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14. Statistical study of a fluid

In a gas, the potential energy of interactions between molecules is small compared to their
kinetic energy. At high temperatures and low densities, the regime where the ideal gas
approximation is valid, it is even negligible. However as the temperature decreases and/or
the density increases the contribution of the interaction energy to the total energy becomes
more important and the properties of the gas start to deviate from that of an ideal gas.
Finally, when the interaction energy becomes comparable to the kinetic energy, the gas
condenses and becomes a liquid.

The Van der Waals model allows to understand this transition from gas to liquid, even
though it relies on a rather crude mean field theory and should only be expected to yield
qualitative results. This is because it possesses the necessary properties to describe the
physical phenomena at play in real gases and liquid-gas phase transitions.

14.1 General case

Consider a mono-atomic⇤ fluid made of N o 1 identical particles of mass m, contained
in a recipient of volume V and kept at temperature T . We can calculate the macroscopic
properties of this system using classical mechanics and the partition function:

Z =
1

N !

1

h3N

Z
· · ·

Z
d3p1 · · · d3pN d3r1 · · · d3rN exp

✓
�

H

kBT

◆
(14.1)

where

H =
1

2m

NX

i=1

~pi
2 + U(~r1, · · · , ~rN )

⇤Strictly speaking, the mono-atomic hypothesis is not necessary to derive the EOS of real gases but will
simplify our life considerably as it allows us to ignore the internal degrees of freedom and non-spherical
shape of molecules that we have previously discussed in the lectures devoted to the statistical mechanics of
simple systems.
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is the Hamiltonian of the system, complete with its kinetic (first term) and potential (second
term) energy parts. The integration over all momenta ~pi, i.e. the kinetic part of Z, is the
same as for the ideal gas, so

Z =
1

N !

✓
mkBT

2⇡~2

◆3N/2 Z
· · ·

Z
d3r1 · · · d3rN exp

✓
�
U(~r1, · · · , ~rN )

kBT

◆
(14.2)

i.e. when the potential energy U is negligible in front of kBT ,
R
· · ·

R
d3r1 · · · d3rN = V

N

and Z is the partition function of the ideal gas. If we want to do better and take into
account the interaction between gas particles, we thus have to determine U .

Suppose that the total interaction energy is the sum of the pairwise interaction energies
between particles†, u(k~ri � ~rjk), i.e. that

U(~r1, · · · , ~rN ) =
1

2

i 6=jX

i,j

u(k~ri � ~rjk)

where the 1/2 factor arises from the need not to double count the interaction energy between
particles i and j. Having made this approximation, we still have to determine u(r). In
principle one could calculate it from Quantum Mechanics, but in practice it is a very
difficult proposition, especially if the molecules involved are complex. However, one can
show that at large distances, r, the interaction energy between particles varies like r

�6,
which corresponds to an attractive “Van der Waals” force that scales like r

�7.

R The physical origin of these Van der Waals forces is the following: a charge fluctuation
in a molecule creates an electric dipole (or more generally multipole) which polarizes
a neighbouring molecule. In turn, the dipole (or multipole) induced on this second
molecule acts on the polarization of the first. Note that even though we talk about
large distances for r, these forces are short-range interactions between neighbouring
molecules.

At short distances (when r becomes of the order of the size of the molecules themselves),
the molecules exert intense repelling forces upon one another. Essentially this is because the
Pauli exclusion principle which rules their electrons prevent molecules from inter-penetrating.
This behaviour at short and large distances can be captured by a potential u(r) of the
shape given by Fig.14.1, which has two important characteristics: the position r0 of its
minimum, and the value at this minimum �u0 < 0. Their order of magnitude is ⇠ 1 Å for
r0 and a few 10�2 eV for u0 (i.e. a few 100 K for u0/kB).

Practically, one uses empirical analytic forms with the correct shape of u(r). Arguably
the most famous one, which we plot in Fig.14.1 is called the Lennard-Jones potential:

uLJ(r) = u0

⇣
r0

r

⌘12
� 2

⇣
r0

r

⌘6
�

(14.3)

which has only two parameters, u0 and r0 and intercepts the x-axis (i.e. uLJ = 0) at
r1 = r0/21/6 ' 0.89 r0.

