.

By calculating the current along the y and z direction in the same way, we obtain the

volume current density due to magnetization:

Jm =∇×M. (3.12)

Note that, contrary to conduction currents which can release energy through Joule heating

for example, bound currents cannot result in energy dissipation as they are produced by

the orbital motion or by the spin of electrons moving in vacuum.
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3.3 The magnetic field caused by magnetized matter

As magnetic materials contain (bound) currents, they produce a magnetic field which will

be superposed to the field that has produced the magnetization in the first place.

According to the classical model presented above, the magnetic field due to magnetic

materials can be regarded as being produced by electric charges which move around nuclei.

There is nothing special about these current loops, even though there are inside a material,

and therefore the field they produce can be calculated in the same way as the field produced

by current loops in vacuum. As there is no magnetic charge, ∇ ·B = 0, whether the field

is microscopic or macroscopic. Consequently, we can always define a vector potential A

such that B =∇×A.

3.3.1 Field outside the material

As we have seen in chapter 1, the vector potential created by a dipole moment m at a

point P is:

A =
µ0

4π

m×r̂

r2
,

(see eq.[1.43]) where r is the vector position of P measured from the dipole and r̂ = r/r.

In a magnetic material, the dipole moment is M per

unit volume, so that the total vector potential at point

P is:

A(r) =
µ0

4π

˚
V

M(r′)dτ ′×(r− r′)

|r− r′|3
, (3.13)

where the position vectors r and r′ are measured from

a fixed origin O and the integration is over the volume

V of the magnetic material.

Using:
r− r′

|r− r′|3
=∇′

(
1

|r− r′|

)
(eq. [2.8]), where the derivatives are taken with respect to the coordinates r′ defined from

O, and the identity ∇×(αV) = α(∇×V) − V×(∇α), where α is a scalar and V is a

vector, we obtain:

A(r) =
µ0

4π

{
−
˚
V
∇′×

[
1

|r− r′|
M(r′)

]
dτ ′ +

˚
V

1

|r− r′|
[
∇′×M(r′)

]
dτ ′
}
.
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The first integral on the right–hand side can be written as a surface integral using the

relation3: ˚
V

(∇×V) dτ = −
"

Σ
V×dΣ, (3.14)

where Σ is the closed surface that delimits the volume V.

We then obtain:

A(r) =
µ0

4π

{"
Σ

1

|r− r′|
M(r′)×dΣ′ +

˚
V

1

|r− r′|
[
∇′×M(r′)

]
dτ ′
}
.

With the expressions of the magnetization currents given by equations (3.11) and (3.12),

the vector potential becomes:

A(r) =
µ0

4π

"
Σ

Km(r′)dΣ′

|r− r′|
+
µ0

4π

˚
V

Jm(r′)dτ ′

|r− r′|
. (3.15)

The two terms on the right–hand side give the contributions from the surface current

density and volume current density, respectively.

The corresponding magnetic field can be calculated from: B(r) = ∇×A, where the

derivatives are taken with respect to the coordinates r defined from O.

This calculation confirms that magnetic materials can be described either as materials

having an induced magnetization M or as materials with a distribution of currents given

by equations (3.11) and (3.12). The two representations are equivalent.

3.3.2 Field inside the material

This section may be skipped on first reading.

In the previous section, we have adopted an idealised representation of a magnetic material

as a continous distribution of dipoles or currents. This is a good approximation when

calculating the vector potential outside the material, as the distance to the molecules or

atoms is then large compared to their separation, and inhomogeneities within the material

average out.

3 If V and w are two vectors, the divergence theorem for the vector V×w can be written:
˚
V
∇ · (V×w) dτ =

"
Σ

(V×w) · dΣ.

We now use ∇ · (V×w) = w · (∇×V)−V · (∇×w). We chose w to be uniform, so that the second term

on the right-hand side is zero. Furthermore, in the surface integral, (V×w) · dΣ = w · (dΣ×V). The

divergence theorem can therefore be written as:

w ·
˚
V

(∇×V) dτ = −w ·
"

Σ

V×dΣ.

As this is satisfied for any uniform vector w, the integrals are equal and opposite.
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However, the situation is a priori more complicated when studying the magnetic field

inside the material, as it varies hugely over very short distances. In the same way as we

defined a macroscopic electric field in a dielectric, we define here a macroscopic magnetic

field (or, equivalently, vector potential) at a point P in the magnetic material by averaging

the microscopic fields (or vector potentials) over a sphere of appropriate radius R around

P . Using the principle of superposition, we can write the vector potential A as the sum

of the average vector potentials over the sphere due to the dipole moments outside and

inside the sphere: A = Aout + Ain. In this section, we calculate Aout and Ain in a way

very similar to the way we calculated Vout and Vin in a dielectric (section 2.3.2). Here

again, the calculation is a bit lengthy but does not require complicated integrals to be

computed. See Jackson, Section 5.6, for a more elegant but more technical calculation of

the average field over a sphere.

Contribution from the dipole moments outside the sphere:

The vector potential produced in a small volume ele-

ment dv in the sphere by a dipole moment mi located

at a point Qi outside the sphere is µomi×d/(4πd3),

where d is the vector position of dv measured from

Qi.

The average vector potential over the volume of the sphere due to the dipole moment mi

is therefore:

〈Ai〉 =
1

V

˚
V

µomi×d

4πd3
dv,

where V is the volume of the sphere. But this is also the vector potential that would be

produced at Qi by a uniform magnetization −mi/V inside the sphere (the minus sign in the

magnetization comes from the orientation of d). A sphere with a uniform magnetization

Ms produces outside itself a vector potential which is the same as that produced by a

dipole moment VMs located at the centre of the sphere4. Therefore:

〈Ai〉 =
µo(−mi)× (r′i − r)

4π|r′i − r|3
,

where r and r′i are the position vectors measured from an origin O. The total vector

potential Aout is obtained by summing over the dipole moments outside the sphere, so

that:

Aout =
∑

i,outside

〈Ai〉 =
µ0

4π

∑
i,outside

mi× (r− r′i)

|r− r′i|3
.

4This result will be shown in Problem Set 1.
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We approximate the distribution of dipole moments by a continuous distribution, so that

mi = M(r′i)dτ
′, with M(r′i) being the magnetization in a small volume element dτ ′ around

Qi. We can then write the vector potential as:

Aout =
µ0

4π

˚
outside

M(r′)dτ ′× (r− r′)

|r− r′|3
, (3.16)

where we have dropped the subscript i.

We can see from the above expression that the average vector potential over the

sphere due to the dipole moments outside is equal to the vector potential

produced at the centre of the sphere.

Contribution from the dipole moments inside the sphere:

We now assume that the point Qi in the figure above is inside the sphere. The magnetic

field produced in the small volume element dv in the sphere by the dipole moment mi

located at Qi is:

Bi =
µ0

4πd3

[
3
(
mi · d̂

)
· d̂−mi

]
,

(see eq.[1.44]) where d̂ = d/d.

The average magnetic field over the volume of the sphere due to the dipole moment mi is

therefore:

〈Bi〉 =
1

V

˚
V

µ0

4πd3

[
3
(
mi · d̂

)
· d̂−mi

]
dv,

where V is the volume of the sphere. But this is also the magnetic field that would be

produced at Qi by a uniform magnetization mi/V inside the sphere (note that the sign

of the magnetization here is not reversed, as the expression of Bi does not depend on

the orientation of d̂). A sphere with a uniform magnetization Ms produces inside itself a

magnetic field5 2µ0Ms/3. Therefore, the average magnetic field 〈Bi〉 over the sphere due

to the dipole mi at Qi is:

〈Bi〉 =
2

3
µ0

mi

V
.

The total magnetic field Bin is obtained by summing over the dipole moments inside the

sphere, so that:

Bin =
∑
i,inside

〈Bi〉 =
∑
i,inside

2

3
µ0

mi

V
.

Here again we approximate the distribution of dipole moments by a continuous distribu-

tion, so that mi = M(r′i)dτ
′. The average field can then be written as:

Bin =
2

3
µ0

˚
inside

M(r′)dτ ′

V
,

where we have dropped the subscript i. We assume that the magnetization in the sphere

is uniform, as the sphere is very small, so that the integral is equal to M.

5This result will be shown in Problem Set 1.
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Therefore, the average field over the sphere due to the dipole moments inside

is the same as the (uniform) field that would be produced in the sphere by

assuming it to be uniformly magnetized.

The vector potential produced by the uniformly magnetized sphere at a point with

vector position r inside the sphere is:

Ain(r) =
µ0

4π

˚
inside

Mdτ ′× (r− r′)

|r− r′|3
,

which is the same as equation (3.16) with the integral being over the sphere and M

assumed to be uniform.

Total average field:

From the calculations above, we see that the macroscopic magnetic field at P , which we

define as being the average field over the sphere of radius R centered on P , derives from a

vector potential Aout + Ain which can be written in exactly the same form as that given

by equation (3.13).

Therefore, the magnetic field can always be calculated by summing over the

contribution from the dipole moments (or equivalently the currents) which are

in the magnetic material. This is true whether the field is calculated outside or inside

the material.

3.4 The auxiliary field H

As we have seen above, an external magnetic field present in a material induces a magne-

tization of the material, which in turn produces a magnetic field. The total magnetic field,

which is the superposition of these two fields, then modifies the magnetization, which in

turn affects the field, etc. In general, we are only interested in the total field, which is

produced by all the currents present.

3.4.1 Ampère’s law

The total current density is J = Jm + Jf , where Jm are the bound currents, due to the

magnetization of the material, and Jf are the free currents (due to the motion of charges

in conductors). We assume here that the fields are static so that there is no polarization

or displacement currents. Therefore, both bound and free currents generate a magnetic

field which satisfies Ampère’s law in the form:

∇×B = µ0J = µ0 (Jm + Jf ) . (3.17)

Using equation (3.12), this is equivalent to:

∇×
(

B

µ0
−M

)
= Jf .
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We define the vector H by:

H =
B

µ0
−M, (3.18)

so that Ampère’s law can be written in terms of the free current only:

∇×H = Jf . (3.19)

The integral form of this equation is:

˛
Γ

H · dl =

¨
Σ

Jf · dΣ = If , (3.20)

where If is the current flowing through the surface Σ of the loop delimited by the contour

Γ.

It may seem from equation (3.19) that H depends only on the distribution of free currents.

It is incorrect, as ∇ ·H = −∇ ·M. In particular, the absence of free current (Jf = 0)

does not necessarily imply that H = 0.

3.4.2 Boundary conditions on B and H

We consider a (locally flat) surface between

two media with a current density K = Km+

Kf . We apply the integral form of Ampère’s

law given by equation (3.20), where Γ is the

contour represented on the figure.

The horizontal sides of the contour are parallel to the tangential component of the field

H‖, and therefore the surface delimited by the contour is perpendicular to K. We orientate

the contour in such a way that the current through the surface is positive. Then, taking

ε→ 0, we obtain:

H
‖
2dl −H

‖
1dl = Kfdl.

The above relation can also be written in the following way:

H
‖
2 −H

‖
1 = Kf×n̂12, (3.21)

where n̂12 is the unit vector perpendicular to the surface and pointing from medium (1)

to medium (2). If there is no free current on the surface, H‖ is continuous.
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We now apply
!

Σ B · dΣ = 0 (which is im-

plied by∇·B = 0), where Σ is the surface of

the cylinder represented on the figure. We

note B⊥ = B⊥n̂12, with B⊥ = B · n̂12, the

component of B perpendicular to the sur-

face and very close to it.

We take the limit ε → 0 so that the flux of B through the lateral surface of the cylinder

is negligible. Therefore, we obtain:

B⊥2 −B⊥1 = 0, (3.22)

which means that B⊥ is continuous.

3.5 Linear magnetic materials

We have seen that in diamagnetic and paramagnetic materials, an external magnetic field

induces a magnetization which is (anti–)parallel to B. Under most conditions, provided

the field is not too strong, the magnetization is proportional to the total magnetic field

B, and we define the magnetic susceptibility χm through the relation:

M = χmH. (3.23)

χm is a dimensionless constant which is positive for paramagnetic materials and negative

for diamagnetic materials. Note that this definition of χm is not analogous to the definition

of the electric susceptibility. Indeed, to parallel the definition of χe = P/(ε0E), the

magnetic susceptibility should have been defined as M/(B/µ0).

The magnetic materials in which this relation is satisfied are called linear, homogeneous

and isotropic.

We have pointed out in section 3.1.2 that the total dipole moment per unit mass in a

diamagnetic material is roughly the same in all materials, for a given applied field. The

magnetic susceptibility, however, is defined as the ratio of the total dipole moment per

unit volume to H. Therefore, it is not exactly the same for all materials, although it does

not vary significantly. For purely diamagnetic materials, solid or liquid, and under normal

conditions of pressure and temperature, the magnetic susceptibility is typically on the

order of −10−5.

In section 3.1.3, we have pointed out that the total dipole moment due to the spin of the

electrons and induced by the external field decreases with increasing temperature, as ther-

mal motions oppose the alignement of the spin dipole moment with the field. Therefore,

the contribution to the magnetic susceptibility of paramagnetism decreases with temper-

ature. The magnetic susceptibility of paramagnetic materials, which includes a positive

contribution from paramagnetism and a negative contribution from diamagnetism, is on
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the order of a few times 10−5 under normal conditions, but may be considerably larger at

lower temperatures.

The magnetic susceptibility is smaller for gases than for solids or liquids as they have

a smaller density of electrons.

Note that since χm is usually small compared to unity, M � H, which means that

the magnetization does not contribute significantly to the total magnetic field. In other

words, the magnetic field produced by the magnetization of diamagnetic or

paramagnetic materials is usually small compared to the external field that

produces the magnetization.

Substituting equation (3.18) into equation (3.23), we obtain:

B = µ0 (1 + χm) H,

which is also written:

B = µH, (3.24)

with:

µ ≡ µ0 (1 + χm) . (3.25)

The constant µ is the permeability of the material. In vacuum, M is zero, which implies

χm = 0, so that µ = µ0. Therefore µ0 is called the permeability of free space. We

further define the dimensionless relative permeability by:

µr ≡
µ

µ0
= 1 + χm. (3.26)

Note that the relation between H and B is a constitutive relation and cannot be derived

from first principles.

We finally point out that, in a homogeneous linear material, the volume density of

magnetization current can be expressed in terms of the volume density of free current in

a simple way:

Jm =∇×M =∇× (χmH) = χm∇×H = χmJf . (3.27)

3.6 Energy in the presence of magnetic materials

In section 2.6, we have defined the energy in the presence of a dielectric as the work needed

to build up the polarization from zero to its final value, by bringing the free charges into the

system, one by one. Similarly, we define the energy in the presence of magnetic materials

as the work needed to build up the magnetization (or, equivalently, the magnetic field)

from zero to its final value, by establishing the free currents into the system. The magnetic

field in which each current is established is due to the other free or bound currents. We

consider here the case of static fields.

It is possible to model any distribution of free currents by a superposition of current

loops (see Jackson, section 5.16). Therefore, we suppose that we have N loops (of which
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we have represented only two on the figure), and we establish the current from 0 to its

final value in each of them.
Let us suppose we increase the current slightly in

one of the loops. This produces a change δB in the

total magnetic field (due to both free and bound

currents), which in turn produces a variation δΦk

of the magnetic flux through the surface delimited

by the loop k. The work that has to be done by

the batteries supplying the current to counter the

emf induced by δΦk is δWk = IkδΦk, where Ik is

the (free) current through loop k.

The variation of the flux is given by:

δΦk =

"
Σk

δB · dΣk,

where Σk is the surface delimited by the loop k. Using B = ∇×A, where A is the

potential vector, we obtain:

δWk = Ik

"
Σk

(∇×δA) · dΣk = Ik

˛
Γk

δA · dlk,

where Γk is the contour of the loop k and we have used Stokes’s theorem to get the last

integral on the right–hand–side.

If we note σk the cross–sectional area of the wire along loop

k, then Ik = Jkσk, where Jk is the density of (free) current in

loop k. Therefore, Ikdlk can be written as Jkdτ , where dτ is

a volume element in the wire.

If we note Vk the volume of the wire along loop k , we can then write:

δWk =

˚
Vk

δA · Jkdτ.

The work that has to be done to counter the emf induced in all the loops by the change

δB is obtained by summing the above expression over k:

δW =
∑
k

δWk =

˚
V
δA · Jfdτ,

where the integral is over the volume V occupied by all the free currents Jf . We can

extend this integral over the volume V of the whole space, as only the regions where Jf is

non zero will contribute anyway. We now use equation (3.19) to obtain:

δW =

˚
V
δA · (∇×H) dτ.
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As ∇ · (H×δA) = δA · (∇×H) −H · (∇×δA) , the integral above can be transformed

into:

δW =

˚
V
∇ · (H×δA) dτ +

˚
V

H · (∇×δA) dτ.

By using the divergence theorem, the first integral on the right–hand–side can be written

as the flux over the surface delimiting V of H×δA. We can put this surface at infinity. At

large distance, the loops are seen as dipoles, so that H ∼ r−3 and A ∼ r−2. This integral

therefore vanishes. Since in addition ∇×δA = δB, δW becomes:

δW =

˚
V

H · δBdτ. (3.28)

This equation is the equivalent of equation (2.27), which gives the energy in the presence

of dielectrics, and is valid for all magnetic materials, linear or not.

The work that has to be done to establish the magnetic field from 0 to B (by establishing

all the free currents in all the loops) is:

W =

ˆ B

0
δW =

˚
V
dτ

ˆ B

0
H · δB.

When the field is decreased back to zero, if the curve B(H) is the same as when B was

increased, then: ˚
V
dτ

ˆ B

0
H · δB = −

˚
V
dτ

ˆ 0

B
H · δB.

Therefore, the total work done to increase B from zero to its final value and decrease it

back to zero is zero. The work done to establish the field can be viewed as being stored

in the field reversibly: the energy is given back when the field is returned to zero.

In paramagnetic or diamagnetic materials, the relation between H and B is linear, so

that:

H · δB =
1

2
δ (H ·B) ,

and:

W =
1

2

˚
V

H ·Bdτ.

This energy is stored in the magnetic field. From the expression of W , we obtain the

energy density for a linear magnetic material:

U =
1

2
H ·B. (3.29)

In vacuum, H = B/µ0, so that we recover the expression of the energy density U =

B2/(2µ0) seen in the first year course.
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3.7 Ferromagnetism

3.7.1 Microscopic description

In diamagnetic and paramagnetic materials, a magnetization is present only when an

external magnetic field is present. When the field is removed, the magnetization vanishes.

Ferromagnets are materials which can sustain a magnetization even after the external field

has been removed. These materials are non–linear, since the magnetization is not simply

proportional to H.

The magnetization in ferromagnets is due to paramagnetism, that is to say to the aligne-

ment of the spin dipole moments of unpaired electrons. But due to the structure of

ferromagnetic materials (which are all solids), the energy is decreased when neighbouring

atomic dipoles align with each other. The force responsible for this alignement is purely

quantum mechanical (and is not the magnetic interaction between dipoles). In general,

the dipoles have random orientations, and if one dipole wants to align with a neighbour, it

will be pulled in another direction by another neighbour. However, if, for any reason, two

neighbouring dipoles happen to be aligned with each other, they define a special direction

in which other close dipoles are going to align. In a domain around these two dipoles, all

the dipoles will then point in the same direction and there will be a net magnetization.

Ferromagnetic materials are made of such domains, which size is typically between 10−3

and 1 mm3.

If the material is not placed in a magnetic field, there is no

net magnetization as different domains have a magnetization

pointing in different directions. However, when a magnetic

field is applied, the domains in which the magnetization is

parallel or close to parallel with the field grow at the expense

of the others. This is because at the boundary between two do-

mains, misaligned dipoles compete with each other to impose

a direction. When a field is applied, it exerts a torque which

tends to align the dipoles with its own direction, and therefore

enables the dipoles which are already in this direction to ’win’

the competition. The boundaries between domains are then

moved.

If the applied field is strong enough, only one single domain remains, and the material

becomes saturated (the magnetization cannot be made larger for a given temperature).

When the external field is removed, as it is energetically more favourable for the dipoles

to be aligned with each other, a net magnetization in the direction of the field that was

applied remains: the material has become a permanent magnet.

However, random thermal motions compete with the tendency of the dipoles to align

with each other. Therefore, at high enough temperatures, the alignement is destroyed
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and there is no remaining magnetization after the field is removed. The material then

becomes paramagnetic. The transition between ferromagnetism and paramagnetism does

not happen progressively as the temperature is increased. Instead, it happens at a precise

temperature called the Curie temperature. This is an example of a phase transition.

3.7.2 Hysteresis loop

To illustrate how a ferromagnetic material responds to an external field, we vary the field

and measure the magnetization. In practice, the material is inserted inside a solenoid in

which we run a current I. By varying the current, we vary the magnetic field inside the

solenoid.

We start with a ferromagnetic material that

has initially no magnetization (point a on

the graph). When the current is increased,

the magnetization increases, slowly at first

and then more rapidly as the boundaries of

the domains move. At point b, the magneti-

zation reaches the saturation value Ms. In-

creasing the current further does not change

the magnetization. If the current is reduced

from point b, the magnetization decreases

slightly. When the current vanishes, there

is a residual magnetization left in the ma-

terial which has then become a permanent

magnet (point c).

If the current is reversed, so that the external field reverses direction, the magnetization

decreases until it vanishes (point d). Increasing the amplitude of the current further leads

to saturation again (point e), but with a magnetization opposite to that at point b. If

the amplitude of the current is then decreased to zero, a permanent magnet is obtained

(point f). Once again, demagnetization is obtained by increasing the current in the other

direction point g).

