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Introduction

- Qubit transition frequency independent of magnetic field at 146G
- We obtain a coherence time of T2* = 50(10)s
- Initialised in 4S

1/2
 (F = 4, M = +4) by several cycles of 397σ+ optical

   pumping and microwave “reclaiming” π-pulses (shown in blue)
- Qubit prepared using microwave π-pulses (shown in green)
- Readout achieved by “shelving” one qubit state in 3D5/2
- State preparation and measurement (SPAM) error of 6.8(5)x10-4 achieved
- See [Harty et al. PRL (2014)]

In order to build a scalable quantum computer, accurate qubit state preparation and single-shot readout, long coherence times, and high-fidelity single- and two-qubit gates must all be possible. We present results that
fulfil these requirements using 43Ca+ trapped-ion qubits. We use near-field microwave control in a surface-electrode ion trap to achieve a single-qubit gate fidelity of 99.9999%. Using a novel dynamically-decoupled gate
method, we achieve a two-qubit gate fidelity of 99.7%. We also achieve a coherence time of T2* ≈ 50s and a state preparation and measurement (SPAM) fidelity of 99.93%. In addition to these results, we present preliminary
designs for a next-generation experimental system. Technical improvements include cryogenic cooling, surface cleaning, passive microwave field nulling, and ion shuttling.

Current trap design

- Uses oscillating currents in an rf surface trap to apply near-field
   microwaves to ions
- Features integrated microwave circuitry [Allcock et al. APL (2013)]
- Capable of performing both single- and two-qubit gates

Single-qubit gates
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- Randomised benchmarking used to measure average single-qubit
   gate error
- Average gate error of 1.0(3)x10-6 [Harty et al. PRL (2014)]

Entanglement generation

- We generate entanglement by inducing different geometric
   phases on different parts of the wavefunction
   (|±> ≡ (|↓>±|↑>)/√2)
- Operation achieved using near-field microwave scheme
   proposed in [Ospelkaus et al. PRL (2008)]
- Scheme first demonstrated at NIST [Ospelkaus et al. Nature
   (2011)]

- Plot shows the different two-qubit
   populations as a function of microwave
   detuning from sidebands
- Dashed line indicates detuning used for
   gate
- Compared with simulations to calibrate
   gate parameters

Detuning scansTwo-qubit gate results

- Bichromatic field with frequencies near first red and blue
   sidebands as for Mølmer-Sørensen gates
- Dynamical decoupling with a σx carrier drive protects
   against fluctuations in AC Zeeman shift (Δ↑-Δ↓)
- Carrier drive Rabi frequency of 4kHz compared with 436Hz
   for single-ion sideband
- π[y] pulse at midpoint to refocus qubit populations

Cryogenic vacuum system design

- RF electric and microwave magnetic field minima fixed by trap
   geometry, so need to ensure alignment during design process
- HFSS simulations give precision error of <100nm (see plots)
- Trap fabrication tolerances expected to give misalignment of <1μm
- Corresponding ratio B’/B of ~1x105 m-1 for ion at RF null,
   compared to 9x103 m-1 for current trap

Simulation resultsNew trap design

- Single meander-shaped electrode for entangling microwave signals
   (see [Carsjens et al. App. Phys. B (2014)] and [Wahnschaffe et al. arXiv (2016)]
   for previous work on this idea)
- Second microwave electrode for single-qubit gates and small adjustments to
   two-qubit gate field
- DC electrodes for transporting between three trapping zones and separating
   ions in the central zone
- Asymmetric RF electrode geometry

- Cryogenic cooling with Janis ST-400 cryostat
- Cold finger thermally connected to inner chamber
   with copper braid to minimise vibrational coupling
- Inner chamber attached to base of vacuum chamber
   with macor supports to minimise thermal load

850 π 

ion trap

inner chambercold finger

copper braid

PCBs

SMA connections

macor supports

- Two-qubit gate fidelity of 99.7(1)% [Harty et
   al. arXiv (2016)]
- See also work done with far-field
   microwaves at Siegen [Khromova et al. PRL
   (2012)] and Sussex [Weidt et al. arXiv (2016)]

Two-qubit gate scheme

Next-generation system
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