†Such an approximation may look natural enough to make, but the main interaction between molecules
is caused by the electron motion they induce within one another when they are close, so this could easily be
influenced by the presence of a third molecule in the vicinity. In other words, the approximation assumes
that three body interactions are weak which is fine for a gas but much less so for a liquid ...
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Figure 14.1: The Lennard-Jones potential describing the behaviour of the Van der Waals
forces between molecules in a real gas.

14.2 The Van der Waals model

Even with the approximation previously made for the interaction energy, evaluating the
volume integral present in the partition function of the system (equation (14.2)) is extremely
difficult. So we are going to use a still cruder approximation, albeit one that we have
already met before when discussing the statistical mechanics of solid crystals: the mean
field approximation.

14.2.1 Mean field approximation

Consider a given molecule. One can say that, at a zeroth order approximation, the
N � 1 o 1 other molecules which are almost uniformly distributed in the volume V , are
felt by this molecule, as an almost continuous cloud. Neglecting the perturbation of this
cloud caused by the presence and motion of the molecule, this latter will have a potential
energy ue↵(~r) which will depend only on its position and not on the positions of the other
N � 1 particles anymore. In other words, in this approximation, each particle moves in
a mean field created by all the other particles, and the system behaves as an ensemble
of independent particles, just as the vibrations of atoms in a crystal were turned into an
ensemble of independent oscillators.

The total potential energy of the system thus becomes a sum of terms‡, each of which
involves the coordinates of a single particle, i.e.

U(~r1, · · · , ~rN ) =
1

2

NX

i=1

ue↵(~ri)

and the partition function given by equation (14.2) becomes

Z =
1

N !

✓
mkBT

2⇡~2

◆3N/2 Z
d3r exp

✓
�
ue↵(~r)

2kBT

◆�
N

(14.4)

‡
ue↵(~r) is obtained by averaging

PN
i=2 u(k~r � ~rik) over the positions ~r2, · · · , ~rN of the N � 1 other

molecules, so u(k~ri � ~rjk) is present in both ue↵(~ri) and ue↵(~rj), hence the factor of 1/2 in the following
formula for U(~r1, · · · , ~rN ).
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14.2.2 Effective potential

The mean field approximation neglects the correlations between molecules, i.e. it considers
that the molecules are uniformly distributed in the recipient volume. In these conditions, the
effective potential ue↵(~r) = ue↵,0 ought to be constant over the entire volume V . However,
we have seen that this approximation breaks down when the distance between molecules
approaches the molecule size, r1 (see Fig.14.1). On these small distances, individual
molecules do not feel an average attractive force created by an homogeneous cloud, but a
very strong repulsive force from their immediate neighbour. To crudely account for this
effect, we will simply consider that a fraction V0/V of the recipient volume is forbidden
to any given molecule, due to the presence of the others. This allows us to calculate the
integral in the formula (14.4) as:

Z
d3r exp

✓
�
ue↵(~r)

2kBT

◆
= (V � V0) exp

✓
�

ue↵,0

2kBT

◆

Our task now boils down to evaluating the constants V0 and ue↵,0.
Let us start by the excluded volume, V0. The minimum allowed distance between two

particles is almost equal to r1, as the interaction potential is extremely steep at smaller
distances (for the Lennard-Jones potential it diverges in r

�12, see Fig.14.1). So when two
molecules approach one another, the volume forbidden to one of them due to the presence
of the other is 4⇡r31/3. As there are N(N � 1)/2 possible pairs of molecules, the total
volume excluded simply is N(N �1)/2⇥4⇡r31/3 ' 2⇡N2

r
3
1/3, if we assume that V0 ⌧ V so

that the spheres of exclusion of any pair of molecules almost never intersect. The excluded
volume per particle, is therefore V0 = 2⇡r31/3⇥N ⌘ bN , i.e. V0 is proportional to N , with
a proportionality constant, b, which only depends on the nature of the gas and is of the
order of four times the proper volume, v0 ⌘ 4⇡/3⇥ (r1/2)3, of a molecule.