We see that, when the current is decreased, the magnetization does not come back to

the same values as it took when the current was increased. The magnetization, therefore,

does not depend only on I, but also on the magnetic history of the material. This phe-

nomenon is called hysteresis, from a Greek word meaning lagging behind, and is a source

of thermodynamic irreversibility.

The curve shown on the graph is called a hysteresis loop. As pointed out above, the

value of Ms decreases when the temperature increases.

In general, the hysteresis loop is plotted in the H–B plane, rather than in the I–M

plane shown above. If the external field is produced by a long solenoid, then H = nI,

where n is the number of turns per unit length, so that H is entirely controlled by the

experimentator and is not influenced by the ferromagnet. The total magnetic field is given
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by B = µ0 (H + M). The magnetization produced by ferromagnets is very large compared

to H or, in other words, the magnetic field produced by the magnetization in the

ferromagnet is very large compared to the external magnetic field produced by

the solenoid. Therefore, B ' µ0M, and the hysteresis loop in the H–B plane has the

same shape as that shown above. Typically, ferromagnets at a temperature of 20◦ C have

a saturated magnetization of Ms ∼ 106 A m−1 which is reached for H ∼ 103 A m−1.

These values correspond to µ0H ∼ 10−3 T and B ' µ0M ∼ 1 T.

The magnetic field Br that remains in the

material when the external field is removed

is called the remanent field (similarly, we

define the remanent magnetization). For

the total magnetic field to vanish, an ex-

ternal field −Hc has to be applied, with Hc

being called the coercive force.

3.7.3 Hysteresis loss

In section 3.6, we have seen that the energy necessary to establish a field B is regained

when the field is decreased back to zero if the curve B(H) is the same when the field is

increased and when it is decreased. However, for ferromagnets, as the values taken by B

when H is increased are not the same as those taken when H is decreased, the energy

is not completely recovered: a fraction of the energy is dissipated as heat in the

ferromagnet. The losses are partially due to the friction which occurs at the boundaries

of the domains when the dipole moments reorient themselves under the action of the

varying field.

From equation (3.28), the work done per unit volume to move from one point to another

on the hysteresis curve is:

W =

ˆ
HdB,

where the integral is along the curve and we have used the fact that, in a ferromagnet,

H and B are parallel (the magnetization is not proportional to the external field, but is

nonetheless aligned with it). Therefore, the work done (by the batteries which generate

the current) to take a unit volume of the ferromagnet around the hysteresis curve is:

W =

˛
HdB,

where the integral is along the closed curve. The value of this integral is equal to the
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surface area enclosed by the hysteresis curve. If the ferromagnet is taken around

the hysteresis loop repeatedly by an alternating current of frequency f , the hysteresis loop

is traversed f times per second, so that the hysteresis losses are linearly proportional to

the frequency.

To minimize the losses, we have to use a soft ferromagnet which has a narrow

hysteresis curve, that is to say a small coercive force and a small remanent magnetization.

Ferromagnets with large hysteresis curves are called hard.
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Chapter 4

Electromagnetic waves in vacuum

4.1 Maxwell’s equations and boundary conditions

4.1.1 Local form of Maxwell’s equations

As seen in the fist year course, for fields in the presence of electric charge of density ρ and

electric current of density J, Maxwell’s equations are:

∇ ·E =
ρ

ε0
,

∇ ·B = 0,

∇×E = −∂B

∂t
,

∇×B = µ0J + µ0ε0
∂E

∂t
.

(4.1)

(4.2)

(4.3)

(4.4)

Equations (4.1), (4.3) and (4.4) are, respectively, Gauss’s law, Faraday’s law, and Ampère’s

law with the inclusion of the displacement current (also known as Ampère–Maxwell’s law).

4.1.2 Integral form of Maxwell’s equations

Using the divergence and Stokes’s theorems, the integral form of these equations can be

written as:
"

Σ
E · dΣ =

˚
V

ρ

ε0
dτ, (4.5)

"
Σ

B · dΣ = 0, (4.6)

˛
Γ

E · dl = − d

dt

¨
Σ

B · dΣ, (4.7)

˛
Γ

B · dl = µ0

¨
Σ

J · dΣ + µ0ε0
d

dt

¨
Σ

E · dΣ. (4.8)

In equation (4.5), Σ is the (closed) surface that delimits the volume V whereas, in equa-

tions (4.7) and (4.8), Σ is the (open) surface delimited by the contour Γ.
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4.1.3 Boundary conditions

In general, the fields E and B are discontinuous at a surface that carries a charge den-

sity and/or a current density. We have previously established the boundary conditions in

dielectrics and in magnetic materials when the fields are static (sections 2.4.3 and 3.4.2).

Here, we establish the boundary conditions on E and B at a surface with free charges

and/or free currents and in the time–dependent case.

We consider a surface with a free charge density σ and a free current density K separating

two empty regions. Locally, the surface is flat.

We apply the integral form of Gauss’s law

given by equation (4.5) with the surface

Σ being that of the cylinder represented

on the figure and ρ the charge density in

the cylinder. Taking ε→ 0, this implies:

E⊥2 −E⊥1 =
σ

ε0
n̂12, (4.9)

as shown in section 2.4.3 (see eq. [2.19]).

Similarly, equation (4.6) implies:

B⊥2 −B⊥1 = 0, (4.10)

as shown in section 3.4.2 (see eq. [3.22]).

We now apply the integral form of Fara-

day’s law given by equation (4.7) with

the contour Γ being that of the loop

represented on the figure (the horizontal

sides of the loop are parallel to the tan-

gential component of the fiel E‖). Then:

E
‖
2dl − E

‖
1dl = − d

dt

¨
Σ

B · dΣ.

As ε → 0, the vertical sides of the loop do not contribute to the integral over Γ. For the

same reason, the flux of B through the surface vanishes. Therefore, we obtain:

E
‖
2 −E

‖
1 = 0, (4.11)

as in the static case (see eq. [2.21] in section 2.4.3).
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Finally, we apply the integral form of

Ampère–Maxwell’s law given by equa-

tion (4.8) with the contour Γ being that

of the loop represented on the figure.

The horizontal sides of the contour are

parallel to the tangential component of

the field B‖, and therefore the surface

delimited by the contour is perpendicu-

lar to K.

We then obtain:

B
‖
2dl −B

‖
1dl = µ0Kdl + µ0ε0

d

dt

¨
Σ

E · dΣ.

As above, the vertical sides of the loop do not contribute to the integral over Γ because

ε → 0, and for the same reason the flux of E through the surface vanishes. The above

equation can then be written as:

B
‖
2 −B

‖
1 = µ0K×n̂12, (4.12)

where n̂12 is the unit vector perpendicular to the surface and oriented from region (1) to

region (2). This is similar to the equation obtained for H in the static case (see eq. [3.21]

in section 3.4.2).

Equations (4.9), (4.10), (4.11) and (4.12) can be recast in the following compact form:

E2 −E1 =
σ

ε0
n̂12

B2 −B1 = µ0K×n̂12.

(4.13)

(4.14)

Note that these equations would still be valid if region (1) were a conductor. In that

case, E1 = 0 and it follows from equation (4.13) that the electric field just outside a

conductor is perpendicular to the surface and equal to σ/ε0.

4.2 Electromagnetic waves in vacuum

In vacuum (that is to say, away from the charges and currents that create the field) , ρ = 0

and J = 0, so that Maxwell’s equations become:

∇ ·E = 0,

∇ ·B = 0,

∇×E = −∂B

∂t
,

∇×B = µ0ε0
∂E

∂t
.

(4.15)

(4.16)

(4.17)

(4.18)
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Taking the curl of (4.17) and (4.18) and using the identity:

∇× (∇×E) =∇ (∇ ·E)−∇2E = −∇2E,

which also applies to B, we obtain the following wave equations for the fields E and B:

∇2E = µ0ε0
∂2E

∂t2
,

∇2B = µ0ε0
∂2B

∂t2
.

(4.19)

(4.20)

The above equations indicate that the three components of E and B may propagate in

vacuum with the speed:

c =
1

√
µ0ε0

, (4.21)

which is the speed of light.1

Note that each cartesian component of E and B satisfies the wave equation:

∇2F = µ0ε0
∂2F

∂t2
. (4.22)

However, this is not true for the cylindrical and spherical components2 of E and B.

The wave equation is a second–order linear partial differential equation. To solve it,

it is necessary to specify initial and boundary conditions. For instance, to describe the

vibrations of a string, which also satisfy a wave equation, we usually assume that the ends

remain fixed (boundary conditions) and we specify the initial position and velocity along

the string (initial conditions). The wave equation has a large number of solutions, for

instance traveling plane waves, traveling spherical waves, standing waves, etc.

4.2.1 Monochromatic plane waves

The simplest and most fundamental electromagnetic waves are plane waves, for which F

is uniform over every plane perpendicular to the direction of propagation. We assume that

the wave propagates in the x–direction, so that F depends only on x and t. Equation (4.22)

can therefore be written as:
∂2F

∂x2
− 1

c2

∂2F

∂t2
= 0. (4.23)

1Before Maxwell’s theory of electromagnetism, ε0 and µ0 were two independant constants that were

used to express E and B separately. When Maxwell discovered electromagnetic waves and showed that

they propagate with speed 1/
√
µ0ε0 = 3× 108 m s−1, it became apparent that light is an electromagnetic

wave, and therefore c = 1/
√
µ0ε0. See Purcell, chapter 9.

2In cartesian coordinates, ∇2E = ∇2(Exx̂ +Eyŷ +Ez ẑ) = ∇2(Ex)x̂ +∇2(Ey)ŷ +∇2(Ez)ẑ, where x̂, ŷ

and ẑ are unit vectors. However, in cylindrical coordinates for example, ∇2E = ∇2(Er r̂+Eθθ̂+Ez ẑ), and

as the unit vectors r̂ and θ̂ depend on the coordinates, this is not equal to ∇2(Er)r̂+∇2(Eθ)θ̂+∇2(Ez)ẑ.
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The most general solution to this equation is:

F (x, t) = f(x− ct) + g(x+ ct), (4.24)

where f and g are arbitrary functions describing plane waves traveling to the right (f)

and to the left (g) with velocity c. Note that, because the wave equation is linear, the

sum of two solutions is itself a solution.

Sinusoidal waves are a particular case of plane waves. They have the form:

Fk(x, t) = A cos [k(x− ct) + ϕ] +B cos [k(x+ ct) + ψ] , (4.25)

where A and B are the amplitudes of the waves traveling to the right and to the left,

respectively, ϕ and ψ are phase constants, and

k =
2π

λ
, (4.26)

is the wave number, with λ being the wavelength. The phase of the wave traveling to

the right (that is to say, the argument of the first cosine) is k(x0 − ct0) + ϕ at position

x0 and time t0. At time t0 + ∆t, the phase has the same value at position x0 + ∆x such

that ∆x − c∆t = 0. Therefore, the phase moves to the right with velocity ∆x/∆t = c.

Similarly, the phase of the wave traveling to the left moves in that direction with the same

speed. Therefore, c is called the phase velocity of the wave.

The period T of the wave is such that the phase of the wave moves forward or backward

by 2π during T . Therefore:

T =
2π

kc
. (4.27)

The frequency ν is the number of oscillations per unit time, and is given by:

ν =
1

T
=
kc

2π
=
c

λ
. (4.28)

We also define the angular frequency ω of the wave (often referred to as just ’frequency’),

which is the number of radians the phase of the wave advances per unit time:

ω = 2πν = kc. (4.29)

Because the sinusoidal waves in equation (4.25) correspond to a single frequency, they are

called monochromatic.

We note that Fk can be written as the real part of:

F̃k = Ãei(kx−ωt) + B̃ei(kx+ωt), (4.30)

with Ã = Aeiϕ and B̃ = Beiψ. Both the real and imaginary parts of F̃k are solutions of

the wave equation (4.23), and therefore F̃k itself is a solution. As it is much easier to han-

dle complex wave functions, which involve exponentials, rather than real wave functions,
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which involve trigonometric functions, we will from now on use complex notations to write

linear quantities. To avoid confusion, we will denote complex quantities with a tilde. The

physical quantity is the real part of the complex function and is denoted by the

same letter but without the tilde. When dealing with non–linear quantities, like energy

density or Poynting vector, real numbers should be used (see below).

Using the Fourier integral theorem3, we can write any complex wave function F̃ solution

of equation (4.23) as a linear superposition of sinusoidal waves F̃k:

F̃ (x, t) =

ˆ +∞

0

[
Ãei(kx−ωt) + B̃ei(kx+ωt)

]
dk. (4.31)

In the above expression, k has been chosen as the independent variable, but as there is a

relationship between ω and k, we could have chosen ω instead.

In general, waves of different frequencies travel with different phase speed. Therefore,

a wave packet, which is obtained by summing up over a range of frequencies, will change

shape as it propagates, since its different components change phase with respect to one

another. The shape of the wave packet, called envelope, moves at the so–called group

velocity given by:

vg =
dω

dk
. (4.32)

Electromagnetic waves in vacuum all have the same phase velocity c = ω/k, independent

of ω (vacuum is non dispersive). Therefore, the group velocity of electromagnetic waves

in vacuum is also c.

4.2.2 Electromagnetic waves

We consider plane waves. As they can be written as a superposition of monochromatic

sinusoidal waves, we focus on fields of the form:

Ẽ(r, t) = Ẽ0ei(k·r−ωt) , (4.33)

B̃(r, t) = B̃0ei(k·r−ωt) , (4.34)

where Ẽ0 and B̃0 are the (constant) amplitudes of the fields, r is the position vector

and k ≡ kn̂ is the wave vector, with n̂ being the unit vector along the direction of

3This theorem states that any function f(x) which is absolutely integrable can be written as:

f(x) =
1√
2π

ˆ +∞

−∞
f̂(k)eikxdk,

with

f̂(k) =
1√
2π

ˆ +∞

−∞
f(x)e−ikxdx.

The function f̂ is the Fourier transform of f , and f is the inverse Fourier transform to f̂ .
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propagation (if the wave propagates along the x–direction, k · r = kx, as in the previous

subsection). In general, Ẽ0 and B̃0 are complex.

These fields have to satisfy Maxwell’s equations. Using the relation∇ · Ẽ = ik · Ẽ (and

similarly for B̃), equations (4.15) and (4.16) lead to:

n̂ · Ẽ = 0,

n̂ · B̃ = 0,

(4.35)

(4.36)

which means that both Ẽ and B̃ (and therefore also E and B) are perpendicular to the

direction of propagation. Electromagnetic waves in vacuum are therefore transverse.

Using the relation ∇×Ẽ = ik×Ẽ (and similarly for B̃), we can further show that

equations (4.17) and (4.18) are both equivalent to:

B̃ =
n̂×Ẽ

c
, (4.37)

which implies that Ẽ and B̃ are in phase and perpendicular to each other. The same

result is obtained for E and B. Note that this does not hold only for electromagnetic

monochromatic plane waves, but for electromagnetic plane waves in general.

4.2.3 Polarization

The polarization of an electromagnetic wave refers to the direction of the electric vector.

At a fixed point in space, E may either keep a constant direction (linear polarization),

or sweeps around a circle or an ellipse at the frequency of the wave (circular or elliptical

polarization).

Here we adopt real, rather than complex, notations. We consider a monochromatic

plane wave propagating along the x–direction. The most general expression is:

Ex = 0,

Ey = E0y cos (kx− ωt+ ϕy) , (4.38)

Ez = E0z cos (kx− ωt+ ϕz) ,

where E0y, E0z, ϕy and ϕz are positive constants. To describe the polarization of the

wave, we can study either the evolution of E at a fixed value of x when t varies, or the

dependance of E on x at a fixed time t. Here we use the first method, that is to say we

consider a fixed value of x. Without loss of generality we can take x = 0, so that:

Ey = E0y cos (ωt− ϕy) , and Ez = E0z cos (ωt− ϕz) .

Linear polarization:

If ϕz − ϕy = 0 or π, then:
Ez
Ey

= ±E0z

E0y
.
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The electric vector vibrates while keeping a fixed direction. The electromagnetic wave is

said to be linearly polarized, and the direction of polarization is that of the vector E.

Example of a linearly polarized wave.

Elliptical polarization:

Let us now consider the case where ϕz−ϕy is not proportional to π. By shifting the origin

of time, the electric field can be rewritten as:

Ey = E0y cos (ωt) , and Ez = E0z cos (ωt− ϕ) ,

with ϕ = ϕz − ϕy. By eliminating the time from these two equations, we get:

(
Ey
E0y

)2

+

(
Ez
E0z

)2

− 2
Ey
E0y

Ez
E0z

cosϕ = sin2 ϕ, (4.39)

The end of the vector E therefore moves along an ellipse: the electromagnetic wave is

elliptically polarized. Depending on whether the vector E rotates clockwise or counter–

clockwise when the observer is facing into the oncoming wave, the polarization is said to

be right or left elliptically polarized.

If E0y = E0z and ϕ = π/2 or 3π/2, equation (4.39) is that of a circle. In that case, the

wave is circularly polarized.

An elliptically polarized wave can always be written as the sum of two out of phase

waves which are linearly polarized in two directions perpendicular with each other.

Example of a circularly polarized

wave.
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Polarized and unpolarized light:

If a source is made of a collection of atoms or molecules which emit a strictly monochro-

matic light, the resultant electric field is the sum of linearly polarized waves which are

phase–locked, that is to say which phases differ from one another by a constant. Such a

source of light is said to be coherent, and the resultant electric field is itself polarized.

Lasers and microwave ovens are examples of coherent sources.

By contrast, natural light (from a heated filament or the sun, for example) is not

strictly monochromatic, as it is emitted by the de–excitation of atoms or molecules which

act independently of each other. Each of them emits a short wave train with a specific

polarization. As the phase difference between two wave trains with different frequencies

is not constant (that is to say, the radiation is incoherent), the superposition of all the

waves results in a randomly polarized, or unpolarized, electric field.

The superposition of unpolarized and polarized lights results in partially polarized

light.

4.3 Energy and momentum transport by electromagnetic

waves

Experimental facts suggest that electromagnetic waves transport energy. The most obvi-

ous fact is that the Earth receives energy from the Sun. This energy has travelled through

(almost empty) space from the Sun to the Earth in the form of an electromagnetic wave.

Another example is illustrated in the figure

on the left: a current through circuit (1)

induces a current through circuit (2) which

may be strong enough for the light bulb to

glow, even though the two circuits are sep-

arated.

As there is no source of energy in circuit (2), this indicates that energy has been transferred

through the air from circuit (1) to circuit (2).

Where is the energy as it travels? In this section, we are going to relate it to the

electromagnetic field that carries it. Real notations are used throughout this section.

4.3.1 The Poynting vector

In electrostatics, we have calculated that a unit volume in which there is an electric

field E has an amount of energy ε0E
2/2 (eq. [2.28]). Similarly, in magnetostatics, we

have established that a unit volume in which there is a magnetic field B has an amount

of energy B2/(2µ0) (eq. [3.29]). Let us therefore assume that the energy density of an

electromagnetic field is:

u =
ε0E

2

2
+
B2

2µ0
, (4.40)
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even when the fields are time–dependent. Using E2 = E · E and B2 = B · B, we obtain

for the rate of change of u:

∂u

∂t
= ε0

∂E

∂t
·E +

1

µ0

∂B

∂t
·B.

Equations (4.17) and (4.18) give ∂E/∂t and ∂B/∂t in terms of ∇×B and ∇×E, so that:

∂u

∂t
=

1

µ0
(∇×B) ·E− 1

µ0
(∇×E) ·B.

By using the vector identity ∇ · (C×D) = (∇×C) ·D− (∇×D) ·C, we can finally write:

∂u

∂t
= − 1

µ0
∇ · (E×B) .

We define the Poynting vector by:

S =
E×B

µ0
, (4.41)

so that the rate of change of u can be written in the form:

−∂u
∂t

=∇ · S. (4.42)

This equation expresses the conservation of energy. It can be proved by integrating it over

a given volume V delimited by a closed surface Σ:

−
˚
V

∂u

∂t
dτ =

˚
V
∇ · S dτ. (4.43)

As the surface delimiting the volume is fixed,˚
V

∂u

∂t
dτ =

d

dt

˚
V
u dτ.

Furthermore, using the divergence theorem, we can write:˚
V
∇ · S dτ =

"
Σ

S · dΣ,

where dΣ is normal to the surface and pointing outward. Equation (4.43) then becomes:

− d

dt

˚
V
u dτ =

"
Σ

S · dΣ. (4.44)

This shows that the negative of the rate at which the energy contained in the volume V
varies is equal to the flux of the vector S outward through the surface Σ which delimits

the volume. If energy flows out of the volume into another region, S · dΣ > 0, and the

energy contained in the volume decreases. Conversely, if energy flows into the volume

from another region, S · dΣ < 0, and the energy contained in the volume increases.

Since equation (4.44) is valid for any closed volume V, the Poynting vector S can

be interpreted as the flow of energy per unit time per unit area through any

surface, closed or not. It is called the power density. The direction in which the energy

flows is that of the vector S.
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4.3.2 Energy conservation for a system of charges and electromagnetic

fields

In the previous section, we have established the conservation of energy of electromagnetic

fields in vacuum. We now write the energy conservation of a combined system of particles

and electromagnetic fields, and show that it can also be expressed using the Poynting

vector.

Suppose we have a charge q moving with velocity v in a region of space where there

is an electric field E and a magnetic field B. The charge is subject to the Lorentz force,

given by:

F = q (E+v×B) . (4.45)

During a time interval dt, the charge moves over a distance dl = vdt. The work done on

the charge by the electromagnetic field during dt is then:

dW = F · dl = qE · vdt,

and the power given to the charge by the electromagnetic field is:

dW

dt
= qE · v.

We now assume that the charge belongs to a distribution of charges which number density

(number of charges per unit volume) is n. The power given by the electromagnetic field

to the distribution of charges is:

dW

dt
=

˚
V
qE · vndτ,

where the integral is over the volume of the distribution. By using the current density

J = nqv, we obtain:

dW

dt
=

˚
V

J ·Edτ. (4.46)

This is the rate at which work is done on the charges in the volume V.

The current density can be written as a function of E and B using Ampère–Maxwell’s

law (4.4), so that:

J ·E =
1

µ0
(∇×B) ·E− ε0

∂E

∂t
·E.

Using the identity: ∇ · (E×B) = B · (∇×E) − E · (∇×B) and Faraday’s law (4.3), we

obtain:

J ·E = − 1

µ0
∇ · (E×B)− 1

µ0

∂B

∂t
·B− ε0

∂E

∂t
·E = − 1

µ0
∇ · (E×B)− 1

2

∂

∂t

(
ε0E

2 +
B2

µ0

)
.

Substituting into equation (4.46), we have:

dW

dt
= −

˚
V

(∇ · S)dτ −
˚
V

∂u

∂t
dτ,

where we have used expressions (4.40) and (4.41) for the energy density u and the Poynting

vector S. As the surface delimiting the volume V of the charge distribution is fixed, the
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time derivative can be taken out of the integral on the right–hand–side. We also use the

divergence theorem to finally write the so–called Poynting’s theorem:

− d

dt

˚
V
u dτ =

"
Σ

S · dΣ +
dW

dt
, (4.47)

where Σ is the surface delimiting the volume V. This equality expresses conservation of

energy. It is simliar to equation (4.44) but with the addition of the dW/dt term: the

negative of the rate at which the energy contained in the volume V varies is equal to the

rate at which energy flows out of the volume through the surface plus the rate at which

work is done on the charges contained in the volume.

4.3.3 Application to monochromatic plane waves

In the case of electromagnetic plane waves, equation (4.37) gives B2 = E2/c2. As c =

1/
√
ε0µ0, we obtain:

ε0E
2

2
=

B2

2µ0
, (4.48)

which indicates that there is an equal amount of energy in the electric and magnetic

fields. The energy density (4.40) is therefore:

u = ε0E
2 =

B2

µ0
. (4.49)

Using equation (4.37), we can write the Poynting vector (4.41) in the form:

S = u c n̂. (4.50)

As expected, the flow of energy is the energy density u times the group velocity c in the

direction of propagation n̂ of the wave. Indeed, the energy carried by the wave through

a surface area Σ perpendicular to the direction of propagation during a time interval ∆t

comes from a distance at most equal to c∆t. The amount of energy that crosses the surface

during ∆t is therefore uΣc∆t, which corresponds to an energy per unit time per unit area

uc.

As the power carried by the wave through a surface area Σ perpendicular to the

direction of propagation is SΣ, and the plane wave is in theory infinite in the transverse

direction, it carries an infinite amount of energy. This is of course physically unrealistic.

Plane waves do not exist in reality. However, they are interesting to study because they

may be a good local approximation to a more complicated wave. Also, as we have seen

above, more realistic waves can be written as the superposition of plane waves.

Non–linearity of u and S:

The expressions for u and S are non–linear: if E and B are multiplied by a factor α, u and

S are multiplied by α2. One consequence is that the principle of superposition does not

apply to these quantities: the Poynting vector corresponding to a superposition
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of electromagnetic waves is not the sum of the Poynting vectors corresponding

to each wave. Also, because of the non–linearity, it is important to use real notations

rather than complex notations to calculate u and S.

Average values of u and S:

In the case of light, the frequency of the waves is so large that measurements of the energy

usually encompass many cycles. The meaningful quantities are therefore averaged over

time.

We consider a monochromatic plane wave propagating in the x–direction. The most

general expression for E is given by equations (4.38). Remembering that E2 = E ·E, the

energy density (4.49) is therefore:

u = ε0
[
E2

0y cos2 (kx− ωt+ ϕy) + E2
0z cos2 (kx− ωt+ ϕz)

]
.

The time–average of the cos2 terms over a period is 1/2, so that:

〈u〉 =
ε0E

2
0

2
, (4.51)

where E2
0 = E2

0y+E2
0z and the brackets in 〈u〉 denote time–average. This result is indepen-

dent of the polarization state of the wave. Similarly, we could show that the time–average

energy density can be written as:

〈u〉 =
B2

0

2µ0
. (4.52)

Note that if we had calculated 〈u〉 using complex notations, we would have found 〈u〉 = 0.4

The average power per unit area transported by the electromagnetic wave is called the

intensity:

I ≡ 〈S〉 =
ε0E

2
0

2
c =

B2
0

2µ0
c. (4.53)

4.3.4 Momentum transport and radiation pressure

In the (classical) description of the electromagnetic field that we have given above, the

energy of the field is distributed continuously, with an energy density u, and flows con-

tinuously at a rate per unit time and unit area corresponding to the Poynting vector S.

According to the quantum description, the electromagnetic field consists of discrete energy

quanta, the photons. Each photon moves with the speed of light c and has an energy:

E = hν, (4.54)

where ν is the frequency of the radiation and h is the Planck’s constant. The corresponding

momentum is:

p =
E

c
=
hν

c
. (4.55)

4In complex notations, the components of E are E0yei(kx−ωt+ϕy) and E0ze
i(kx−ωt+ϕz) along the

y– and z–directions, respectively. Therefore, E2 = E2
0ye2i(kx−ωt+ϕy) + E2

0ze
2i(kx−ωt+ϕz). As

〈cos 2 (kx− ωt+ ϕz)〉 = 0, and similarly for the sine, E2 in complex notations averages to 0 over a period

of oscillations.
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When a plane wave hits a material, it communicates its momentum to the surface. Let

us consider a wave which hits a surface element dΣ at normal incidence and is absorbed.

The energy communicated by the wave to the surface during an interval of time dt is

SdΣdt, where S is the modulus of the Poynting vector. According to equation (4.55),

the momentum communicated to the surface element is therefore SdΣdt/c. The force

(momentum per unit time) exerted by the wave onto the surface is thus SdΣ/c. As the

force is perpendicular to the surface (normal incidence), we can define a pressure (force

per unit area) S/c. The radiation pressure Prad is this pressure averaged over time:

Prad =
〈S〉
c
≡ I

c
, (4.56)

where I is the intensity.

Using equation (4.53), we obtain: Prad = ε0E
2
0/2. If instead of being absorbed the wave

were reflected, its momentum would reverse direction. Therefore, the momentum commu-

nicated to the surface would be twice as large as that calculated above, and the radiation

pressure would accordingly be:

Prad =
2I

c
. (4.57)

This pressure force is due to the momentum given by the photons to the material. It

can also be understood qualitatively in term of the electromagnetic field in the following

way:

We assume that the wave that hits the surface travels

from the left in the z–direction, with E and B being in

the x– and y–directions, respectively. Electrons on the

surface are given a velocity v along −x by the electric

field. The magnetic field then exerts a force −ev×B

in the z–direction. The Lorentz force therefore has a

component along +z, which corresponds to the radiation

pressure.
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Chapter 5

Electromagnetic waves in matter

5.1 Maxwell’s equations in matter and boundary conditions

5.1.1 Maxwell’s equations

Equations (4.1)–(4.4) are the most general local form of Maxwell’s equations. They are

valid in all possible environments, provided the charge density ρ and the current density J

include all possible contributions. In the most general case, ρ has contribution from free1

and polarization charges: ρ = ρf + ρp. Similarly, J has contribution from free currents

and from currents produced by polarization and magnetization: J = Jf + Jp + Jm.

Therefore, equations (4.1) and (4.4) can be written under the form:

∇ ·E =
1

ε0
(ρf + ρp) , (5.1)

and:

∇×B = µ0 (Jf + Jp + Jm) + µ0ε0
∂E

∂t
. (5.2)

Using the displacement vector:

D = ε0E + P,

(eq. [2.14]) and the relation ρp = −∇ ·P (eq. [2.3]), equation (5.1) becomes ∇ ·D = ρf ,

as already shown in section 2.4 (see eq. [2.15]).

Similarly, using the auxiliary field:

H =
B

µ0
−M,

1What we call free charges are really the excess charges that would move in a conductor if an electric

field were applied, until the charge density were zero. If the conductor is neutral, only surface charges are

redistributed to cancel the applied field. More precisely, ρf can be written as:

ρf =
∑
j,free

ρj +
∑

n,fixed molecules

ρn,

where ρj is the charge density of the electrons and ρn is the charge density of the fixed molecules or atoms.

See Jackson, section 6.6, for more details.
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(eq. [3.18]) and the relations Jm = ∇×M (eq. [3.12]) and Jp = ∂P/∂t (eq. [2.5]), equa-

tion (5.2) becomes ∇×H = Jf + ∂D/∂t.

Therefore, Maxwell’s equations in matter can be summarised under the form:

∇ ·D = ρf ,

∇ ·B = 0,

∇×E = −∂B

∂t
,

∇×H = Jf +
∂D

∂t
.

(5.3)

(5.4)

(5.5)

(5.6)

5.1.2 Boundary conditions

In section 4.1.3, we derived the boundary conditions on E and B at a surface with

free charges and/or free currents. The exact same calculations using the above form

of Maxwell’s equations lead to the boundary conditions on E, B, D and H at a sur-

face with charges and/or currents having contribution from free sources, polarization and

magnetization:

D⊥2 −D⊥1 = σf n̂12,

E
‖
2 −E

‖
1 = 0,

B⊥2 −B⊥1 = 0,

H
‖
2 −H

‖
1 = Kf×n̂12,

(5.7)

(5.8)

(5.9)

(5.10)

where n̂12 is the unit vector perpendicular to the surface and pointing from medium (1)

to medium (2), D⊥ = D⊥n̂12, with D⊥ = D · n̂12, and similar definition for B⊥.

5.2 Electromagnetic waves in non–conducting linear media

In this section, we focus on media with no free charges or currents, which means ρf = 0

and Jf = 0, and which are linear, so that D = εE (eq. [2.24]) and H = B/µ (eq. [3.24]).

We assume in addition that the media are homogeneous and isotropic, that is to say ε

and µ are the same everywhere and in all directions. Then Maxwell’s equations (5.3)–(5.6)

become:

∇ ·E = 0, (5.11)

∇ ·B = 0, (5.12)

∇×E = −∂B

∂t
, (5.13)

∇×B = µε
∂E

∂t
, (5.14)
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which are the same as equations (4.15)–(4.18), which describe electromagnetic waves in

vacuum, but with µ0 and ε0 replaced by µ and ε, respectively. Therefore, electromagnetic

waves that propagate through linear, homogeneous and isotropic (LHI) media have a

structure similar to that of waves that propagate through vacuum. The phase speed of

waves propagating through LHI media is:

vϕ =
1
√
µε

=
c

n
, (5.15)

where:

n ≡
√

µε

µ0ε0
, (5.16)

is the index of refraction, or refractive index, of the medium. In most materials,

µ ' µ0, so that n ' √εr.
In general, εr > 1, so that n > 1 and light travels more slowly through matter than in

vacuum.

Note that we have assumed when writing vϕ that µε was real. This is not always the

case, as we will see when studying waves propagating in media with frequency dependent

permittivities (section 5.6 below). In this subsection however, we only consider media with

permittivity ε and permeability µ that do not depend on ω and are real.

In that case, vϕ itself is independent of ω: waves with different frequencies travel with the

same phase speed. In other words, there is no dispersion.

A medium through which a wave can propagate without dispersion is said to be trans-

parent for that wave.

5.2.1 Ewald–Oseen extinction theorem

Above, we have shown that a wave which would propagate with the speed of light c in

vacuum travels with a slower speed vϕ when penetrating in a linear material.

When an electromagnetic wave penetrates in a material, it moves the bound electrons

around in such a way that electric and magnetic dipoles are induced. Each of these dipoles

in turn produces an electromagnetic wave which has the same frequency as the applied

field if the material is linear, and which also travels at speed c. According to the principle

of superposition, the total field in the material is the sum of all these fields, including the

original applied field. However, there is no wave travelling at speed c anymore after the

original wave has entered the material. This is explained by the Ewald–Oseen extinction

theorem, which states that the waves emitted by the dipoles can be written as the sum of

a wave which exactly cancels out the original wave and phase–shifted waves which add up

to a wave with a smaller phase speed.

5.2.2 Monochromatic plane waves

Like in the case of waves propagating in vacuum, we look for solutions of equations (5.11)–

(5.14) under the form of monochromatic plane waves. Using complex notations, the most
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general form of these solutions is:

Ẽ(r, t) = Ẽ0ei(k·r−ωt) , (5.17)

B̃(r, t) = B̃0ei(k·r−ωt) , (5.18)

where k is the wave vector. In general, Ẽ0 and B̃0 are complex. As for waves propagating

in vacuum, equations (5.11) and (5.12) imply:

k · Ẽ = 0,

k · B̃ = 0,

(5.19)

(5.20)

which means that electromagnetic waves in LHI media are transverse.

The equivalent of equation (4.19) for waves in vacuum is here:

∇2Ẽ = µε
∂2Ẽ

∂t2
.

With the form of E given above, this equation yields the so–called dispersion relation:

k2 = µεω2, (5.21)

which can also be written:

ω = kvϕ. (5.22)

The wavelength is defined by λ = 2π/k. With k = ω/vϕ = ωn/c, we obtain:

λ =
2πc

ω

1

n
=
λ0

n
, (5.23)

where λ0 is the wavelength of the wave with same frequency that would propagate in

vacuum. We note that λ < λ0.

The group velocity of the waves is vg = dω/dk (eq. [4.32]), which is simply vg = vϕ

when µε does not depend on ω. In a non dispersive lossless medium, the group velocity is

equal to the phase velocity, and this is also the velocity at which energy is transported.

Using the relation ∇×Ẽ = ik×Ẽ, we can further show that equation (5.13) leads to:

B̃ =
k

ω
×Ẽ, (5.24)

which implies that, like in vacuum, Ẽ and B̃ are perpendicular to each other. Fur-

thermore, if k is real, which requires µε being real, Ẽ and B̃ are in phase. Using equa-

tion (5.22) and the fact that k and E are perpendicular, we obtain from equation (5.24):

B =
E

vϕ
, (5.25)

in real notations.

For a plane wave, we define the intrinsic impedance of the medium as:

Z ≡
Ẽph

H̃ph

, (5.26)
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where Ẽph and H̃ph are the phasor representations of the fields, that is to say the complex

amplitude after the time–dependence has been factored out:

Ẽ(r, t) = Ẽph(r)e−iωt, H̃(r, t) = H̃ph(r)e−iωt. (5.27)

If Ẽ and H̃ are not in phase, Z is complex. From equation (5.6), it can be seen that the

units of H are amperes per metre. The units of E are volts per metre. Therefore, the

units of Z are ohms, hence the name ’impedance’.

In the case we are studying here of a non–conducting medium, using equation (5.24) and

H = B/µ, we obtain:

Z = µvϕ =

√
µ

ε
. (5.28)

The impedance in vacuum is Z0 = µ0c ' 377 Ω.

5.2.3 Energy transport

In electrostatics, we have calculated that the unit volume of a material in which there

is an electric field E and an associated polarization has an amount of energy E · D/2
(eq. [2.28]). Similarly, in magnetostatics, we have established that the unit volume of a

material in which there is a magnetic field B and an associated magnetization has an

amount of energy H ·B/2 (eq. [3.29]). Let us therefore assume that the energy density of

an electromagnetic field in a material is:

u =
1

2
E ·D +

1

2
H ·B, (5.29)

even when the fields are time–dependent. In a linear medium, this expression can also be

written as:

u =
ε

2
E2 +

1

2µ
B2, (5.30)

which, as expected, is identical to equation (4.40) after replacing µ0 and ε0 by µ and ε,

respectively.

In the same way as we have defined the Poynting vector (4.41) for waves propagating

in vacuum, we define the Poynting vector for waves propagating in linear materials:

S =
E×B

µ
. (5.31)

In a material in which µ ' µ0, the Poynting vector is the same as in vacuum. (Remember

to take the real parts of E and B when calculating S or u). With B/µ = H, we note that

equation (5.31) can be written as:

S = E×H.

This is actually a more general expression of the Poynting vector, valid even in non–linear

media. This could be shown by writing an energy conservation equation as in section 4.3.1.
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For monochromatic plane waves given by equations (5.17) and (5.18), and using equa-

tion (5.24), we obtain the intensity:

I ≡ 〈S〉 =
1

2µ

k

ω
E2

0 , (5.32)

where the brackets denote time–average. With ω/k = vϕ and vϕ = 1/
√
µε, this can also

be written as:

I =
εE2

0

2
vg =

B2
0

2µ
vg, (5.33)

where we have used the fact that the group velocity vg is equal to the phase velocity vϕ

in a non dispersive medium. This is equivalent to equation (4.53) after replacing µ0 and

ε0 by µ and ε, respectively. Here again, the energy is transported at the group velocity.

5.3 Reflection and transmission at the boundary between

two linear media

We consider two linear media with permittivities ε1 and ε2, permeabilities µ1 and µ2, and

separated by a plane surface.

5.3.1 Normal incidence

We first focus on a monochromatic plane wave hitting the interface at normal incidence.

We use cartesian coordinates with the in-

terface being the z = 0 plane. An inci-

dent wave of frequency ω and polarized

in the x–direction travels from the left

to the right in the z–direction. We note

k1 = k1ẑ the wave vector. When this

wave hits the interface, it gives rise to

both reflected and transmitted waves.

The incident wave can be written under the form:

Ẽi(z, t) = E0i ei(k1z−ωt) x̂, (5.34)

H̃i(z, t) = H0i ei(k1z−ωt) ŷ. (5.35)

We note ωr, ωt, kr and kt the frequencies and wave vectors of the reflected and transmitted

waves. The electric field associated with those waves is therefore:

Ẽr = E0r ei(kr·r−ωrt), Ẽt = E0t ei(kt·r−ωtt).
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According to equation (5.8), the tangential component of the electric field is continuous

at the interface, that is to say in the plane z = 0. Continuity of the x–component implies:

E0i e−iωt + E0r,x ei(kr,xx+kr,yy−ωrt) = E0t,x ei(kt,xx+kt,yy−ωtt),

where the subscripts x and y denote the x– and y–components. This condition has to

be satisfied for all x, y and t, and therefore the exponential factors have to be equal,

that is to say −ωt = kr,xx + kr,yy − ωrt = kt,xx + kt,yy − ωtt. When x = y = 0, this

implies ω = ωr = ωt, which means that the reflected and transmitted waves have the same

frequency as the incident wave. When t = y = 0, we obtain 0 = kr,xx = kt,xx, which yields

kr,x = kt,x = 0. Similarly, when t = x = 0, we obtain kr,y = kt,y = 0. Therefore, both kr

and kt are in the z–direction, like the wave vector of the incident wave. Furthermore, using

the dispersion relation (5.21) and the fact that all the waves have the same frequency, we

see that kr = k1 whereas kt has a different value, which we note k2. As the reflected and

transmitted waves travel toward −z and +z, respectively, we can write kr = −k1ẑ and

kt = k2ẑ.

The fact that the reflected and transmitted waves have the same frequency as the incident

wave can also be understood in the following way. When the incident wave hits the

interface, it moves the bound electrons which are located there in such a way that electric

and magnetic dipoles are induced. If the materials are linear, the frequency with which

these dipoles oscillate is the same as the frequency of the fields that create them. In turn,

the dipoles produce a transmitted and a reflected waves which have the same frequency.

The y–component of E is continuous at the interface, which means that E0r,y = E0t,y. Us-

ing equation (5.24), this yieldsB0r,x/k1 = B0t,x/k2, and therefore µ1H0r,x/k1 = µ2H0t,x/k2.

As there are no free currents at the interface, equation (5.10) implies that the tangential

component of H is continuous at the interface. This can be satisfied at the same time

as the relation above only if H0r,x = H0t,x = 0, which also implies E0r,y = E0t,y = 0.

Therefore, the reflected and transmitted waves have the same polarization as the incident

wave.

Finally, the reflected and transmitted

waves can be written under the form:

Ẽr(z, t) = E0r ei(−k1z−ωt) x̂, (5.36)

H̃r(z, t) = −H0r ei(−k1z−ωt) ŷ, (5.37)

Ẽt(z, t) = E0t ei(k2z−ωt) x̂, (5.38)

H̃t(z, t) = H0t ei(k2z−ωt) ŷ. (5.39)

The minus sign in H̃r comes from equa-

tion (5.24) and is due to the fact that

the reflected wave travels in opposite

direction as the incident wave.
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We have assumed on the figure above that both Er and Et have the same orientation as

Ei. It does not have to be the case, but if the orientation of E is changed then that of

H has to be reversed accordingly. As we are going to see now, the sign of E0r and E0t is

determined by the boundary conditions at the interface.