Let us now turn to ue↵,0 and take for origin of our coordinate system the position of
a given particle. As previously mentioned, the others are uniformly distributed in space,
except that they cannot get closer to the origin than r1. The number n(~r) d3r of particles
contained in an infinitesimal volume d3r around ~r is therefore:

n(~r) =

(
0 if r < r1
N�1
V�V0

'
N

V
if r > r1

The potential energy of the particle located at the origin of the coordinate system is thus:

ue↵,0 =

Z
u(~r)n(~r) d3r =

N

V

Z +1

r1

4⇡r2u(r) dr

with u(r) < 0 over the entire integration domain (see Fig. 14.1). In other words, ue↵,0 < 0
and independent of ~r, as expected. An order of magnitude for ue↵,0 is the number of
particles times the minimal value of the potential between two particles, N ⇥ (�u0), times
the ratio of the interaction volume

§ and the total volume, V . This ratio is of the order of
a few v0/V where “few” depends on the exact model used for u(r). In a general manner,
one therefore writes ue↵,0 = �2aN/V where a > 0 is a constant of order a few u0v0 which
depends on the nature of the fluid.

R The important point in this calculation is that u(r)
r!1
���! 0 fast enough forR

4⇡r2u(r) dr to converge. This is obviously true for Van der Waals forces, where
u(r) / r

�6 at large distances, but not for charged particles where u(r) / r
�1.

§This is the volume of a sphere whose radius is equal to the range of the potential u(r).
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Exercise 14.1 Calculate ue↵,0, a and b as a function of u0 and v0 in the specific case of
the Lennard-Jones potential given by equation (14.3).
Ans: ue↵,0 = �64Nu0v0/(3V ), a = 32u0v0/3 and b = 4v0. ⌅

Plugging the general expressions obtained for V0 and ue↵,0 in the formula (14.4) for the
partition function we finally obtain

Z =
V

N

N !

✓
mkBT

2⇡~2

◆3N/2 ✓
1�

bN

V

◆
exp

✓
aN

kBTV

◆�
N

(14.5)

which is the partition function of the system in the Van der Waals approximation. Note
that is is equal to the partition function of the ideal gas, multiplied by a corrective term
(in between square brackets and raised to the power N).

14.3 Thermodynamical quantities

Now that we have derived the partition function of the system in the Van der Waals
approximation, we can use it to obtain thermodynamical quantities of interest, and in
particular the famous Van der Waals equation of state. We therefore start with the
calculation of the Helmholtz free energy of the system, F , as we know this is the one which
provides the most direct route to the EOS. We have, using expression (14.5) for Z and
Stirling’s formula:

F = �kBT lnZ

= �NkBT


3

2
ln

✓
mkBT

2⇡~2

◆
+ 1

�
�NkBT ln

✓
V � bN

N

◆
�

aN
2

V
(14.6)

where the first term on the right hand side and the �NkBT ln(V/N) part of the second
term combine to give the Helmholtz free energy of a mono-atomic ideal gas, and the �bN

part of the second term and the third term are Van der Waals corrections. Note that, as
required, F is extensive, F/N only depends on the ratio N/V , not on N and V separately.

To get the EOS, we then calculate the system pressure:

p = �

✓
@F

@V

◆

T,N

=
NkBT

V � bN
�

aN
2

V 2

which is known as the Van der Waals equation of state, and more commonly written as:
✓
p+

aN
2

V 2

◆
(V � bN) = NkBT (14.7)

Once again this EOS is similar to that of the ideal gas, with a smaller volume available
(V � bN) instead of V to account for the finite size of the molecules, and a reduced pressure
(by an amount aN

2
/V

2) because of the attraction between molecules at large distances.
The internal energy, is