The continuity of the x– and y–components of E and H, respectively, at the interface

yields:

E0i + E0r = E0t, (5.40)

and:

H0i −H0r = H0t. (5.41)

Using the impedances Z1 = E0i/H0i = E0r/H0r = µ1v1 and Z2 = E0t/H0t = µ2v2

(see eq.[5.28]), where v1 and v2 are the phase velocities of the waves in media 1 and 2,

respectively, equation (5.41) can be written as:

E0i

Z1
− E0r

Z1
=
E0t

Z2
. (5.42)

Combining equations (5.40) and (5.42), we obtain:

E0r =
Z2 − Z1

Z1 + Z2
E0i, and E0t =

2Z2

Z1 + Z2
E0i. (5.43)

According to equation (5.33), the ratio of reflected intensity to incident intensity, which

is called the reflection coefficient is:

R ≡ Ir
Ii

=

(
E0r

E0i

)2

=

(
Z2 − Z1

Z1 + Z2

)2

. (5.44)

Similarly, we define the transmission coefficient as:

T ≡ It
Ii

=
ε2v2

ε1v1

(
E0t

E0i

)2

=
ε2v2

ε1v1

(
2Z2

Z1 + Z2

)2

=
4Z1Z2

(Z1 + Z2)2 , (5.45)

where we have used ε2v2/(ε1v1) = µ1v1/(µ2v2) = Z1/Z2 (see eq. [5.15]). As expected from

conservation of energy, we have:

R+ T = 1. (5.46)

In most materials, µ ' µ0, so that Z = µvϕ ' µ0vϕ = µ0c/n, and equations (5.43),

(5.44) and (5.45) can be written as:

E0r =
n1 − n2

n1 + n2
E0i, E0t =

2n1

n1 + n2
E0i, (5.47)

and:

R =

(
n1 − n2

n1 + n2

)2

, T =
4n1n2

(n1 + n2)2 . (5.48)

The reflected wave is in phase with the incident wave if n1 > n2 and out of phase by π

otherwise. The transmitted wave is always in phase with the incident wave.

If the wave is travelling from air (n1 = 1) into glass (n2 = 1.5), then R = 0.04 and

T = 0.96. As expected, most of the energy is transmitted.
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5.3.2 Oblique incidence and Brewster’s angle

We now consider the case when the monochromatic plane wave is incident at an angle θi

to the normal, with a polarization parallel to the plane of incidence.

The incident wave can be written under

the form:

Ẽi = E0i ei(ki·r−ωt), (5.49)

H̃i =
1

Z1
k̂i×Ẽi, (5.50)

where k̂i = ki/ki.

This problem will be studied in detail in Problem Set 3. Here we only summarize the

main results, starting with the three fundamental laws of geometrical optics:

• the three wavevectors ki, kr and kt are all in the same plane that also contains the

normal to the surface z,

• θi = θr (law of reflection),

• n2 sin θt = n1 sin θi (law of refraction, or Snell’s law).

The boundary conditions also yield the reflected and transmitted (complex) amplitudes,

known as Fresnel’s equations:

Ẽ0r =
Z1 cos θi − Z2 cos θt
Z1 cos θi + Z2 cos θt

E0i, and Ẽ0t =
2Z2 cos θi

Z1 cos θi + Z2 cos θt
E0i. (5.51)

As can be seen from the equation giving Ẽ0r, there is no reflection when Z1 cos θi =

Z2 cos θt. The value of θi for which this happens is called the Brewster’s angle and is noted

θB. Using Snell’s law, we obtain:

cos θB =
Z2

Z1

√
1−

(
n1

n2

)2

sin2 θB, (5.52)

which yields:

sin2 θB =
1− (Z1/Z2)2

(n1/n2)2 − (Z1/Z2)2 . (5.53)

For most materials, µ ' µ0, so that Z1/Z2 ' n2/n1 and the equation above becomes:

tan θB '
n2

n1
. (5.54)
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5.4 Electromagnetic waves in conductors

So far, in this section, we have focussed on the propagation of waves in media with no

free charges or currents. We are now going to study wave propagation in media in which

conduction currents are non zero, and which may also have some polarization and mag-

netization.

5.4.1 Skin depth

We assume that Ohm’s law applies2, that is to say the free current density is related to

the electric field by:

Jf = σE, (5.55)

where σ is the conductivity of the material.

If we assume the material to be linear, Maxwell’s equations (5.3)–(5.6) can then be written

under the form:

∇ ·E =
ρf
ε
, (5.56)

∇ ·B = 0, (5.57)

∇×E = −∂B

∂t
, (5.58)

∇×B = µσE + µε
∂E

∂t
. (5.59)

Here, µ and ε are real. The density of free charges3 ρf satisfies the equation of charge

conservation:

∇ · Jf = −
∂ρf
∂t

. (5.60)

Combining this equation with equations (5.55) and (5.56) yields:

∂ρf
∂t

= −σ
ε
ρf , (5.61)

which solution is:

ρf = ρ0e−t/τ , (5.62)

where ρ0 is the density of free charges at t = 0 and we have defined the relaxation time

τ = ε/σ. In a perfect conductor, σ = ∞ and τ = 0, which means that the charges

instantaneously flow out of the material (to the surfaces). If an external field varying with

a frequency ω is applied, the material is said to be a good conductor for τ � 1/ω and

a bad conductor for τ � 1/ω. Note that, in equation (5.59), µε|∂E/∂t| = µεω|E|, and

2Remember that Ohm’s law is not a fundamental law of nature, but an empirical relationship that does

not always apply. At high frequencies for example, larger than about 1011 Hz, the inertia of the conduction

electrons is such that they cannot keep up with the very rapid variations of the field. A conductor in which

Ohm’s law applies is called an ohmic conductor.
3See the footnote in section 5.1.1 for the meaning of free charges.
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this term is small compared to µσ|E| in a good conductor. In other words, in a good

conductor, displacement currents are negligible compared to conduction currents.

After a time large compared to τ , all the free charges have flown out of the material, and

we can set ρf = 0 in equation (5.56). We then take the curl of equations (5.58) and (5.59),

and using the identity:

∇× (∇×E) =∇ (∇ ·E)−∇2E = −∇2E,

which also applies to B, we obtain the following partial differential equations for E and

B:

∇2E = µε
∂2E

∂t2
+ µσ

∂E

∂t
, (5.63)

∇2B = µε
∂2B

∂t2
+ µσ

∂B

∂t
. (5.64)

As before, we look for solutions under the form of monochromatic plane waves with fre-

quency ω, and choose the z–axis along the direction of propagation. Adopting complex

notations, the most general form of these solutions for waves propagating in the +z–

direction is:

Ẽ(z, t) = Ẽ0ei(k̃z−ωt), (5.65)

B̃(z, t) = B̃0ei(k̃z−ωt), (5.66)

where Ẽ0, B̃0 and k̃ are complex. Substituting these expressions into equations (5.63)

and (5.64) yields the dispersion relation:

k̃2 = µεω2 + iµσω. (5.67)

We write:

k̃ = k′+ ik′′, (5.68)

where k′ and k′′ are real. Equation (5.67) then yields k′2 − k′′2 = µεω2 and 2k′k′′ = µσω,

so that:

k′ = ω

[
µε

2

(
1 +

√
1 +

( σ
εω

)2
)]1/2

, (5.69)

k′′ = ω

[
µε

2

(
−1 +

√
1 +

( σ
εω

)2
)]1/2

, (5.70)

where we have retained the solution k′ > 0 as we are looking for solutions propagating

in the +z–direction (note that k′k′′ has to be positive). Equations (5.65) and (5.66) then

become:

Ẽ(z, t) = Ẽ0e−k
′′zei(k′z−ωt), (5.71)

B̃(z, t) = B̃0e−k
′′zei(k′z−ωt), (5.72)
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These equations show that the waves propagate with the phase speed:

vϕ =
ω

k′
, (5.73)

which in general depends on ω. Therefore, a conductor is a dispersive medium. In a

bad conductor, σ/(εω)� 1 and equation (5.69) gives k′ ' ω√µε. This yields vϕ ' 1/
√
µε,

as in a dielectric (see eq. [5.15]). Therefore, a bad conductor acts like a dielectric. This

will be discussed again in section 5.6.5.

Equations (5.71) and (5.72) also show that the waves are attenuated as they propagate.

The e–folding distance (distance over which the amplitude of the wave decreases by a

factor e) is called the skin depth and is given by:

δ =
1

k′′
. (5.74)

The skin depth is the distance through which the electromagnetic wave (and therefore free

currents, since Jf = σE) penetrates into the conductor.

• In a perfect conductor, σ → ∞ and k′′→ ∞, so that δ → 0, which means that the

wave does not penetrate into the material, as expected.

• In a good conductor, σ/(εω) � 1 and δ '
√

2/(µσω) depends on the frequency of

the wave. If the frequency is very high, currents only flow in a very thin layer near

the surface of the material4. Therefore, to carry a current, it is enough to coat any

conductor with a very good conductor. Even at low, power–line frequencies (50 Hz

in Europe), bundled conductors are a better choice than solid conductors to carry

currents.

• In a bad conductor, σ/(εω)� 1 and δ ' (2/σ)
√
ε/µ is independent of ω. The skin

depth in a bad conductor is much larger than in a good conductor.

Note that, when ω → 0, and if the conductivity is finite, k′′ → 0, so that δ → ∞. But

we also have k′ → 0, so that Ẽ and B̃ given by equations (5.71) and (5.72) are constant

4When σ � εω, the current density Jf is confined to such a small thickness just below the surface of

the conductor that it is equivalent to an effective surface current Kf . If we assume that the conductor

extends from z = 0 to z =∞, then:

K̃f =

ˆ ∞
0

J̃fdz =

ˆ ∞
0

σẼdz =

ˆ ∞
0

σẼ0ei(k̃z−ωt)dz = − σ
ik̃

Ẽ0e−iωt.

We still have ∇×Ẽ = ik̃×Ẽ when k̃ is complex, so that equation (5.58) yields Ẽ0 = ωB̃0×ẑ/k̃, where ẑ

is the unit vector in the direction of propagation. Therefore, Kf = (iωσ/k̃2)B̃0e−iωt×ẑ. When σ � εω,

equations (5.69) and (5.70) yield k′ = k′′ '
√
µσω/2. Therefore we can write Kf = (1/µ)B̃0e−iωt×ẑ. This

is the boundary condition for the parallel component of the magnetic field near the surface of a perfect

conductor, as can be seen from equation (5.10) with H
‖
2 = 0 (field inside the conductor), H

‖
1 = B̃0e−iωt/µ

(field just outside the conductor, at z = 0−) and n̂12 = ẑ. Therefore, a good conductor behaves like a

perfect conductor, with the idealized surface current replaced by an equivalent volume current distributed

throughout a thickness which is very small but nonetheless non zero. [Note that we would have obtained

the same result if we had assumed that the conductor were extending from whatever value of z = zin to a

value of z = zout such that zout − zin � δ.]
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and uniform throughout the conductor. Equation (5.59) then implies that E is zero,

which means that the electromagnetic wave does not penetrate into the material. This is

consistent with the fact that any conductor is a good conductor when ω → 0.

The skin effect is due to electromagnetic induction. A time–varying magnetic field pro-

duces an emf which in turn creates currents. According to Lenz’s law, they oppose the

currents which produced them in the first place, so that the total current is reduced. The

larger the conductivity, the larger the induced currents.

Another way to explain the skin effect is by considering the motion of the electrons in the

conductor. When an electric field is applied, the electrons move toward the surfaces under

the effect of the electric force and they themselves produce an electric field which opposes

the applied field. If the electrons can follow the variations of the applied field, which is

the case in a good conductor where τ � 1/ω, then at every instant the field produced by

the electrons cancels the applied field, which is therefore zero in most of the volume of the

conductor. In a bad conductor, where τ � 1/ω, the inertia of the electrons is such that

they cannot keep up with the variations of the field. Before the electrons have time to

reach the surfaces of the conductor, the applied field changes direction and the electrons

turn around. Therefore, the field they produce cancels the applied field only in a restricted

region of the conductor.

5.4.2 Impedance

We still have ∇×Ẽ = ik̃×Ẽ when k̃ is complex, so that the relation given by equa-

tion (5.24) still holds. With k̃ = k̃ẑ and writing k̃ = |k̃|eiφ, we can then obtain B̃ from

the expression (5.71) of Ẽ:

B̃ =
|k̃|
ω

(
ẑ×Ẽ0

)
e−k

′′zei(k′z−ωt+φ), (5.75)

where φ = tan−1(k′′/k′). We see that B lags behind E by the angle φ.

The impedance Z of the conductor is then (see eq. [5.26]):

Z = µ
Ẽph

B̃ph

= µ
ω

k̃
= µ

ω

|k̃|2
(
k′− ik′′

)
. (5.76)

In a good conductor, σ/(εω)� 1 so that k′ ' k′′ '
√
µσω/2, and:

Z '
√
µω

2σ
(1− i) ' 1− i

δσ
. (5.77)

Note that:

|Z| =
√
µω

σ
=

√
εω

σ

√
µ

ε
,

so that, in a good conductor where εω/σ � 1, the impedance is small compared to the

impedance of a non–conducting medium with same permittivity and permeability. In

particular, if ε = ε0 and µ = µ0, the impedance of the conductor is small compared to

that of vacuum.
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5.4.3 Energy transport

The Poynting vector is given by:

S =
E×B

µ
, (5.78)

where real notations have to be used here.

For E, we take the real part of the field given by equation (5.71), so that:

E = E0e−k
′′z cos

(
k′z − ωt+ ψ

)
. (5.79)

where we have written Ẽ0 = E0eiψ.

For B̃, we use equation (5.75) under the form:

B̃ =
k̃

ω
(ẑ×E0) e−k

′′zei(k′z−ωt+ψ), (5.80)

and therefore:

B =
1

ω
(ẑ×E0) e−k

′′z
[
k′ cos

(
k′z − ωt+ ψ

)
− k′′ sin

(
k′z − ωt+ ψ

)]
. (5.81)

Equation (5.78) then yields:

S = ẑ
1

µω
E2

0e−2k′′z
[
k′ cos2

(
k′z − ωt+ ψ

)
− k′′ sin

(
k′z − ωt+ ψ

)
cos
(
k′z − ωt+ ψ

)]
.

(5.82)

We now perform a time–average over a period. The cos2 term gives 1/2 whereas the cos sin

term gives zero. We then obtain:

〈S〉 = ẑ
k′E2

0

2µω
e−2k′′z, (5.83)

which shows that the intensity I ≡ 〈S〉 of the wave decreases exponentially as it propagates

with the absorption coefficient 2k′′.

5.5 Reflection and transmission at a conducting surface

We consider an electromagnetic monochromatic plane wave which travels in a non–con-

ducting linear medium (which we label 1) and hits at normal incidence the plane surface of

an ohmic conductor (medium 2). This is similar to the situation studied in section 5.3.1,

except that here the intrinsic impedance of the conducting medium is a complex number.

The boundary conditions are given by equations (5.7)–(5.10), and in principle there may

be surface charges and currents. If we consider a thin layer of width d close to the surface

of the conductor, then the surface current is given by the limit when d → 0 of Jfd.

However, in an ohmic conductor, Jf = σE. Therefore, if E stays finite as we approach the

surface, Jfd vanishes as d→ 0. This means that there is no surface current in an ohmic
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conductor5. Therefore, like for the reflection and transmission at the boundary between

two dielectrics, the tangential components of E and H are continuous at the interface,

which implies that the incident, reflected and transmitted waves have the same frequency,

travel in the same direction, and are polarized in the same direction. Note that, as the

electric field has no component perpendicular to the interface, equation (5.7) implies that

there are no charges at the surface of the conductor.

As in section 5.3.1, we use cartesian coordinates with the interface being the z =

0 plane, and write the incident, reflected and transmitted waves as:

Ẽi(z, t) = Ẽ0i ei(k1z−ωt) x̂, (5.84)

H̃i(z, t) = H̃0i ei(k1z−ωt) ŷ, (5.85)

Ẽr(z, t) = Ẽ0r ei(−k1z−ωt) x̂, (5.86)

H̃r(z, t) = −H̃0r ei(−k1z−ωt) ŷ, (5.87)

Ẽt(z, t) = Ẽ0t ei(k̃2z−ωt) x̂, (5.88)

H̃t(z, t) = H̃0t ei(k̃2z−ωt) ŷ, (5.89)

where we have used complex notations. Note that the wave vector in the conductor is

complex. The tangential components of E and H are continuous at the interface, which

yields:

Ẽ0i + Ẽ0r = Ẽ0t, (5.90)

H̃0i − H̃0r = H̃0t. (5.91)

In the non–conducting medium, we have H̃0i = Ẽ0i/Z1 and H̃0r = Ẽ0r/Z1 with Z1 = µ1v1,

where v1 is the phase velocity of the wave in the medium (see eq. [5.28]). In the conductor,

H̃0t = Ẽ0t/Z2 with Z2 = µ2ω/k̃2 (see eq. [5.76]).

Combining equations (5.90) and (5.91), we therefore obtain:

Ẽ0r =
Z2 − Z1

Z1 + Z2
Ẽ0i, and Ẽ0t =

2Z2

Z1 + Z2
Ẽ0i. (5.92)

This is similar to the results obtained in section 5.3.1, except that here Z2 is complex.

For a perfect conductor, σ → ∞ and |k̃2| → ∞ (see eq. [5.69] and [5.70]), so that

Z2 → 0. This yields Ẽ0r = −Ẽ0i and Ẽ0t = 0. As expected, the wave does not penetrate

at all into the conductor and is completely reflected.

According to equation (5.83), the intensity which is transmitted at the interface,

where z = 0, is It = k′2E
2
0t/(2µ2ω), with E0t = |Ẽ0t| and k′2 = Re(k̃2). According

to equation (5.32), the intensities which are incident and reflected at the interface are

5As shown in the footnote in the discussion below equation (5.74), a good conductor is equivalent

to a perfect conductor, but with the idealized surface current replaced by a volume current distributed

throughout some finite thickness below the surface. Therefore, in a perfect conductor we use Maxwell’s

equations with no volume current (Jf = 0) and a surface current Kf which enters the boundary condition

on H, whereas in a good conductor, as studied here, we use Maxwell’s equations with a non zero volume

current Jf and no surface current (Kf = 0) entering the boundary condition on H. The two descriptions

are equivalent and yield the same results
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Ii = k1E
2
0i/(2µ1ω) and Ir = k1E

2
0r/(2µ1ω), respectively, with E0i = |Ẽ0i| and E0r = |Ẽ0r|.

Therefore, the reflection coefficient is:

R ≡ Ir
Ii

=
E2

0r

E2
0i

=

∣∣∣∣∣Ẽ0r

Ẽ0i

∣∣∣∣∣
2

=

∣∣∣∣Z2 − Z1

Z1 + Z2

∣∣∣∣2 , (5.93)

and the transmission coefficient is:

T ≡ It
Ii

=
µ1k

′
2

µ2k1

E2
0t

E2
0i

=
µ1k

′
2

µ2k1

∣∣∣∣∣Ẽ0t

Ẽ0i

∣∣∣∣∣
2

=
µ1k

′
2

µ2k1

∣∣∣∣ 2Z2

Z1 + Z2

∣∣∣∣2 . (5.94)

In a good conductor, Z2 ' η(1− i) with η =
√
µ2ω/(2σ) (see eq. [5.77]). As Z1 =

√
µ1/ε1,

we have:

η

Z1
=

√
ε2ω

2σ

√
ε1µ2

ε2µ1
.

The first factor on the right–hand–side is small compared to unity in a good conductor.

Therefore, if the permittivities and permeabilities of the two media are not too different,

we have η/Z1 � 1. The reflection coefficient can then be written as:

R =

∣∣∣∣(η − Z1)− iη

(η + Z1)− iη

∣∣∣∣2 =
(η − Z1)2 + η2

(η + Z1)2 + η2
' 1− 2η/Z1

1 + 2η/Z1
' 1− 4

η

Z1
,

to first order in η/Z1. As expected, most of the energy is reflected. In a good conductor,

k′2 '
√
µ2σω/2 (see eq. [5.69]), so that the transmission coefficient can be written as:

T ' 1

2
µ1
ω

k1

1

η

∣∣∣∣ 2Z2

Z1 + Z2

∣∣∣∣2 .
Using ω/k1 = v1 = 1/

√
µ1ε1, we obtain:

T ' 1

2

√
µ1

ε1

1

η

8η2

(η + Z1)2 + η2
' 4

η

Z1
,

to first order in η/Z1. We verify that R+ T = 1.

5.6 Electromagnetic waves in media with frequency depen-

dent permittivity

In section 2.5, we have pointed out that the polarization does not always respond instanta-

neously to the variations of the field. At high frequency, there may be a delay between the

adjustment of the atomic or molecular dipoles and the variation of the field. In that case,

the electric susceptibility depends on frequency. This implies that waves with different

frequencies travel with different speeds, a phenomenon called dispersion.
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5.6.1 Dispersion of glass

In section 5.3.1, we have considered a wave hitting the interface between two linear media

with normal incidence, and found that the reflected and transmitted waves were also

travelling in the direction perpendicular to the interface. However, if the incident wave

travels through medium 1 in a direction that makes an angle θ1 with the normal to the

interface, the transmitted wave may travel at a different angle θ2 through medium 2, a

process known as refraction. In that case, the transmitted wave is usually called refracted

wave. According to Snell’s law of refraction:

n1 sin θ1 = n2 sin θ2, (5.95)

hence the name “index of refraction” for n.

As is well known from experience, a beam of incident “white” light is refracted when

passing through a prism in such a way that the different colours are dispersed, that is to

say they emerge from the prism at different angles. It means that the index of refraction

n of the prism depends on the frequency of the waves. If the prism is made of glass,

blue is bent more than red: the index of refraction increases (decreases) with frequency

(wavelength). This is called normal dispersion.

5.6.2 A simple model to explain dispersion

To describe the physics of dispersive media, we adopt the so–called Lorentz oscillator

model. It is essentially the same model as in chapter 2, where the polarization was ex-

plained in term of the displacement of bound charges under the effect of an external field,

but taking into account the fact that charges (that is to say, electrons) do not respond in-

stantaneously to an applied time–varying field. Although this classical model can only be

an approximation to quantum models which alone can describe atomic–scale phenomena,

it can successfully describe many experimental results.

We consider an electron of charge q = −e which is bound to an atom or a molecule and

is acted on by an electric field E(r, t). Since the mass of the atom or molecule is much

larger than that of the electron, we assume it stays fixed. As the displacement x of the

electron from its equilibrium position caused by the electric field is small, the binding
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force Fbind can be approximated by a spring–like harmonic force6, that is to say it has the

form Fbind = −mω2
0x, where ω0 is the frequency of the free oscillations. To account for

the fact that the electron cannot adjust instantaneously to the variations of the applied

field, we introduce a resistive force that damps the motion of the electron. This damping

term is due to internal collisions in the material and radiation emitted by the electron

(as any accelerating charge emits radiation). Resistive forces oppose the motion and do

not act when the particle is at rest. The simplest form for the damping force is therefore

Fdamp = −mγẋ, where γ is a damping coefficient which has the dimensions of a frequency

and the dot denotes derivative with respect to time. The equation of motion for the

electron is then:

mẍ = qE(x, t)−mγẋ−mω2
0x, (5.96)

where m is the mass of the electron. We have assumed here that the magnetic force was

negligible compared to the electric force, which is usually the case7. We have also assumed

that the electric field acting upon the electron was the applied field, which means that we

have neglected the field produced by neighbouring molecules or atoms. This is true only

in a dilute (low density) material.

As the displacement of the electron is small, the variations of E with position can be

neglected, so that E can be evaluated at the average position of the electron. We consider

an electromagnetic wave which has a frequency ω and we adopt complex notations. Here

again, we denote complex quantities with a tilde. Remember that physical quantities are

obtained by taking the real part. The electric field is then Ẽ = E0e−iωt. In steady state,

the displacement oscillates with the same frequency, that is to say x̃(t) ∝ e−iωt, which

implies ˙̃x = −iωx̃ and ¨̃x = −ω2x̃. Therefore, equation (5.96) yields:(
ω2

0 − ω2 − iωγ
)
x̃ =

q

m
E0e−iωt. (5.97)

The dipole moment contributed to by the electron is then the real part of:

p̃ = qx̃ =
e2/m

ω2
0 − ω2 − iωγ

E0e−iωt. (5.98)

6We note U the potential energy which is associated with the binding force, and we assume that the

motion is along the x–direction. Then Fbind = −dU/dx. If the equilibrium position is x0, then for small

displacements x around x0 we can expand U in Taylor series:

U(x) = (x− x0)
dU

dx
(x0) +

1

2
(x− x0)2 d

2U

dx2
(x0) + . . . ,

where we have chosen the reference U(x0) = 0. The first derivative is zero since the potential energy is

extremum at an equilibrium point. Therefore, for small displacements:

Fbind(x) = −(x− x0)
d2U

dx2
(x0) + . . .

If the equilibrium is stable, the second derivative is positive and then the force is of the form Fbind(x) =

−mω2
0(x− x0), where ω0 is the frequency with which the particle freely oscillates around the equilibrium

position.
7The electric force acting on the charge is Fe = qE, whereas the magnetic force is Fm = |qv×B|, where

v is the velocity of the charge. Therefore, Fm/Fe ∼ vB/E = v/vϕ, where vϕ is the phase speed of the

electromagnetic wave in the medium (see eq. [5.25]). Very often, v � vϕ and the magnetic force can be

neglected compared to the electric force.
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The complex denominator indicates that the dipole moment is out of phase with

the electric field. This can be seen by writing p under the form:

p̃ =
e2/m√(

ω2
0 − ω2

)2
+ ω2γ2

E0ei(−ωt+ϕ), (5.99)

where ϕ = tan−1
[
ωγ/

(
ω2

0 − ω2
)]

is the angle by which p lags behind E. This expression

of the dipole moment is similar to the amplitude of a driven damped harmonic oscillator.

Like in the case of an oscillator, we expect to find resonances when the frequency ω of the

electromagnetic wave approaches ω0. As we will see below, these resonances lead to large

changes in the index of refraction of the medium and strong absorption of the wave.

We suppose that there are N molecules per unit volume with Z electrons per molecule.

In general, different electrons have different natural frequencies ω0 and different damping

coefficients γ, which can be calculated using quantum mechanics. We assume that there

are fj electrons per molecule with natural frequency ωj and damping coefficient γj . Then

the polarization (dipole moment per unit volume) is:

P̃ =
Ne2

m
Ẽ
∑
j

fj
ω2
j − ω2 − iωγj

. (5.100)

The fj are called oscillator strengths and they satisfy
∑

j fj = Z.

The real part of the polarization given by equation (5.100) is not proportional to the

real part of the electric field, which means that the material is not linear. However, we

define a complex susceptibility χ̃e such that:

P̃ = ε0χ̃eẼ, (5.101)

that is to say:

χ̃e =
Ne2

ε0m

∑
j

fj
ω2
j − ω2 − iωγj

. (5.102)

When ω → 0, χ̃e is real and positive, and the polarization is equal to the static polarization.

In that case, the polarization and the electric field are in phase. On the other hand, when

ω is very large, the susceptibility becomes negative, which means that P is out–of–phase

with E by π. In the limit ω →∞, the susceptibility vanishes: the electrons cannot respond

to the variations of the electric field.

Note that there is no real susceptibility obtained by taking the real part of χ̃e. If we write

χ̃e = χ′e + iχ′′e, where χ′e and χ′′e are real, then equation (5.101) implies:

P = Re(P̃) = ε0
[
χ′e cos(ωt) + χ′′e sin(ωt)

]
E0. (5.103)

The phase lag between P and E can be made explicit by writing the above expression

under the form:

P = ε0
√

(χ′e)2 + (χ′′e)
2 cos(ωt− ϕ)E0, (5.104)

with ϕ = tan−1 (χ′′e/χ
′
e).
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The displacement vector in complex notation is:

D̃ = ε0Ẽ + P̃ = ε0 (1 + χ̃e) Ẽ. (5.105)

We define the complex permittivity:

ε̃ = ε0 (1 + χ̃e) , (5.106)

and the complex relative permittivity, also called complex dielectric contant:

ε̃r =
ε̃

ε0
= 1 + χ̃e, (5.107)

in the same way as we have defined the permittivity and dielectric constant in linear

media for steady fields (see section 2.5). But again, here, there are no real permittivity or

dielectric constant obtained by taking the real part of the complex quantities. As can be

seen from equations (5.102) and (5.107), the complex relative permittivity depends on ω

and is given by:

ε̃r(ω) = 1 +
Ne2

ε0m

∑
j

fj
ω2
j − ω2 − iωγj

. (5.108)

We note ε′r and ε′′r the real and imaginary parts of ε̃r, respectively. We then have:

ε′r = 1 +
Ne2

ε0m

∑
j

fj

(
ω2
j − ω2

)
(
ω2
j − ω2

)2
+ ω2γ2

j

, (5.109)

ε′′r =
Ne2ω

ε0m

∑
j

fjγj(
ω2
j − ω2

)2
+ ω2γ2

j

. (5.110)

5.6.3 Absorption and anomalous dispersion

In general, the damping coefficients γj are small compared to the resonant frequencies

ωj , so that when ω is not close to one of the ωj the imaginary part of ε̃r can be neglected.

However, near a resonant frequency ωj , the damping term becomes very important.

Wave equation:

We assume here that the permeability of the medium is µ = µ0. In complex form, and in

the absence of free charges and currents, Maxwell’s equations (5.3)–(5.6) can be written

as follows:

∇ · D̃ = 0, (5.111)

∇ · B̃ = 0, (5.112)

∇×Ẽ = −∂B̃

∂t
, (5.113)

∇×B̃ = µ0
∂D̃

∂t
. (5.114)
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With D̃ = ε̃Ẽ, equations (5.113) and (5.114) can be combined in the usual way to yields

the wave equation:

∇2Ẽ = µ0ε̃
∂2Ẽ

∂t2
. (5.115)

As before, we look for solutions under the form of monochromatic plane waves, and choose

the z–axis along the direction of propagation. The most general form of these solutions

for waves propagating in the +z–direction is:

Ẽ(z, t) = Ẽ0ei(k̃z−ωt), (5.116)

where Ẽ0 and k̃ are complex. Substituting (5.116) into the wave equation (5.115) yields

the dispersion relation:

k̃2 = µ0ε̃ω
2. (5.117)

If we write:

k̃ = k′+ ik′′, (5.118)

where k′ and k′′ are real, then equation (5.117) implies k′2 − k′′2 = µ0ω
2ε′ and 2k′k′′ =

µ0ω
2ε′′, where ε′ and ε′′ are the real and imaginary parts of ε̃, respectively. As we are

looking for waves propagating in the +z–direction, we select k′ > 0. Then k′′ > 0 if ε′′ > 0,

which is the case when the damping coefficients γj are positive. A negative ε′′ would lead

to an amplification of the wave, as in a maser or laser. We will not consider this case here.

Equation (5.116) can be written as:

Ẽ(z, t) = Ẽ0e−k
′′zei(k′z−ωt). (5.119)

Therefore, the wave propagates in the z–direction with the phase velocity:

vϕ =
ω

k′
, (5.120)

and is attenuated.

Energy transport:

We calculate the Poynting vector in exactly the same way as in section 5.4.3. Taking

µ = µ0 in equation (5.83) we then obtain:

〈S〉 = ẑ
k′E2

0

2µ0ω
e−2k′′z, (5.121)

which shows that the intensity of the wave decreases exponentially as it propagates8 with

the absorption coefficient 2k′′.

8Energy dissipation in dielectrics with complex dielectric constant will be studied in Problem Set 3.
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Complex index of refraction:

We define the complex index of refraction ñ such that:

ñ2 = ε̃r. (5.122)

Then equation (5.117) yields:

k̃ = ñ
ω

c
. (5.123)

If we write:

ñ = n′+ in′′, (5.124)

where n′ and n′′ are real, then equation (5.120) becomes:

vϕ =
c

n′
. (5.125)

Therefore, n′ is called the index of refraction.

For gases, the second term on the right hand side in the expression (5.108) of ε̃r is

small compared to unity, so that we can approximate ñ by:

ñ =
√
ε̃r ' 1 +

Ne2

2ε0m

∑
j

fj
ω2
j − ω2 − iωγj

. (5.126)

The real and imaginary parts of ñ are therefore given by:

n′ ' 1 +
Ne2

2ε0m

∑
j

fj

(
ω2
j − ω2

)
(
ω2
j − ω2

)2
+ ω2γ2

j

, (5.127)

n′′ ' Ne2ω

2ε0m

∑
j

fjγj(
ω2
j − ω2

)2
+ ω2γ2

j

. (5.128)

The figure on the left shows n′− 1 (solid

line) and n′′ (dotted line) as a function of

ω in the vicinity of a resonant frequency

ωj . The straight horizontal line is the

zero axis. As pointed out above, disper-

sion of visible light in most transparent

materials (air, glass, etc.) is such that

the index of refraction increases with ω.

This is called normal dispersion. We see

in the figure that this is the case for all

values of ω, except in the neighbourhood

of the resonant frequency, where n′ drops

sharply. This is called anomalous dis-

persion.
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Anomalous dispersion occurs in the region of maximum absorption (the absorption coef-

ficient is 2k′′ = 2ωn′′/c), also called resonant absorption. The width of the absorption

peak is on the order of γj , which is generally small compared to ωj . We see that, for

ω > ωj , n
′ < 1, and therefore vϕ > c from equation (5.125). This is not a concern as only

the phase of the waves, not the energy, propagates at the phase velocity. In addition, we

note that taking into account all the resonant frequencies in the expression of n′ could

bring it above 1.

In the model developed in this section, we have assumed that each electron was at-

tached to an atom or molecule by a spring. It seems like a very crude representation of a

far more complex reality. However, a detailed quantum mechanical analysis gives results

which are remarkably close to those of this simple model. Here, we find that absorption

occurs when the frequency of the wave is close to the natural frequency ωj of the spring.

In reality, absorption occurs when the frequency of the wave is close to that of a transition

between two energy states in the material, like two energy levels of an electron around

a nucleus. This is because an electron can make a transition from an energy level E1 to

a higher energy level E2 only if it absorbs a photon which energy is equal to E2 − E1.

When a wave enters a material, if its frequency matches that of a transition (that is to

say if there is a resonance), it is absorbed by the electrons which then make the transition

between the energy levels. On the other hand, if the frequency of the wave is not close to

any of the transition frequencies in the material, there is no absorption. It is remarkable

that, for the purpose of studying the interaction between wave and matter, the electrons

can be described as being attached to an atom or molecule by a spring with a frequency

that corresponds to a transition between energy levels.

In calculating ε̃r, we have neglected the contribution from the ions. Far from a resonance,

their contribution would be small compared to that of the electrons as their mass is

much larger. However, ions produce anomalous dispersion and resonant absorption at

specific resonant frequencies, for example those associated with the stretching, bending

and rotation of molecules. These frequencies are typically in the infrared or microwave

region of the electromagnetic spectrum.

In a transparent medium like air, glass or water, there are no important resonances

of the molecules in the visible range of frequencies. Therefore, when a beam of visible

light travels through such a medium, there is no absorption and all the waves with the

different frequencies are transmitted. This is why the medium is colorless. In glass,

the resonant frequencies of the atoms are within the UV range, which is why the UV

part of the spectrum is absorbed and we cannot get sunburnt through a window. Waves

with frequencies in the infrared range are also absorbed as these frequencies are close to

those with which atoms in some molecules vibrate. Coloured glasses can be produced

by introducing atoms with mobile electrons which absorb a particular frequency in the

visible spectrum. When a beam of “white” light enters a coloured glass, this frequency

is absorbed and is not present in the beam which is transmitted to an observer, who

therefore sees color. Note that the photons which are absorbed may be re-emitted at the

same frequency, but as they will be radiated in all directions (scattering) they will still be
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missing from the transmitted beam.

5.6.4 Group velocity

In general, a source of electromagnetic waves contains a spread of frequencies. Each

sinusoidal component travels at the phase velocity, and if this velocity depends on the

frequency then there is dispersion. However, if the medium has a real dielectric constant

(and therefore is lossless), it can be shown that the packet as a whole travels with the

group velocity vg = dω/dk. If an energy density is associated with the magnitude of the

wave, it is transported at the group velocity.

In a dissipative medium, the group velocity is defined as vg = dω/dk′, and in general this

is the velocity at which the signal and the energy propagate. However, this is not the case

in a region of anomalous dispersion. To see why, we can write:

vg =

(
dk′

dω

)−1

= c

[
d

dω

(
n′ω
)]−1

= vϕ
1(

1 + ω
n′
dn′

dω

) .
For anomalous dispersion, dn′/dω < 0 and vg may become larger than c and /or negative.

The concept of group velocity becomes meaningless in that case.

5.6.5 Plasma frequency

A plasma is a ionised gas in which positive charges and electrons are unbound. The overall

charge of a plasma is zero. In general, the electromagnetic field generated by the motion

of particles in a plasma affect the other particles. Here, we consider the case of a very

dilute plasma in which there is an external field, so that the external field dominates the

local field.

The equation of motion for an electron in a plasma is:

mẍ = qE(x, t)−mγẋ, (5.129)

which is similar to equation (5.96) but with ω0 = 0, as there is no binding force acting on

the electron. In a plasma, the damping term comes from electron–ion collisions.

Collisionless plasma:

When ω � γ, that is to say the wave frequency is much larger than the electron–ion

collision frequency, we can describe the plasma using the model developed above with ωj =

0 and γj = 0. In principle, there is a free current due to the motion of the electrons. This

has not been taken into account in Maxwell’s equation (5.114). However, this equation

contains a contribution from the polarization current. Therefore, here we attribute all the

properties of the plasma to the dielectric constant ε.

With ωj = 0 and γj = 0, the dielectric constant given by equation (5.108) is real and

can be written as:

εr = 1− Ne2Z

ε0mω2
, (5.130)
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where we have used
∑

j fj = Z. As the contribution of a charge to the dielectric constant

is ∝ 1/m, we neglect the contribution from the positive charges. We define the plasma

frequency ωp as:

ω2
p =

ne2

ε0m
, (5.131)

where n ≡ NZ is the number of electrons per unit volume. Then the dielectric constant

takes the form:

εr = 1−
ω2
p

ω2
. (5.132)

Note that the same dielectric constant is obtained in a dielectric at frequencies much

higher than the highest resonant frequency in the material. This can be seen by taking

ω � max(ωj) in equation (5.108).

With this expression of the dielectric constant, the dispersion relation (5.117) becomes:

k2 = µ0ε0ω
2

(
1−

ω2
p

ω2

)
, (5.133)

which can also be written as:

k =
ω

c

√
1−

ω2
p

ω2
. (5.134)

Therefore, k is purely imaginary, which means that waves cannot propagate, if ω < ωp.

In that case, equation (5.119) gives:

Ẽ(z, t) = Ẽ0e−k
′′ze−iωt, (5.135)

with k′′ = |k|, which shows that the waves are decaying standing waves. Since k′ = 0, the

time–averaged Poynting vector (5.121) is zero. This shows that a wave with frequency

ω < ωp incident on a plasma is completely reflected (rather than absorbed).

The reason why the wave does not propagate in the medium for ω < ωp is the same as the

reason for which there is no electric field in a perfect conductor. As long as the frequency

is small enough (meaning smaller than ωp), the free electrons in the plasma move under

the electric force due to the external field fast enough that they can produce a field which

cancels the external field. When the external field varies too fast (ω > ωp), the electrons

cannot keep up with its variations and the field they produce does not cancel the external

field. Therefore the field in the plasma is non zero.

The group velocity of the wave, that is to say the velocity at which energy propa-

gates, is given by vg = dω/dk. Using equation (5.133), we obtain vg = kc2/ω. Then

equation (5.134) yields:

vg = c

√
1−

ω2
p

ω2
. (5.136)

Of course, this expression is meaningful only for frequencies larger than ωp for which waves

can propagate. Note that, as expected, vg < c. The phase speed is given by:

vϕ =
c

n
=

c
√
εr

=
c√

1− ω2
p

ω2

. (5.137)
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We note that vgvϕ = c2.

Here we have described the properties of the plasma with a dielectric constant ε, so

that we have used equation (5.114):

∇×B̃ = µ0ε
∂Ẽ

∂t
. (5.138)

If instead we describe the plasma as a conductor with a complex conductivity σ̃, then we

have to use the following equation:

∇×B̃ = µ0

(
J̃f + ε0

∂Ẽ

∂t

)
, (5.139)

with J̃f = σ̃Ẽ. As equations (5.138) and (5.139) have to be identical, this yields:

σ̃ = iωε0 (1− εr) = iε0
ω2
p

ω
=

ine2

ωm
. (5.140)

Note that this expression of σ̃ could also be obtained by writing J̃f = −en ˙̃x. From

equation (5.97), we see that ˙̃x = −iωx̃ = −[ie/(mω)]Ẽ, so that J̃f = [ine2/(mω)]Ẽ.

Since σ̃ is purely imaginary, the current is out of phase by 90◦ with the electric field.

Therefore the power per unit volume dissipated by Ohmic heating and averaged over a

period, 〈P 〉 = 〈Jf ·E〉, is zero: there is no transfer of energy between the wave and the

plasma over a period.

Therefore, at high frequencies, there is no loss of wave energy due to ohmic heating,

and the medium acts like a dielectric.

Plasma dominated by collisions:

When ω � γ, we have to retain the damping term. We assume that the damping co-

efficient is the same for all the electrons. With ωj = 0, the dielectric constant given by

equation (5.108) can then be approximated by:

ε̃r = 1 +
ine2

ε0mγω
. (5.141)

The same calculation as in the case of a collisionless plasma then gives:

σ̃ = iωε0 (1− ε̃r) =
ne2

mγ
. (5.142)

Here the conductivity is real, and 〈P 〉 = 〈Jf ·E〉 is non zero.

Therefore, at low frequencies, there is loss of wave energy due to ohmic heating, and

the medium acts like an ohmic conductor.

The dispersion relation (5.117) yields:

k̃2 = µ0ε0ω
2

(
1 +

iσ

ε0ω

)
= µ0ε0ω

2 + iµ0σω, (5.143)

which is identical to the dispersion relation (5.67) derived in conductors with µ = µ0 and

ε = ε0.
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Chapter 6

Electromagnetism and special

relativity

The material contained in this chapter is non–examinable.

This chapter is a very brief introduction to relativistic electrodynamics. The change of

electric and magnetic fields under Lorentz transformations in simple cases are derived.

Electrodynamics in tensor notation and the motion of relativistic particles in electromag-

netic fields will be studied in third year.

6.1 Einstein’s postulates

We have seen in previous chapters that electric and magnetic fields propagating in vacuum

satisfy the wave equation: ∇2E−(∂2E/∂t2)/c2 = 0. Let us assume this equation is satisfied

in an inertial frame (F ) with coordinates (x, y, z, t). If (F ′) is another inertial frame with

coordinates (x′, y′, z′, t′) and moving with (constant) velocity v along the x–direction with

respect to (F ), then the Galilean transformation gives x′ = x − vt, y′ = y, z′ = z and

t′ = t. The wave equation above is then transformed into:

∇′2E−
(

∂2

c2∂t′2
− 2v

c

∂2

c∂t′∂x′
+
v2

c2

∂2

∂x′2

)
E = 0.