U = �
@ lnZ

@�
=

3

2
NkBT �

aN
2

V
(14.8)

which is, once again, the internal energy of a mono-atomic ideal gas with a correction term
(second term on the right hand side) that accounts for the potential energy of the particles
in a real gas (N ⇥ ue↵,0/2). On the other hand, the heat capacity at constant volume,
CV = (@U/@T )V,N = 3NkB/2, is the same as that of an ideal gas.
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R • Note that the second term in the internal energy for a Van der Waals gas depends
on V and not on T . It is therefore not correct to say that the internal energy of a
real gas is a function of T alone, this statement only applies to ideal gases.
• What is true for CV , i.e. it is the same for a Van der Waals gas than for an ideal
gas, is not true for Cp (see exercise 14.2)

Exercise 14.2 Calculate Cp for a Van der Waals gas as the sum of Cp for a mono-atomic
ideal gas and a corrective term which is a function of T and V .
Ans: Cp = 5NkB/2 + 2aN2

kB(V � bN)2/(kBTV 3
� 2aN(V � bN)2). ⌅

The entropy of the gas reads:

S = �

✓
@F

@T

◆

V,N

= NkB


3

2
ln

✓
mkBT

2⇡~2

◆
+

5

2

�
+NkB ln

✓
V � bN

N

◆
(14.9)

which can also be split into the entropy of a classical ideal gas with a correction, �bN in
the second right hand side term, which accounts for the reduced volume due to the finite
size of the particles. In order words, the entropy of a Van der Waals gas is smaller than
that of an ideal gas because the volume really accessible to the particles is smaller.

Finally, the chemical potential of the Van der Waals gas can be calculated from:

µ =

✓
@F

@N

◆

V,T

= �kBT


3

2
ln

✓
mkBT

2⇡~2

◆
+ 1
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� kBT ln

✓
V � bN

N

◆
+

kBTV

V � bN
�

2aN

V

(14.10)

which differs from that of an ideal gas by the �bN part in the second and third terms on
the right hand side, as well as the presence of the last term. We can easily rewrite this
expression for µ as:

µ =
F

N
+

kBTV

V � bN
�

aN

V
=

1

N
(F + pV ) ⌘

G

N
(14.11)

where we have used the equation of state (14.7) to obtain the last equality, and ultimately
the definition of the Gibbs free energy, G. This relation between µ and G is a general result
for a fluid characterised by three external parameters, i.e. it holds for real and ideal gases.



15. Gas-liquid phase transition

Even though the Van der Waals model for real gases derived in the previous chapter
involves rather crude approximations, it still proves very useful as it contains the basic
physical ingredients necessary to understand the phase transition between liquid and vapour
observed to take place in real fluids. This will be the subject of this chapter.

15.1 Van der Waals isotherms

Isotherms for an ideal gas are monotonic hyperbolae. That is to say, for a given value of T ,
p / 1/V . Van der Waals isotherms generally have a similar shape, except that for some
values of T , the extra terms contributing to the pressure and volume become significant
and extrema appear. Indeed, differentiating the Van der Waals equation of state (14.7),
one obtains:

✓
@p

@V

◆

T,N

= �
NkBT

(V � bN)2
+ 2a

N
2

V 3
(15.1)

This expression is equal to zero when:

V � bN =

✓
kBT

2aN

◆1/2

V
3/2 (15.2)

Plotting both left-hand (y0 = V � bN) and right-hand (yi =
p
kBTi/(2aN)V 3/2, with

i 2 N+ and T1 < T2 < · · · < Tn) side terms of the previous equation onto a single graph in
Fig.15.1 for various temperatures Ti, one realises that either these two curves intersect in
two places (at low temperatures), or not at all (high temperatures). Moreover, from the
same figure, it is quite clear that there must exist a critical temperature, Ti ⌘ Tc, for which
the two curves are tangent to one another, i.e.

✓
@y0

@V

◆

T,N

=

✓
@yi

@V

◆

Ti,N

, 1 =

✓
9kBTc

8aN

◆1/2

V
1/2 (15.3)
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Figure 15.1: Graphical solution of equation (15.2). The cyan solid line represents y0 =
V � bN whereas the orange curve indicates y2 = yc, for which T2 = Tc and y0 is a tangent
in Vc. y1 (green curve) and y3 (red curve) correspond to temperatures T1 = 3Tc/4 and
T3 = 3Tc/2 respectively lower and higher than Tc. Note that the only curves to intersect y0
twice are those with Ti < Tc.