This is a wave equation only to zeroth order in v/c. The wave equation describing the

propagation of electromagnetic fields is therefore not form–invariant under a Galilean

transformation. Likewise, applying a Galilean transformation to Maxwell’s equations re-

sults in a set of equations which are not self–consistent.

It is to solve this problem that the Lorentz transformation was first introduced, in some

preliminary form by Voigt in 1887 and in its final form by Lorentz in 1899. In 1905, Einstein

published the theory of special relativity in a paper entitled On the electrodynamics of

moving bodies, in which he formulated two postulates:

• The laws of physics are the same in all inertial frames of reference,
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• The speed of light in vacuum has the same value c in all inertial frames. In other

words, the speed of light is independent of the motion of its source.

Because electromagnetic waves have the same speed c in both frames (F ) and (F ′), the

position of a point on the wavefront should satisfy c2t2 − x2 − y2 − z2 = 0 in (F ) and

c2t′2 − x′2 − y′2 − z′2 = 0 in (F ′). Lorentz transformation is obtained when seeking a

transformation between the sets of coordinates which leaves c2t2 − x2 − y2 − z2 form–

invariant.

The special theory of relativity also explains why the emf obtained when moving a wire

loop in a magnetic field is the same as when changing the magnetic field while keeping

the loop at rest. When the loop moves relative to the magnetic field, a magnetic force is

exerted on the charges in the loop and this results in an emf. For an observer moving with

the loop though, it is the magnetic field which is changing. There is no magnetic force

in that case, and the emf results from the electric field induced by the changing magnetic

field. Therefore, what is viewed as a magnetic effect by an observer is an electric effect for

another observer. As we will see below, magnetic and electric fields are transformed into

each other when going from one inertial frame to another.

Although the theory of special relativity has its origin in electromagnetism, it applies to

all physical phenomena and all forms of interactions. The one exception are large–scale

gravitational interactions, which require the theory of general relativity and invariance

under any mathematical coordinates transformation.

6.2 Review: Lorentz transformations

6.2.1 Transformation of coordinates

We define an event E as something that happens at a particular location (x, y, z) at a

particular time t in an inertial frame (F ). We consider another inertial frame (F ′) which

has a (constant) velocity v along the x–axis with respect to (F ). Lorentz transformations

give the coordinates (t′, x′, y′, z′) of the event E in (F ′) to all orders in v/c:

x′ = γ (x− vt) ,

y′ = y,

z′ = z,

t′ = γ
(
t− v

c2
x
)
,

(6.1)

(6.2)

(6.3)

(6.4)

with:

γ ≡ 1√
1− v2/c2

≥ 1.
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6.2.2 Time dilatation

We consider two events E1 and E2 that occur at the same point (x, y, z) in space as

measured in the frame (F ). The time interval between these events, as measured by an

observer at rest in this same frame, is ∆t0. This time interval between two events occurring

at the same point in space is called proper time. Using equation (6.4), we can calculate

that the time interval between the two events as measured by an observer at rest in the

frame (F ′) is:

∆t′ = γ∆t0 . (6.5)

This shows that the time interval is longer in (F ′) than in the frame where the two events

occur at the same place. This can be expressed by saying that moving clock run slow.

This is called time dilatation.

6.2.3 Lorentz contraction

We consider a stick which is at rest in the frame (F ′) and lies along the x′–axis. Its rest

length, which is also called proper length, is ∆x0 = |x′2 − x′1|, where x′1 and x′2 are the

coordinates of the ends of the stick. An observer at rest in (F ) will measure the length

∆x of the stick by recording the positions x1 and x2 of the ends of the stick at the same

time in the frame (F ). Equation (6.1) then yields:

∆x =
∆x0

γ
. (6.6)

If the stick lies along the y′ or z′ directions, its length is the same in (F ) and (F ′), as

can be seen from equations (6.2) and (6.3). This shows that the length of an object along

the direction of motion is shorter in (F ) than in the frame where it is at rest. This can

be expressed by saying that moving objects are shortened. This is called Lorentz

contraction.

6.2.4 Velocity addition

We consider a particle that moves a distance dx in a time interval dt in the frame (F ). The

velocity of the particle as measured in (F ) is therefore ux = dx/dt. From equations (6.1)

and (6.4), this corresponds to the particle having moved a distance dx′ = γ(dx − vdt)

during a time interval dt′ = γ(dt− vdx/c2) as measured in (F ′), with γ = 1/
√

1− v2/c2.

The velocity in (F ′) is then:

u′x =
dx′

dt′
=

dx− vdt
dt− vdx/c2

=
ux − v

1− uxv/c2
. (6.7)

If the particle moves a distance dy in a time interval dt in (F ), the velocity of the particle

in (F ) is uy = dy/dt. From equations (6.2) and (6.4), the velocity in (F ′) is then:

u′y =
dy′

dt′
=

dy

γ (dt− vdx/c2)
=

uy
γ (1− uxv/c2)

. (6.8)
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6.3 Relativistic electrodynamics

This section borrows from “Electricity and Magnetism”, by Edward M. Purcell and David

J. Morin.

To calculate how the electromagnetic field transforms when measured in different inertial

frames moving with respect to each other, we need to consider distributions of charges

that are either at rest or moving. We then start by discussing the fact that electric charge

does not depend on its motion.

6.3.1 Invariance of electric charge

Because of the difficulty in measuring a charge in motion through the force it exerts on

another charge, we define the electric charge Q in some volume V as being the flux of the

electric field E through a surface Σ enclosing this volume multiplied by ε0:

Q = ε0

"
Σ

E · dΣ. (6.9)

The surface Σ is fixed in a frame (F ), and E is measured at time t and position (x, y, z) in

(F ) by the force on a test charge which is at rest in (F ). It has been found experimentally

that the integral above does not depend on the choice of the surface Σ delimiting the

volume V, whether Q is in motion or not. That is to say, Gauss’s law is still valid when

the charge carriers are in motion.

It has also been shown experimentally that the integral in equation (6.9) is the same in

any inertial frame. In other words, Σ can be at rest in (F ) or in any other inertial frame

(F ′), as long as it encloses the volume in which the charges are located and the force is

measured in the frame in which the surface is at rest, Q defined by equation (6.9) is the

same. This can also be expressed by saying that the charge Q does not depend on the

motion of the charge carriers. This is called the invariance of charge.

6.3.2 Transformation of the electric field

We note E the electric field produced by some charge distribution and measured in an

inertial frame (F ) and E′ the field produced by the same charge distribution but measured

in another inertial frame (F ′).
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We start with a simple case where the electric field

is produced by two sheets of charge of uniform

density +σ and −σ which are at rest in (F ). If the

separation of the sheets is small compared with

their dimensions, then the electric field between

them can be considered to be uniform and is equal

to E = σẑ/ε0, as measured in (F ).

We now consider an inertial frame (F ′) that moves toward the left with a (constant)

velocity v = −vŷ relative to (F ). To an observer in (F ′), the dimensions of the sheets

are l′x = lx and l′y = ly/γ, with γ = 1/
√

1− v2/c2. Since the total charge Q = σlxly is

invariant, the charge density measured from (F ′) is σ′ = Q/(l′xl
′
y), that is to say:

σ′ = γσ . (6.10)

Gauss’s law still applies in (F ′), and because of the symmetries the field is still perpendic-

ular to the sheets in this frame. Therefore, we obtain E′ = σ′ẑ/ε0, which yields E′ = γE.

Note that here the field is perpendicular to the direction of motion.

Let us now consider the case where the sheets are perpendicular to the y–axis, that is to say

in the (x, z)–plane, so that the electric field is in the y–direction, parallel to the direction of

motion. In that case, both lx and lz are unchanged when going from the frame (F ) to the

frame (F ′). Only the separation of the sheets is contracted. Therefore, the surface charge

density measured in (F ′) is the same as that measured in (F ), σ′ = σ, which yields E′ = E.

The relations above have been obtained for a very simple charge distribution. However,

the field at a given point contains all the information which is relevant to the theory of

electromagnetism. Once the field is given in some inertial frame, we ought to be able to

predict how it transforms in other frames without having to know anything about the

details of the source of the field. We can therefore extrapolate from the above calculation

that, if we note E‖ and E⊥ the components of the electric field parallel and perpendicular,

respectively, to the velocity v, produced by a charge distribution stationary in (F ), and

measured in (F ), then the field measured in (F ′) has components E′‖ and E′⊥ parallel

and perpendicular to v, respectively, such that:

E′‖ = E‖ ,

E′⊥ = γE⊥ .

(6.11)

(6.12)

This result is valid only if the charges are at rest in (F ).
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6.3.3 Transformation of the electric and magnetic fields

In the section above, we assumed that the charges were at rest in (F ), and therefore there

was no magnetic field. We are now going to consider a system in which the charges move

and produce a magnetic field.

Transformation of Ez and Bx:

We assume that the sheets of surface

charge are moving with a constant veloc-

ity v0 = v0ŷ relative to an inertial frame

(F ). The rest frame of the charges is

therefore the inertial frame which moves

with velocity v0 relative to (F ).

If we draw an imaginary line segment of length L parallel to the x–axis on the sheet with

the surface charge density σ, we see that the number of charges that cross this line segment

during a time interval dt is σLv0dt. The current through this line segment is therefore

dI = σLv0. As the surface current density is K = dI/L, we have a surface current density

K = σv0ŷ on the lower sheet and −K on the upper sheet.

The electric field between the plates measured by an observer in (F ) is E = Ezẑ with:

Ez = σ/ε0. (6.13)

Here σ is the surface charge density measured by an observer at rest in (F ) and, according

to equation (6.10), we have:

σ = γ0σ0, (6.14)

where σ0 is the surface charge density measured in the rest frame of the charges and

γ0 = 1/
√

1− v2
0/c

2. Using Ampère’s law, it can be shown that the magnetic field between

the two currents sheets as measured in (F ) is B = Bxx̂ with:

Bx = µ0K = µ0σv0. (6.15)

We now consider an inertial frame (F ′) that moves

with a (constant) velocity v = vŷ with respect to

(F ), and we want to calculate the electric field

E′ and the magnetic field B′ as measured by an

observer at rest in (F ′).
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Using equation (6.7), the velocity v′0 of the sheets measured in the frame (F ′) is:

v′0 =
v0 − v

1− v0v/c2
ŷ. (6.16)

According to equation (6.10), the surface charge density measured in (F ′) is σ′ = σ0γ
′
0,

with γ′0 = 1/
√

1− v′20/c2. Using equation (6.14), this yields σ′ = σγ′0/γ0. Using equa-

tion (6.16), it can be shown that γ′0/γ0 = γ(1− v0v/c
2), with γ = 1/

√
1− v2/c2. There-

fore:

σ′ = σγ(1− v0v/c
2). (6.17)

The surface current density in the frame (F ′) is K′ = σ′v′0ŷ on the lower sheet and −K′

on the upper sheet (note that v′0 is either positive or negative). Using equations (6.16)

and (6.17), we obtain:

K′ = σγ (v0 − v) ŷ. (6.18)

In (F ′), we have E′ = E′zẑ with E′z = σ′/ε0 and B′ = B′xx̂ with B′x = µ0K
′. This yields:

E′z = γ

(
σ

ε0
− v

ε0µ0c2
µ0σv0

)
= γ (Ez − vBx) , (6.19)

B′x = γ

(
µ0σv0 − µ0ε0v

σ

ε0

)
= γ

(
Bx −

v

c2
Ez

)
. (6.20)

Note that these equations are the same as the Lorentz transformations (6.1) and (6.4)

with x and t being replaced by Ez and Bx, respectively.

Transformation of Ex and Bz:

We have obtained transformations for Ez

and Bx. To know how Ex and Bz trans-

form, we now consider sheets which are

perpendicular to the x–axis, with still

v0 = v0ŷ and v = vŷ.

As the velocity of the sheets is still parallel to the plates, we have the same results as before

but with Ez replaced by Ex and Bx replaced by −Bz. Therefore, using equations (6.19)

and (6.20), we obtain:

E′x = γ (Ex + vBz) , (6.21)

B′z = γ
(
Bz +

v

c2
Ex

)
. (6.22)
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Transformation of Ey:

If now we put the sheets perpendicular to the y–axis, we have E = Eyŷ but there is no

magnetic field. From the results of section 6.3.2, we know that the component of the

electric field parallel to the motion is unchanged, so that:

E′y = Ey. (6.23)

Transformation of By:

Finally, to know how By trans-

forms, we consider a long solenoid

around the y-axis which is at rest

in (F ). The magnetic field pro-

duced by this solenoid and mea-

sured in (F ) is B = Byŷ with

By = µ0nI, where I is the current

in the wire and n is the number of

turns of wire per unit length.

If we note L the length of the solenoid in the frame (F ) and N the total number of turns

of wire, then n = N/L. In the frame (F ′) , the length of the solenoid is contracted and

equal to L′ = L/γ (see eq. [6.6]). Therefore, the number of turns of wire per unit length

as measured in (F ′) is n′ = N/L′ = γn.

If dq is the amount of charge that passes a point at rest on the solenoid during the

time interval dt, then the current I measured in (F ) is dq/dt. This time interval as

measured in (F ′) is dt′ = γdt (see eq. [6.5]). Therefore, the current measured in (F ′) is

I ′ = dq/dt′ = I/γ. The magnetic field produced by the solenoid and measured in (F ′) is

B′ = B′yŷ with B′y = µ0n
′I ′ = µ0nI, so that:

B′y = By. (6.24)

Transformation rules for E and B:

Here again, although the relations above have been obtained assuming simple charge and

current distributions, they should hold whatever the source of the fields are. We can

therefore summarise the transformations rules:

E′x = γ (Ex + vBz) , E′y = Ey, E′z = γ (Ez − vBx)

B′x = γ
(
Bx −

v

c2
Ez

)
, B′y = By, B′z = γ

(
Bz +

v

c2
Ex

)
,

(6.25)

(6.26)

where the unprimed quantities are measured in an inertial frame (F ) and the primed

quantities are measured in another inertial frame (F ′), which moves with velocity v = vŷ

with respect to (F ).
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These relations can be written in a more compact form by using the following notations:

E = E‖ + E⊥,

B = B‖ + B⊥,

E′ = E′‖ + E′⊥,

B′ = B′‖ + B′⊥,

where the subscripts ’‖’ and ’⊥’ denote the components of the fields parallel and perpen-

dicular to v, respectively, both in (F ) and (F ′), with v being the velocity of (F ′) with

respect to (F ). Then equations (6.25) and (6.26) become:

E′‖ = E‖, E′⊥ = γ (E⊥ + v×B⊥)

B′‖ = B‖, B′⊥ = γ

(
B⊥ −

1

c2
v×E⊥

)
,

(6.27)

(6.28)

We consider two interesting special cases:

• If B = 0 (at a particular point) in (F ), then B′ = γ(v/c2) (−Ezx̂ + Exẑ) =

(v/c2) (−E′zx̂ + E′xẑ) , which can also be written under the form:

B′ = − 1

c2
v×E′ . (6.29)

• If E = 0 (at a particular point) in (F ), then E′ = γv (Bzx̂−Bxẑ) = v (B′zx̂−B′xẑ),

which can also be written under the form:

E′ = v×B′ . (6.30)
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Chapter 7

Transmission lines and waveguides

In A.C. circuits, current and voltage are assumed not to vary along the leads connecting

different components. Any capacitance, inductance, resistance, gain, etc., in the circuit

are modelled as idealised lumped (discrete) electrical components, instead of being continu-

ously distributed along the circuit. It is assumed that voltage and current are transmitted

instantaneously between these components along perfectly conducting wires.

However, in reality, the wires themselves have parasitic, or stray impedances. For

example, there is a non zero capacitance between any two wires conducting the current

in a circuit. There is also a self–inductance in the wires when a varying magnetic field

propagates through them, as it induces and emf. These stray impedances, which are

distributed along the whole length of the wires, cannot always be modelled as lumped

components.

At high frequencies, when the wavelength of the signal propagating along a wire be-

comes comparable to or smaller than the length of the wire, the wave nature of the signal

cannot be ignored, as it results in different phases at different locations in the wire. Said

another way, the finite speed with which the signal propagates has to be taken into ac-

count at high frequencies, when voltage and current vary on a timescale comparable to or

shorter than the time it takes for the signal to propagate along the wire. When this is the

case, stray impedances along the wires cannot be ignored as they determine the speed of

the signals along the wires, the phase shift between voltage and current and reflections at

the end of the wires. Therefore, idealised A. C. circuits cannot be used to transport high

frequency signals over large distances. Instead, we use transmission lines or waveguides.

A transmission line is made of two parallel conductors which have a fixed cross section

anywhere along the length of the line and are separated by a dielectric. It is a two–

port network that connects an input circuit which generates the signal to an output load.

Although electromagnetic fields cannot penetrate far into good conductors, they can be

guided across long distances by them.

However, at very high frequencies (typically when the wavelength of the signal becomes

comparable to the transverse size of the line), there is significant energy loss in a trans-

mission line, due to the conductors, the dielectric and radiation. Therefore, a waveguide,

which consists of a hollow metal tube, is preferred.
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7.1 Transmission lines

7.1.1 Equivalent circuit of a transmission line

A transmission line consists of a conductor called an active wire that carries the (time–

varying) voltage / current from the input circuit to the load, and another conductor that

acts as a return path and is usually Earthed.

• The time–varying current in the conductors produces a magnetic field which flux

through the area delimited by the wires (when the circuit is closed) varies with time.

This induces an emf in the circuit and a related (self–)inductance. We note L the

inductance per unit length.

• As a potential difference is maintained between the two conductors, a charge is

induced on them and therefore there is a capacitance between them. We note C the

capacitance per unit length.

• The conductors have a finite conductivity, and therefore energy is dissipated. We

note R the resistance per unit length associated with this finite conductivity. If the

conductors are perfect, their conductivity is infinite and R = 0.

• Finally, as the dielectric filling the space between the conductors is not perfectly in-

sulating, there is a current flowing from one conductor to the other. We note G the

conductance per unit length of the dielectric. If the dielectric is a perfect insulator,

its resistance is infinite and G = 0.

The equivalent circuit of a length δz

of a transmission line is represented

on the figure. The full transmission

line can be modelled as an infinite

series of such elementary circuits.

In many situations of interest, energy losses in the conductors and the dielectric are small

and can be neglected. Therefore, hereafter, we will only consider lossless transmission

lines, that is to say R = 0 and G = 0.

7.1.2 The telegrapher’s equations and characteristic impedance

Single–wire transmission lines made of one conductor with the Earth as the return path

were used at the end of the nineteenth century for telegraph transmission. The theory of

such transmission lines was developed in the 1880s by Oliver Heaviside, who established

the so–called telegrapher’s equations which govern the propagation of voltage and current

through the conductors.
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The telegrapher’s equations:

If δz � λ, where λ is the wave-

length of the wave propagating

through the transmission line, then

Kirchoff’s laws can be applied for

the elementary circuit.

Note that, in a lossless line, the current in the return path is exactly the same as in the

active wire.

We have:

V (z + δz, t) = V (z, t)− VL = V (z, t)− Lδz∂I(z, t)

∂t
, (7.1)

I(z + δz, t) = I(z, t)− IC = I(z, t)− Cδz∂V (z + δz, t)

∂t
, (7.2)

Using V (z + δz, t)− V (z, t) = [∂V (z, t)/∂z]δz, and similarly for I, yields:

∂V (z, t)

∂z
= −L∂I(z, t)

∂t
, (7.3)

∂I(z, t)

∂z
= −C∂V (z + δz, t)

∂t
. (7.4)

The term on the right–hand side in equation (7.4) can be written as:

∂V (z + δz, t)

∂t
=

∂

∂t

(
V (z, t) +

∂V (z, t)

∂z
δz

)
.

When δz → 0, the second term in the parenthesis tends towards 0, so that equations (7.3)

and (7.4) become:

∂V

∂z
= −L∂I

∂t
,

∂I

∂z
= −C∂V

∂t
,

(7.5)

(7.6)

where all the quantities are evaluated at z and t. These are the telegrapher’s equations for

a lossless transmission line.

Wave propagation:

Taking the time derivative of equation (7.5) yields:

∂

∂z

(
∂V

∂t

)
= −L∂

2I

∂t2
.

By replacing ∂V/∂t using equation (7.6), we then obtain:

1

C

∂2I

∂z2
= L

∂2I

∂t2
,

115



and similarly for V . These are wave equations for the voltage and current:

∂2V

∂t2
=

1

LC

∂2V

∂z2
,

∂2I

∂t2
=

1

LC

∂2I

∂z2
,

(7.7)

(7.8)

which show that V and I propagate through the transmission line with the speed:

v =
1√
LC

. (7.9)

The fact that the speed at which signals propagate is determined by L and C is not

surprising, as the propagation timescale is regulated by the time taken to accumulate

charges on the capacitance and to build up currents across the inductance.

Characteristic impedance:

We consider a (imaginary) transmission

line with infinite length. A generator

delivers a voltage which varies with fre-

quency ω. As the line is infinite, there

is only a wave travelling in the plus z–

direction, with no reflection.