This yields an expression for the critical volume, Vc = 8aN/(9kBTc), which, when
injected into y0 = yi at the point of tangency gives Tc = 8a/(27kBb), and thus Vc = 3bN .
Finally, plugging these expressions into the Van der Waals equation of state, one obtains
the critical pressure, pc = a/(27b2). Also note that (@p/@V )T,N is always negative (the first
term in equation (15.1) always dominates), except between the two extrema when they
exist, and that these extrema are located further and further apart as the temperature of
the isotherm decreases. All these considerations lead to the isotherms for a Van der Waals
gas plotted on Fig. 15.2.

Let us pick a specific isotherm with temperature T . For high values of the volume V ,
pressure is a slowly decreasing function of V which corresponds to a high compressibility (a
small increase of pressure changes the volume considerably) typical of a gas. On the other
hand, for low values of V the pressure is a rapidly decreasing function of V . In other words,
one needs a large change of pressure to reduce the volume by a small amount so the fluid is
almost incompressible: it is a liquid.

R In this latter domain (small values of V ) the Van der Waals approximation is poorly
justified, but it qualitatively captures the behaviour of the liquid because it takes into
account the main characteristic of the interaction between molecules, namely that
their potential energy becomes comparable to their kinetic energy.

For intermediate values of V ⇠ Vc things are more complicated. Looking at the isotherm
graph (Fig.15.2) there clearly exist two domains of temperature:

• At high temperature (T > Tc), p remains a decreasing function of V for all values
of the volume. When one follows such an isotherm, i.e. when one increases V at
constant T , one continuously moves from a weak compressibility regime (liquid) to
a high compressibility regime (gas). The system remains homogeneous during the
transformation, and we call the fluid supercritical.

• At low temperature (T < Tc), there exists a range of values of V where (@p/@V )T,N >

0, i.e. a range of negative compressibility. This means that the system becomes
unstable in these conditions (the fluid wants to expand as one compresses it) and the
isotherm cannot be an equilibrium state for the fluid. A more detailed analysis of
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Figure 15.2: Examples of Van der Waals isotherms in the three different temperature
regimes, T3(= 3Tc/2) > Tc (red curve), T2 = Tc (orange curve) and T1(= 3Tc/4) < Tc

(green curve). Note that the green curve intersects the x�axis, p = 0, at Vc/2 and Vc, and
possesses both a minimum and a maximum, as indicated on the figure. The horizontal blue
line corresponds to the equilibrium pressure of the system when it splits into two phases,
liquid and gas (see example 15.2 for detail on how it is calculated).

what happens to the system is required and we will devote the rest of this chapter to
it.

R For low enough values of the temperature (e.g. Ti = 3/4Tc in Fig.15.2), p itself
becomes negative, a sure sign that everything is going to hell in a handbasket!

The isotherm corresponding to Ti = Tc, which separates the two temperature domains
previously described is called the critical isotherm. The ratio pcVc/(NkBTc), sometimes
called “compression factor at the critical point”, is a dimensionless quantity and is indepen-
dent of the parameters a and b used in the Van der Waals approximation, i.e. it has the
same value for all fluids (pcVc/(NkBTc) = 3/8 = 0.375). Typical experimental values for
real fluids show that this is indeed the case, but with values closer to 0.3, and even lower
for so-called polar fluids like water.

⌅ Example 15.1 — Experimental values for real fluids. Helium (He) has Tc = 5.2 K, Vc =
57.8 cm3mol�1, pc = 2.26 atm and pcVc/(NkBTc) = 0.3; Nitrogen (N2) has Tc = 126.1 K,
Vc = 90.1 cm3mol�1, pc = 33.5 atm and pcVc/(NkBTc) = 0.29; Water (H2O) has Tc = 647.4
K, Vc = 56.3 cm3mol�1, pc = 218.3 atm and pcVc/(NkBTc) = 0.23. ⌅

R Another approximation than Van der Waals for real gases, the Dietericci approximation
that you will encounter in one of the problem sheets, yields a value of this ratio of
0.29, in better agreement with the experimental measures.