We note V+ and I+ the voltage and the current on the line:

V+(z, t) = V0 cos(ωt− kz),

I+(z, t) = I0 cos(ωt− kz),

where k is the wavenumber. From equations (7.7) and (7.8), we obtain the dispersion rela-

tion k = ω
√
LC = ω/v. Substituting the above expressions for V+ and I+ in equation (7.5)

then yields kV0 = LωI0, that is to say V0/I0 =
√
L/C. We define the characteristic

impedance Z0 of the line as the ratio V+/I+ for a wave travelling along the plus z–

direction. Therefore we have:

Z0 =

√
L

C
. (7.10)

Note that V/I for a wave travelling along the minus z–direction is −Z0. The characteristic

impedance is resistive rather than reactive, even when the conductors and dielectric are

perfect. From the point of view of the generator, an infinite line transmitting the energy

it supplies is equivalent to a resistor R = Z0 dissipating the same energy.
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7.1.3 Parallel wire transmission line

Common type of transmission lines include coaxial line, parallel–plate (or strip) line1 and

two–wire line. The type of transmission line to be used depends on the cost, the frequency

of the signal, the distance over which is has to be transported, how twisted the line has

to be along the way, etc. . .

Here we study a two–wire transmis-

sion line, made of two identical cylin-

drical conductors of radius a sepa-

rated by a distance d� a. The wires

are embedded in a dielectric of per-

mittivity ε and permeability µ.

The figure on the left shows a cross

section of the transmission line. The

potential difference which is main-

tained between the two conductors in-

duces a surface charge density ±σ on

them.

The distribution of charges at the surface of the cylinders is not axially symmetric, but this

can be neglected as a � d. Therefore, the electric field produced by each of the cylinder

is radial (with respect to cylindrical coordinates) and can be calculated using Gauss’s law.

The electric field and potential produced by a cylinder of radius a and surface charge den-

sity σ at a distance ρ > a from its axis are E(ρ) = aσ/(ερ) and V (ρ) = −(aσ/ε) ln ρ+ V0,

where V0 is a constant.

The potential due to the two conductors at the point P shown on the figure above is then

given by:

V (r) = −aσ
ε

[ln r − ln(d− r)] + V ′0 =
aσ

ε
ln
d− r
r

+ V ′0,

for a < r < d−a, where V ′0 is a constant. Therefore, the potential difference between the

surfaces of the two conductors is:

∆V ≡ V (a)− V (d− a) =
2aσ

ε
ln
d− a
a

.

The charge on a length l of the conductors is ±Q = ±2πalσ, and the corresponding

capacitance is Cl = Q/∆V . Therefore, the capacitance per unit length (l = 1) is:

C =
πε

ln(d/a)
, (7.11)

where we have used d� a.

1See Problem Set 4
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To calculate the (self–)inductance, we make a closed circuit by joining the two conductors.

Using Ampère’s law, we can calculate that the magnetic field produced by a current I

flowing along a cylinder of radius a is B = µI/(2πρ), where ρ > a is the distance from the

axis of the cylinder. This field is azimuthal.

The magnetic field due to the two cylinders

at a distance r between a and d−a from the

axis of one of the cylinders and in the plane

containing the two axes is:

B =
µI

2π

(
1

r
+

1

d− r

)
.

The flux of B through the surface delimited by the closed circuit is:

φ = l

ˆ d−a

a
Bdr =

µIl

π
ln
d− a
a

,

where l is the width of the circuit. The (self–)inductance of the circuit is Ll = φ/I.

Therefore, the inductance per unit length (l = 1) is:

L =
µ

π
ln(d/a) , (7.12)

where we have used d� a.

The speed of signals propagating through a two–wire transmission line is given by

equation (7.9) and is therefore equal to:

v =
1
√
µε
, (7.13)

which is the speed of light in the dielectric in which the transmission line is embedded.

This is actually a very general result: for any lossless transmission line, whatever the

shape and the size of the conductors, the speed at which signals propagate is always equal

to the speed of light in the material in which the conductors are embedded.
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Two–wire transmission lines can have different geometry

depending on what they are used for. Parallel conduc-

tors separated by insulating spacers (a) are often used

as power lines or rural telephone lines, whereas parallel

conductors separated by a ribbon made of a low–loss

dielectric (b) are used for connecting televisions to their

antennas. However, these types of transmission lines

have radiation losses due to the radiating fields produced

by time–varying currents in the conductors. Losses can

be reduced by using a twisted pair which consists of two

conducting wires twisted together (c). Twisted lines are

used for telephone lines of Local Area Networks (LAN).

7.1.4 Reflection by the load

We consider a transmission line with

length l and characteristic impedance

Z0 which is terminated by a load with

impedance Zout. A generator delivers a

voltage which varies with frequency ω.

In general, at least part of the signal delivered by the generator is reflected by the load,

so that the general expressions for the voltage and current are, using complex notations

(where complex quantities are denoted with a tilde):

Ṽ (z, t) = V+ej(ωt−kz) + Ṽ−ej(ωt+kz), (7.14)

Ĩ(z, t) = I+ej(ωt−kz) + Ĩ−ej(ωt+kz), (7.15)

where V+ and I+ are the amplitude of the incident waves whereas Ṽ− and Ĩ− are the

amplitude of the reflected waves. Here V+ and I+ are real but the amplitude of the

reflected waves may be complex if reflection induces a phase shift. We have k = ω/v. As

has been shown at the end of section 7.1.2, I+ = V+/Z0 and Ĩ− = −Ṽ−/Z0. Therefore, we

obtain:

Ṽ (z, t) = V0ej(ωt−kz) + Γ̃V0ej(ωt+kz), (7.16)

Ĩ(z, t) =
V0

Z0
ej(ωt−kz) − Γ̃V0

Z0
ej(ωt+kz), (7.17)

where we have defined V0 ≡ V+ and the reflection coefficient Γ̃ ≡ Ṽ−/V+. In general, Γ̃ is

complex.
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Reflection coefficient:

At the end of the line, that is to say at z = 0, we must have Ṽ /Ĩ = Zout, which yields:

Z0
1 + Γ̃

1− Γ̃
= Zout.

The reflection coefficient is therefore given by:

Γ̃ =
Zout − Z0

Zout + Z0
. (7.18)

The characteristic impedance Z0 is real but Zout is in general complex.

Input impedance:

The input impedance Zin of the line is the impedance seen at the beginning of the line,

that is to say at z = −l:

Zin =
Ṽ

Ĩ

∣∣∣∣∣
z=−l

. (7.19)

Equations (7.16) and 7.17 yield:

Zin = Z0
ejkl + Γ̃e−jkl

ejkl − Γ̃e−jkl
.

Using equation (7.18), we then obtain:

Zin = Z0
Zout cos(kl) + jZ0 sin(kl)

Z0 cos(kl) + jZout sin(kl)
, (7.20)

which in general is a complex number. If kl = nπ, where n is an integer, which is

equivalent to l = nλ/2, we have Zin = Zout. In that case the transmission line acts as a

simple conducting wire.

7.1.5 Impedance matching and quarter–wave transformer

There is no reflection (Γ̃ = 0) when Zout = Z0. In that case, all the power delivered by

the generator is carried to the load by the wave travelling in the plus z–direction and is

absorbed by the load. This is called impedance matching.

When the line is matched, Zin = Z0 = Zout.

By contrast, the wave is completely reflected and no power is transmitted to the load when

|V−| = |V+|, that it to say |Γ| = 1. Writing Zout = α + jβ, equation (7.18) then implies

(α−Z0)2 = (α+Z0)2, and therefore α = 0. For the wave to be completely reflected, Zout

then needs to be purely imaginary, or in other words the line has to be terminated by a

purely reactive impedance.
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In many situations, it is desirable to achieve impedance matching, and this can be

done by using a quarter–wave transformer.

Let us consider, for example, the situation where a broadcast station uses a lossless trans-

mission line TL0 with characteristic impedance Z0 between the transmitter and a tower

mounted antenna. The antenna impedance is R (purely resistive). In general, some power

is reflected back to the transmitter.

To match the antenna to TL0, that is to say

cancel any reflection at the end of TL0, we

add between them another lossless transmis-

sion line TL1 with characteristic impedance

Z1 and length λ/4, where λ is the wave-

length of the signal in TL1.

We now calculate the value of Z1 that gives impedance matching. At the beginning of

TL1, the input impedance is given by equation (7.20), in which we replace Z0 by Z1 and

Zout by R. Using kl = (2π/λ)λ/4 = π/2, we obtain Zin = Z2
1/R.

The load as seen by TL0 is now Zin. Therefore, to match the antenna to TL0, we need

Z0 = Zin, which yields Z1 =
√
Z0R .

Since TL1 is only a quarter–wavelength at a single

frequency ν0, it gives an exact matching only at

this frequency, and an approximate matching only

in a narrow–band of frequencies around this value.

This is illustrated on the figure in the left, which

shows the reflection coefficient |Γ| at the end of

TL0 as a function of frequency ν.

To obtain a broad–band matching, we may use a

cascade of λ/4 line sections with a characteristic

impedance that varies gradually from one section

to the next. Note however that the reflection co-

efficient is not exactly zero for all frequencies in

the band, as illustrated on the figure (which cor-

responds to 4 quarter–wave line sections).

Another way to match the circuit in a narrow–band of frequencies is to insert a short–

circuited stub of line in parallel at some point on the line2.

2See Problem set 4
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7.2 Waveguides and resonant cavities

The material contained in this section is non–examinable.

A waveguide is a hollow metallic cylinder with no end surfaces. When end surfaces are

present, the cylinder is called a cavity. We consider a cylinder with a perfectly conducting

surface and filled with a non–dissipative medium. In this situation, there is no energy loss

as the waves propagate along the axis of the cylinder.

7.2.1 Generalities about waveguides

Adopting complex notations, the electric and magnetic fields inside the cylinder satisfy

Maxwell’s equations:

∇ · Ẽ = 0, (7.21)

∇ · B̃ = 0, (7.22)

∇×Ẽ = −∂B̃

∂t
, (7.23)

∇×B̃ = µε
∂Ẽ

∂t
, (7.24)

where ε and µ are the permittivity and permeability, respectively, of the medium inside

the cylinder.

As we have seen before, these equations lead to the wave equation satisfied by both Ẽ and

B̃:

∇2Ẽ− µε∂
2Ẽ

∂t2
= 0, (7.25)

∇2B̃− µε∂
2B̃

∂t2
= 0. (7.26)

We use a Cartesian coordinate system with the z–axis being the axis of the cylinder. The

unit vectors in the x–, y– and z–directions are denoted x̂, ŷ and ẑ, respectively. We look

for waves with frequency3 ω that propagate along the z–axis:

Ẽ(x, y, z, t) = Ẽ(x, y)ei(kz−ωt), B̃(x, y, z, t) = B̃(x, y)ei(kz−ωt). (7.27)

We will limit ourselves to situations where the wavenumber k is real.

We separate the fields into longitudinal components Ẽz, B̃z and transverse components

Ẽt = Ẽxx̂ + Ẽyŷ, B̃t = B̃xx̂ + B̃yŷ.

3Waves with a more general time–dependence can always be writen as a sum over monochromatic

waves. Let us consider a function F (r, t), with r the position vector, that satifies the wave equation

∇2F − µε∂2F/∂t2. F (r, t) has the Fourier integral representation F (r, t) = 1
2π

´∞
−∞ F (r, ω)e−iωtdω with

the inverse transformation F (r, ω) =
´∞
−∞ F (r, t)eiωtdt. Then the Fourier transform F (r, ω) satisfies the

wave equation (∇2 + k2)F (r, ω) = 0 with k =
√
µεω. We can therefore solve for F (r, ω) and obtain F (r, t)

using the Fourier integral representation.
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Equation (7.23) yields:

∂Ẽz
∂y
− ikẼy = iωB̃x, ikẼx −

∂Ẽz
∂x

= iωB̃y,
∂Ẽy
∂x
− ∂Ẽx

∂y
= iωB̃z.

The first two equations can be recast under the form:

ikẼt + iωẑ×B̃t =∇tẼz, (7.28)

where ∇t is the transverse component of the ∇ operator.

Similarly, equation (7.24) yields:

ikB̃t − iµεωẑ×Ẽt =∇tB̃z. (7.29)

From this equation we can write::

iωkẑ×B̃t = −iµεω2Ẽt + ωẑ×∇tB̃z,

which we substitute into equation (7.28) to obtain:

Ẽt =
i

µεω2 − k2

(
k∇tẼz − ωẑ×∇tB̃z

)
. (7.30)

Similarly, substituting ẑ×Ẽt obtained from equation (7.28) into equation (7.29) yields:

B̃t =
i

µεω2 − k2

(
k∇tB̃z + µεωẑ×∇tẼz

)
. (7.31)

Equations (7.30) and (7.31) show that Ẽ and B̃ are entirely determined once the longitu-

dinal components Ẽz and B̃z are known.

To calculate Ẽz and B̃z themselves, we solve the z–component of the wave equations (7.25)

and (7.26) that can be written under the form:

[
∇2
t + µεω2 − k2

]
Ẽz = 0,[

∇2
t + µεω2 − k2

]
B̃z = 0,

(7.32)

(7.33)

where ∇2
t = ∂2/∂x2 +∂2/∂y2 is the transverse part of he Laplacian operator. In addition,

Ẽ and B̃ satisfy the boundary conditions at the surface of the waveguide. Since the surface

is a conductor, there is no electric field inside. If the magnetic field inside the surface were

zero to start with, then it remains so as implied by ∇ × Ẽ = −∂B̃/∂t. The boundary

conditions (5.8) and (5.9) then yield, just outside the surface:

Ẽ
‖

= 0,

B̃
⊥

= 0.

(7.34)

(7.35)

Equation (7.32) with the boundary condition (7.34) or, equivalently, equation (7.33)

with the boundary condition (7.35), constitutes an eigenvalue problem. The values of
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µεω2−k2 that are permitted form a spectrum of eigenvalues, and the associated solutions

Ẽz (or, equivalently, B̃z) form an orthogonal set of waveguide modes.

It is convenient to consider the following modes:

• Transverse Electric (TE) wave, which has Ẽz = 0 and B̃z 6= 0,

• Transverse Magnetic (TM) wave, which has B̃z = 0 and Ẽz 6= 0,

• Transverse Electric and Magnetic (TEM) wave, which has both Ẽz = 0 and B̃z = 0.

In general, a guided wave is a superposition of these different modes.

In a hollow wave guide of the type we consider here, TEM waves cannot exist. This can

be shown by supposing such a wave exists. Then substituting B̃z = 0 in equation (7.23)

yields ∇t×Ẽt = 0. This implies it exists a scalar potential V such that Ẽt = −∇tV . In

addition, substituting Ẽz = 0 in equation (7.21) yields ∇t · Ẽt = 0. Therefore, V satisfies

Laplace’s equation ∇2
tV = 0. As the surface of the waveguide is a conductor, it is an

equipotential, that is to say we have the boundary condition V = V0 at the surface. The

function V which is equal to V0 everywhere inside the waveguide satisfies Laplace’s equa-

tion and the boundary condition. As the solution to Laplace’s equation is unique given a

boundary condition at the surface, it is V = V0. This implies that Ẽ = 0 everywhere in

the waveguide, that is to say there is no wave.

Sketch of the field lines for TE

and TM modes.

(from

http://www.allaboutcircuits.com/

textbook/alternating-current/

chpt-14/waveguides/)
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7.2.2 TE waves in a rectangular wave guide

An important application of the results ob-

tained in the previous section is the propaga-

tion of TE waves in a rectangular wave guide,

which cross section is shown on the figure.

To calculate B̃z(x, y), we have to solve the wave equation (7.33). We use separation of

variables: B̃z(x, y) = F̃ (x)G̃(y). Substituting into equation (7.33) and dividing by F̃ G̃,

we obtain:

1

F̃

d2F̃

dx2
+

1

G̃

d2G̃

dy2
+
(
µεω2 − k2

)
= 0.

As the first term on the left–hand–side can only depend on x, and the second term only

on y, their sum is a constant only if they are both constant. We therefore have:

1

F̃

d2F̃

dx2
= Cx,

1

G̃

d2G̃

dy2
= Cy, (7.36)

where Cx and Cy are two constants that may be complex and that satisfy:

Cx + Cy = −µεω2 + k2. (7.37)

We write Cx = −k2
x, where kx may be complex. Then solving for F̃ in (7.36) we obtain

F̃ (x) = A1eikxx+A2e−ikxx, where A1 and A2 are two (complex) constants. The boundary

conditions (7.34) and (7.35) yield Ẽz = 0 and B̃x = 0 at x = 0 and x = a. Substitut-

ing into equation (7.31), this implies that ∂B̃z/∂x = 0 at x = 0 and x = a. Therefore,

A1 − A2 = 0 and A1eikxa − A2e−ikxa = 0. We cannot have A1 = A2 = 0, as that would

imply Bz = 0. As we are looking for solutions which are TE waves, that is to say with

Ez = 0, and since TEM waves are not supported in a hollow wave guide (see previous

section), we cannot have Bz = 0. This means that A1 = A2 6= 0 and eikxa − e−ikxa = 0.

Writing kx = α + iβ, where α and β are real, we obtain
(
e−βa − eβa

)
cos(αa) = 0 and(

e−βa + eβa
)

sin(αa) = 0. This can only be achieved by having β = 0, so that kx = α

is real, and sin(αa) = 0. Therefore, αa = kxa = mπ, where m is a positive integer, and

F̃ (x) = 2A1 cos(kxx).

Similarly, the boundary conditions (7.34) and (7.35) yield Ẽz = 0 and B̃y = 0 at y = 0

and y = b. Substituting into equation (7.31), this implies that ∂B̃z/∂y = 0 at y = 0 and

y = b. As above, we then obtain G̃(y) = 2A3 cos(kyy) with kyb = nπ, n being a positive
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integer, and where A3 is a (complex) constant.

The solutions to equation (7.33) which satisfy the boundary conditions at the surface

of the waveguide are then:

B̃z(x, y, z, t) =

∞∑
m=0

∞∑
n=0

TEmn(x, y)ei(kz−ωt), (7.38)

where the sum is over the so–called TEmn modes:

TEmn = Cmn cos
(mπx

a

)
cos
(nπy

b

)
, (7.39)

with Cmn being a (complex) constant. Reflections at the conducting surface produce waves

that interfere and add to give waves with standing patterns in the x– and y–directions

while propagating in the z–direction. The other components of Ẽ and B̃ can be obtained

from equations (7.30) and (7.31).

Substituting Cx and Cy into equation (7.37) yields the wavenumber k that occurs for a

given frequency ω:

k2 = µεω2 − π2

(
m2

a2
+
n2

b2

)
. (7.40)

As can be seen from this equation, for a given mode TEmn, there is a cutoff frequency ωmn

such that only waves with ω > ωmn can propagate. We have:

ωmn =
π
√
µε

√
m2

a2
+
n2

b2
. (7.41)

If ω < ωmn, k is imaginary and the wave decays exponentially. Such modes are called

evanescent.

We can write the wavenumber k, phase velocity vϕ = ω/k and group velocity vg = dω/dk

(at which energy travels) in terms of the cutoff frequency:

k =
√
µε
√
ω2 − ω2

mn , vϕ =
1
√
µε

1√
1− (ωmn/ω)2

, vg =
1
√
µε

√
1− (ωmn/ω)2 .

Since the wavenumber k is always smaller than the free–space value
√
µεω, the wavelength

in the guide is always larger than the free-space value. Also, the phase velocity vϕ is always

larger than the free–space value 1/
√
µε.

A pointed out above, the TEmn modes, being solutions of an eigenvalue problem, form

an orthogonal set. Therefore, any signal with frequency ω can be written as a sum over

m and n of TEmn modes. If a signal with frequency ω is fed into the waveguide, only the

terms in the sum over m and n which have ωmn < ω will propagate. The other terms

will decay exponentially. For a non–monochromatic signal, there will be a superposition

of waves with different frequencies (obtained by doing a Fourier transform of the signal),

each of these waves being themselves a sum of TEmn modes.
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The TE10 mode:

If a > b, we see that the lowest cutoff frequency is obtained for m = 1 and n = 0, that

is to say the lowest TE mode is TE10. It can be shown that the only modes that satisfy

Maxwell’s equations and the boundary conditions in a rectangular waveguide are TE and

TM modes. Therefore, any wave propagating along the axis of a rectangular waveguide is

a combination of the TE and TM modes that can propagate. Besides, the TM mode with

the lowest cutoff frequency is TM11, and the associated cutoff frequency is larger than that

of TE10. The lowest cutoff frequency of all possible modes is therefore that of TE10 and

is ω10 = π/(a
√
µε). This means that a rectangular waveguide can only propagate signals

with frequencies ω > π/(a
√
µε), or with wavelengths λ = 2π/(

√
µεω) < 2a.

In general, when energy is fed into a waveguide in order to be carried across some distance,

it is preferable to have only the lowest order mode propagate into the waveguide. In that

case indeed, higher modes (with higher frequencies, or equivalently lower wavelengths)

produced by distorsion of the field cannot propagate. In other words, noise decays expo-

nentially along the guide.

This is usually achieved by using a rectangular waveguide with a = 2b. In such a wave-

guide, for the TE modes, ω20 = ω01 = 2ω10 and all the other cutoff frequencies are larger

than ω20. For TM11, the cutoff frequency is 2.2 times that of the TE10 mode. Therefore,

there is a range of frequencies from ω10 to 2ω10 for which the TE10 mode is the only prop-

agating mode. As an example, let us consider a radar wave with a wavelength λ = 3 cm

and ν = c/λ = 1010 Hz. If a rectangular waveguide filled with air (so that µε = 1/c2) has

a = 2 cm and b = 1 cm, then ν10 = ω10/(2π) = c/(2a) = 7.5 × 109 Hz and the second

lowest cutoff frequency is 1.5×1010 Hz. As only ν10 is smaller than ν, only the TE10 mode

can be propagated. From equation (7.40), we calculate that the wavelength of the TE10

mode in the waveguide is λ = 2π/k ' 4.5 cm and the velocity at which energy flows down

the waveguide is vg ' 2× 108 m s−1.

Using equations (7.38) and (7.39) , we obtain the z–component of the magnetic field

corresponding to the TE10 mode:

B̃z(x, y, z, t) = C cos
(πx
a

)
ei(kz−ωt), (7.42)

where C is a (complex) constant. Equation (7.30) with Ẽz = 0 yields the electric field:

Ẽ =
iaωC

π
sin
(πx
a

)
ei(kz−ωt)ŷ, (7.43)

where we have used µεω2 − k2 = (π/a)2 (eq. [7.40]). We can write:

i sin
(πx
a

)
=

1

2

(
eiπx/a − e−iπx/a

)
,

so that equation (7.43) becomes:
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Ẽ =
aωC

2π

(
ei(kz+πx/a−ωt) − ei(kz−πx/a−ωt)

)
ŷ, (7.44)

which shows that the TE10 mode is the superposition of two plane waves with wavevectors

k1 = (π/a)x̂ + kẑ and k2 = −(π/a)x̂ + kẑ.

These two waves reflect off the conducting

surface and interfere to give a wave with

a standing pattern in the x–direction while

propagating in the z–direction.

7.2.3 Resonant cavities

A resonant cavity, or cavity resonator, is obtained by adding end surfaces in a waveguide.

Reflection of the waves on these surfaces produce a standing pattern along the axis of

the cylinder, so that the wave is “trapped”. The cavity supports resonant modes which

oscillate at resonant frequencies with a larger amplitude than non–resonant modes. Reso-

nant cavities are similar to LC circuits but are used at higher frequencies (GHz) to select

specific frequencies from a signal or produce waves with a specific frequency.

The simplest cavity for which we can calcu-

late the resonant frequencies is the rectan-

gular cavity obtained by closing the rectan-

gular waveguide described above.

The waves in the cavity no longer propagate in the z–direction but are standing waves.

As the boundary conditions in the x– and y–directions are the same as in a waveguide,

we may use equations (7.38) and (7.39) for B̃z and write:

B̃z(x, y, z, t) =
∞∑
m=0

∞∑
n=0

Cmn cos
(mπx

a

)
cos
(nπy

b

)
[K1 sin(kz) +K2 cos(kz)] e−iωt,

(7.45)
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where the z–dependence is that appropriate to standing waves, with K1 and K2 being

constants. The boundary condition (7.35) leads to B̃z = 0 at z = 0 and z = d, which

implies K2 = 0 and kd = lπ, where l is an integer. Equation (7.45) then becomes:

B̃z(x, y, z, t) =

∞∑
m=0

∞∑
n=0

∞∑
l=0

Ψnml(x, y, z)e
−iωt, (7.46)

with:

Ψnml(x, y, z) = Cmnl cos
(mπx

a

)
cos
(nπy

b

)
sin

(
lπx

d

)
, (7.47)

where Cnml is a constant. For TE fields, Ẽz = 0, and Maxwell’s equations (7.21)–(7.24)

enable Ẽt and B̃t to be calculated. Given the expression (7.47) for B̃z, the z–component

of the wave equation (7.26) implies that ω can only take some particular values called

resonant frequencies and defined by:

ωmnl =
π
√
µε

√
m2

a2
+
n2

b2
+
l2

d2
. (7.48)

There is an infinite number of resonant frequencies that form a discrete set. As the waveg-

uide, the cavity is usually used so that only the low mode is excited, that is to say the

mode with the lowest frequency, called the fundamental frequency. Equation (7.48) shows

that the fundamental frequency is such that the associated wavelength is twice the largest

dimension of the cavity. Therefore, resonant cavities are used for microwaves, which have

wavelengths in the range 1 mm to 1 m.

Let us consider an electromagnetic signal like a pulse. It is composed of a range of

frequencies which can be obtained by doing a Fourier transform of the time domain rep-

resentation of the signal. If some of these frequencies are close enough to some resonant

frequencies in the cavity, then the corresponding modes are excited when the signal is fed

into the cavity (through a small aperture for example). In practice, resonant cavities are

designed in such a way that the energy in the resonant modes is dissipated only after a

very large number of oscillations. Therefore, resonant cavities can be used to store energy

at a particular frequency, and tuning of the frequency can be made by changing the length

of the cavity (using a piston).
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Appendix A

Radiation

This chapter is off syllabus.

In general, electromagnetic waves are associated with a non zero Poynting vector which

describes the transport of energy by the wave. The power passing through the surface of

a sphere at infinity is equal to the flux of the Poynting vector through the sphere. When

this is zero, the energy is not carried away to infinity. We define as radiation the energy

flux that propagates to infinity.

If the electric and magnetic fields fall off as the inverse square of the distance, the Poynting

vector falls off as the inverse distance to the fourth power, and the power through a sphere

at infinity is zero. There is no radiation in that case.

Systems radiating energy include oscillating dipoles, as we will see in this chapter. They

are very important as they enable communication through big distances. Electromag-

netic radiation is what enables us to see the stars, communicate using satellites, receive

information from the early universe through the microwave background, etc. . .

A.1 Power radiated by an accelerated point charge

It can be shown that the Poynting vector associated with the field of a point charge moving

with constant velocity v is propotional to vE2. As E varies inversely with the square of

the distance, there is no radiation emitted by a charge moving at constant speed. The

energy associated with the field is carried along by the charge when it moves, but does not

escape to infinity. As we are going to show here, only accelerated charges radiate energy.

To calculate the energy radiated by an accelerated point charge, we follow the deriva-

tion given by Purcell (in an approach first proposed by J. J. Thomson). We consider a

particle of charge q which has been moving with constant velocity v0 � c along the x–axis

between the times t = −∞ and t = 0. At t = 0, the particle is at x = 0 and starts to

decelerate. It comes to a stop at time t = τ . If a is the (constant) deceleration, then the

velocity of the particle is v = −at + v0, so that τ = v0/a. The position of the particle

between t = 0 and t = τ is x = −at2/2 + v0t, so that when the particle stops it is located

at x = v0τ/2. We now consider the electric field due to this point charge at time T � τ .
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(From E. Purcell & D. Morin, Electricity and Magnetism)

The information that the particle starts decelerating propagates from x = 0 at speed c.

Therefore, at time t = T , this information has reached the distance cT from the point

x = 0. Only observers within the sphere of radius cT centered on x = 0 know that the

particle has decelerated. This means that for the observers beyond this sphere (region I

on the figure), the electric field is that of a charge which is still moving at speed v0. If

the charge had not decelerated, it would be at x = v0T at time t = T . Observers in

region I therefore see the electric field produced by a charge at x = v0T and moving with

velocity v0. (This is because the particle had been moving with constant velocity ever since

t = −∞, so the whole space has been filled with field lines following the charge moving

at this constant velocity). The electric field produced by a charge moving at constant

velocity points away from the instantaneous position of the charge Therefore, the electric

field at point C on the figure, for example, is along the line segment CD.

The information that the particle has stopped propagates from x = v0τ/2 at speed c.

Therefore, at time t = T , this information has reached the distance c(T − τ) from the

point x = v0τ/2. This means that, for the observers within the sphere of radius c(T − τ)

centered on x = v0τ/2 (region II on the figure), the electric field is that of a charge at

rest at x = v0τ/2. Therefore, at point B on the figure, the electric field is along the line

segment AB and is equal to EB = q/[4πε0c
2(T − τ)2]. The point B has been chosen so

that the angle θ between AB and the x–axis is the same as that between CD and the

x–axis. Note that, since v0 � c and τ � T , x = v0τ/2� cT , that is to say the separation

between the points located at x = 0 and at x = v0τ/2 is very small compared to the

other distances in the problem, and can be neglected. Therefore, EB ' q/(4πε0R
2) with

R = cT .
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We are now going to calculate the electric field in the transition region, which is the spher-

ical shell of thickness cτ .

The field line CD is produced by a moving

particle, and therefore the density of field

lines in the cone (C2) around the x–axis de-

creases as we approach the axis (see Prob-

lem 1 of Problem set 4). However, if v0 � c,

as we assume here, this can be neglected.

Therefore, as the two cones (C1) and (C2)

have the same opening angle, they carry the

same amount of flux from the charge q.

This implies that the flux of E through the

surface (Σ) is zero, where (Σ) is delimited by

the bases of (C1) and (C2). This can be sat-

isfied only if the line segments AB and CD

are part of the same field line, connected by

the segment BC.

As can be derived from the geometry of the problem, we then have Eθ/Er = v0T sin θ/(cτ),

where Er and Eθ are the radial and transverse components of the electric field in the shell,

respectively. As the perpendicular component of E is continuous, we have Er = EB, which

yields:

Eθ =
qv0 sin θ

4πε0c2τR
,

were we have used T = R/c. As v0/τ = a, we obtain:

Eθ =
qa sin θ

4πε0c2R
. (A.1)

We obtain the very important result that Eθ is propotional to 1/R, and not to 1/R2 as

the field produced by a static charge. Since Er ∝ 1/R2, we see that, when R → ∞,

or equivalently T → ∞, E → Eθ and E is transverse. There is an associated magnetic

field Bϕ = Eθ/c which is perpendicular to both R̂, the unit vector in the radial direction,

and E. Since EθBϕ ∝ 1/R2, the Poynting vector through the sphere of radius R is finite

and energy is radiated away. For this reason, we call Eθ and Bϕ the radiation fields and

denote them Erad and Brad. The parts of the fields that fall off faster than 1/R with

distance dominate near the charge and are called near–zone fields. The Poynting vector

when R→∞ is:

S =
1

µ0
Erad×Brad =

E2
rad

µ0c
R̂ = ε0cE

2
radR̂ =

q2a2 sin2 θ

16π2ε0c3R2
R̂. (A.2)
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The energy per unit time (power) dP crossing an infinitesimal area dΣ located at R and

perpendicular to R̂ is dP = SdΣ, that is to say:

dP =
q2a2 sin2 θ

4πε0c3

dΣ

4πR2
. (A.3)

The differential solid angle dΩ subtended by dΣ at the origin is given by dΩ = dΣ/R2.

Therefore, the power radiated into an infinitesimal solid angle is:

dP =
q2a2 sin2 θ

4πε0c3

dΩ

4π
. (A.4)

The figure shows the radiation pattern, that

is to say the curve drawn using polar coordi-

nates (r, θ) with r = dP/dΩ ∝ sin2 θ. Note

that there is no energy radiated along the

direction of motion.

To obtain the total power Prad radiated

through the sphere of radius R at time T ,

we integrate dP over dΣ = R2 sin θdθdϕ,

or equivalently over dΩ = sin θdθdϕ. This

yields:

Prad =
q2a2

8πε0c3

ˆ π

0
sin3 θdθ.

We have:
ˆ π

0
sin3 θdθ =

ˆ π

0

(
sin θ − sin θ cos2 θ

)
dθ =

[
− cos θ +

1

3
cos3 θ

]π
0

=
4

3
,

so that:

Prad =
q2a2

6πε0c3
. (A.5)

This is called Larmor’s formula. As can be seen from this equation, Prad does not

depend on R or T , that is to say the power crossing the surface of a sphere with radius R

at time T is the same as the power crossing the surface of a sphere with different radius at

some other time. This is a statement of energy conservation. Although we have obtained

Larmor’s formula by considering a particle with a constant acceleration, it correctly gives

the instantaneous rate of energy radiated by a charge with any acceleration, constant

or variable. Therefore, is states that any accelerated charged particle radiates a power

proportional to the square of its acceleration.
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This formula is only valid for non–relativistic motions, that is to say for particles moving

with velocity v � c. However, Larmor’s formula is Lorentz invariant. This is because,

when going from an inertial frame to another, energy and time transform in the same way.

If dU ′ is the energy carried away by the radiation emitted between times t′ = 0 and t′ = dt′

measured in an intertial frame (F ′) in which the particle is at rest, then transforming to

an inertial frame (F ) in which the velocity of the particle is v, we have dU = γdU ′ and

dt = γdt′. Therefore, the power radiated by the charge is dU/dt = dU ′/dt′. If the particle

moves relativistically in (F ), we can then transform to an intertial frame (F ′) where the

particle is at rest instantaneously, and apply Larmor’s formula in that frame.

A.2 Electric dipole radiation

A.2.1 Oscillating dipole

We consider a physical dipole in which the positive charge q has a harmonic motion along

the axis of the dipole.
The position of the charge q is given by z(t) = d sinωt, and

the dipole moment is p(t) = qz(t) ẑ. As we have seen in chap-

ter 1, the electric field produced by a dipole with moment p is

proportional to p. Therefore, this oscillating dipole produces

an electric field which varies with frequency ω, and therefore

also a magnetic field which varies with the same frequency.

As one of the charges oscillates, this field is a radiation field

far away from the dipole. A detailed calculation would show

that the radiation zone is at distances r � c/ω, that is to say

r � λ , where λ = 2πc/ω is the wavelength of the electro-

magnetic field produced by the dipole.

We are going to calculate the power radiated by this dipole using the results of the previous

section. These apply only when the velocity of the charge, which is ż = ωd cosωt, is small

compared to c. This means ωd � c, or d� λ . Note that the conditions r � λ and

λ � d imply that r � d , which is the condition required for the system to be a perfect

dipole. Such an oscillating dipole is called a Hertzian dipole.

The acceleration of the charge is z̈(t) = −ω2z(t). Using equation (A.4), we obtain that

the power radiated per unit solid angle in the direction θ is:

dP

dΩ
=
q2ω4z2(t) sin2 θ

16π2ε0c3
=
ω4p2(t) sin2 θ

16π2ε0c3
.

Averaged over one period of oscillations, this yields:〈
dP

dΩ

〉
=
ω4p2

0 sin2 θ

32π2ε0c3
, (A.6)

where p0 = qd, The total power radiated by the dipole is given by Larmor’s formula (A.5):

Prad =
ω4p2(t)

6πε0c3
,
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and averaged over a period of oscillations:

〈Prad〉 =
ω4p2

0

12πε0c3
. (A.7)

A.2.2 Antennas

An antenna is used to convert electric power into

electromagnetic radiation, or vice versa. We consider

a linear antenna which extends from −d/2 to +d/2

along the z–axis, with a small gap at z = 0 where

a transmitter delivers current. The current in the

antenna is given by: I(z, t) = I(z) cosωt with:

I(z) = I0

(
1− 2|z|

d

)
.

We note ρ(z, t) the volume charge density in the antenna. The continuity (charge conser-

vation) equation gives −∂ρ/∂t = ∇ · J, where J = (I/s)ẑ is the current density, with s

being the cross section of the wire. This yields −∂λ/∂t = ∂I/∂z, where λ(z, t) = ρ(z, t)s

is the charge per unit length in the antenna. Using the above expression for I, we obtain:

λ(z, t) = ±2I0

ωd
sinωt,

where the upper (lower) sign applies for z > 0 (z < 0).

The dipole moment of this charge distribution is:

p(t) = ẑ

ˆ d/2

−d/2
zdq,

where dq = λ(z, t)dz is the charge contained in an infinitesimal length dz at position z

along the wire (see eq. [1.36]). Therefore:

p(t) =
2I0

ωd
sinωt

(
−
ˆ 0

−d/2
zdz +

ˆ d/2

0
zdz

)
ẑ =

I0d

2ω
sinωt ẑ.

The antenna is then equivalent to the oscillating dipole studied above, assuming d� λ ,

where λ is the wavelength of the electromagnetic field produced by the antenna. Therefore,

the time average over a period of the power radiated per unit solid angle in the direction

θ by the antenna is given by equation (A.6), after replacing p0 by I0d/(2ω), that is to say:〈
dP

dΩ

〉
=

I2
0

128π2ε0c
(kd)2 sin2 θ, (A.8)
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where k = ω/c = 2π/λ is the wavenumber. The time average over a period of the total

power radiated by the antenna is given by equation (A.7):

〈Prad〉 =
I2

0

48πε0c
(kd)2. (A.9)

Note that antennas used to emit radio waves have a length which is not small compared

to the wavelength of the electromagnetic field they produce. Therefore, the power they

emit cannot be calculated using the formulas above.

A.3 Thomson scattering

When an electromagnetic wave is incident on a charged particle, it exerts a force on the

particle. As the electric and magnetic fields vary periodically with time, the force induces

oscillations of the particle which then behaves like an oscillating dipole. This dipole radi-

ates energy in directions other than the direction of incidence: there is scattering of the

electromagnetic wave by the particle. If the motion of the particle is non relativistic, the

frequency of the radiation emitted by the particle is the same as that of the incident wave.

This is called Thomson scattering.

We consider a particle of mass m and charge

q located at the origin O of the coordi-

nate system. We assume that the inci-

dent wave is polarized in the z–direction

and propagates in the y–direction, so that

the incident electric field can be written as

E(y, t) = E0 cos (ky − ωt) ẑ, where k is the

wavenumber.

The force acting on the particle is F = q (E + v×B), where v is the velocity of the par-

ticle. As B = E/c, we have vB = (v/c)E � E for non relativistic motion, and therefore

the magnetic force can be neglected. Then F ' qE, which results in an acceleration of the

particle a = qE(0, t)/m = a0 cos (ωt) ẑ, where we have defined a0 = qE0/m. The particle

therefore oscillates around O along the z–axis with the frequency ω.

Using equation (A.4), we obtain the time average over a period of the power radiated per

unit solid angle in the direction θ by the particle:

dP

dΩ
=

(
q2

4πε0mc2

)2
ε0E

2
0c

2
sin2 θ. (A.10)

A.3.1 Thomson scattering cross section

We define the scattering cross section σ as:

Scattered energy per unit time = σ × (incident energy flux).
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As the energy flux is an energy per unit time and per unit area, it follows that σ is a

surface. It is the equivalent area of the incident wavefront through which the energy per

unit time is equal to the total power re–radiated by the particle. In other words, it is the

effective area of the incident beam which is scattered.

We also define the cross section dσ/dΩ per unit solid angle as:

Scattered energy per unit time per unit solid angle = dσ/dΩ × (incident energy flux).

It is the effective area of the incident beam which is scattered per unit solid angle.

Here we use quantities which are time averaged over a period of oscillations. The incident

energy flux is then the time–averaged Poynting vector for the incident wave, and this is

equal to ε0E
2
0c/2 (see eq. [4.53]). This yields:

dσ

dΩ
=

dP/dΩ

ε0E2
0c/2

=

(
q2

4πε0mc2

)2

sin2 θ. (A.11)

If the particle is an electron with charge q = −e, then the total cross section is called

Thomson scattering cross section and is noted σT:

σT =

ˆ π

0

dσ

dΩ
2π sin θdθ =

8π

3

(
e2

4πε0mc2

)2

. (A.12)

We define the classical electron radius r0 as:

r0 =
e2

4πε0mc2
. (A.13)

If we distribute the charge e at the surface of a sphere, then r0 is the radius of the sphere

whose electrostatic potential energy e2/(4πε0r0) equals the rest mass mc2 of the electron.

We can write the Thomson cross section under the form:

σT =
8π

3
r2

0 . (A.14)

When spheres of negligible radii are scattered by a sphere of radius r0, the cross section is

πr2
0. Therefore, an electron which scatters radiation behaves like a hard sphere of radius

∼ r0.

A.3.2 Thomson, Compton, resonant and Rayleigh scattering

Thomson scattering, as described in this section, is the elastic scattering of electromag-

netic radiation by a free charged particle. The frequency of the radiation emitted by the

particle is the same as that of the incident wave.

Compton scattering is an inelastic scattering of electromagnetic radiation by a free

charged particle. The frequency of the radiation emitted by the particle is not the same

as that of the incident wave.
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In a quantum mechanical description of scattering, electromagnetic waves are made of

photons. When a photon is scattered by a particle, it exchanges momentum and energy

with the particle. The energy transferred to the particle makes it recoil. This effect is

negligible as long as the energy of the incident photon (hν) is small compared to the rest

mass energy of the particle (mc2), in which case we are in the Thomson scattering regime.

However, when hν becomes comparable to mc2, recoil of the free particle is no longer

negligible and we are in the Compton scattering regime.

Resonant and Rayleigh scattering are the elastic scattering of an electromagnetic wave

by an electron bound to a nucleus in an atom . The electron can be viewed as being bound

to the nucleus by a spring with spring constant mω2
0, where m is the electron’s mass and

ω0 is the natural frequency at which the electron oscillates if perturbed. When an incident

wave with frequency ω hits the atom, it forces oscillations of the electron at the frequency

ω. If ω � ω0, the electron behaves as if it were free, and we are in the Thomson scattering

regime. The case ω ' ω0 corresponds to resonant scattering, and is associated with a very

large cross section. If ω � ω0, the electron becomes a small radiating dipole and we are in

the regime of Rayleigh scattering. In this case, the energy radiated by the electron varies

like ω4 ∝ 1/λ4 (see problem 6 in Problem Set 4).

Scattering of a wave by an electron bound to an atom is described quantum mechanically

as the absorption of a photon by the atom which excites the electron to a higher energy

state. Scattering occurs when the atom drops down to its original energy state and re–

emits the photon. If the atom collides with another atom while falling down to its original

energy state and transfers the energy of the photon as kinetic energy to the colliding atom,

there is absorption of the incident wave instead of scattering.
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