15.2 The law of corresponding states

This property of the compression factor at the critical point lead us to go further and define
reduced coordinates as the following dimensionless quantities: T̃ ⌘ T/Tc, Ṽ ⌘ V/Vc and
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p̃ ⌘ p/pc. We can then rewrite the Van der Waals equation of state as:

✓
p̃+

3

Ṽ 2

◆⇣
3Ṽ � 1

⌘
= 8T̃ (15.4)

This reduced equation is independent of the Van der Waals parameters a and b, i.e. it is
the same for all Van der Waals fluids! One thus says that two different fluids (as in fluids
with different values of Tc, Vc and pc) verify the law of “corresponding states”. This means
that if we fix their T̃ and Ṽ at the same values, then their value for p̃ is also the same.

15.3 Helmholtz free energy

To gain some insight into the unstable region previously uncovered by looking at the Van
der Waals isotherms, let us examine how the Helmholtz free energy of the system, F , varies
as a function of V , at constant T .

R Although this is a natural choice since we have seen in the lecture on availability
that a system at fixed T and V will spontaneously evolve towards an equilibrium
for which F is a minimum, most other textbooks prefer to use the Gibbs free energy,
G, which is minimal for a system in equilibrium at fixed T and p, to discuss phase
transitions. As repeatedly mentioned in these lectures, F is more directly linked to
the equation of state of thermodynamical systems than G, so we will stick to it.

Speaking in general terms, as p must remain a positive quantity, (@F/@V )T,N = �p

should always be negative. In other words, at fixed T , F should be a decreasing function
of V . Furthermore, we expect this decrease to be fast at small V (high pressure) and
slow at large V (low pressure). As we have seen previously, when T > Tc, p itself, as
for an ideal gas, is everywhere a decreasing function of V , so that (@p/@V )T,N < 0 and
(@2

F/@V
2)T,N = �(@p/@V )T,N > 0. Mathematically, this last statement means that for F

to be a true, stable minimum for the system, F (V ) needs to be convex (i.e. at each point
V of F (V ), the tangent is below the curve).

Let us now consider the case of a Van der Waals isotherm with T < Tc (see Fig.15.2). We
realise that F (V ) will then present two inflection points (change of concavity) corresponding
to the two extrema of the isotherm, since (@p/@V )T,N — and thus (@2

F/@V
2)T,N — changes

sign at these extrema. Given that F is convex both at very small and very large V , it will
be concave between the extrema, and the stability condition (@p/@V )T,N < 0 will not be
satisfied. As a consequence, F (V ) as sketched in Fig.15.3 cannot represent the Helmholtz
free energy of a system in equilibrium in this volume range.

So what went wrong? Why can’t there exist an equilibrium solution for the system in
this volume range? Well, we have only considered homogeneous systems so far, and we know
that two fluid states (liquid and gas) exist separately from one another. So, in principle,
nothing prevents our system from spontaneously separating into two sub-systems, each of
them homogeneous, but corresponding to these two different macroscopic states. When
such a separation occurs, we say that the system is composed of two phases in equilibrium.

R Nothing guarantees a priori that the two phases can co-exist. We know from the
previous lectures on basic thermodynamics that two systems are in mechanical and
thermal equilibrium if they have the same pressure and temperature respectively, but
this is already the case here because the two phases are located on the same isotherm
and we consider a unique value of p on that isotherm. So we are left with only one
requirement, which arises because our two sub-systems can exchange particles: they
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Figure 15.3: Sketch of the Helmholtz free energy (green solid curve) corresponding to
the Van der Waals isotherm T = 3Tc/4 plotted in Fig.15.2. The blue line represents the
bi-tangent to F derived in equation (15.5), with Vliq and Vgas calculated in example 15.2.
The pink shaded region indicates the range of volume values where F is concave and
therefore cannot be the free energy of a system in equilibrium. This latter must split into
two phases and follow the bi-tangent instead.

must be in diffusive (also called “chemical” sometimes) equilibrium, i.e. their chemical
potential must be the same (µgas = µliq). We will prove this latter equality later
on, but for the moment note that the three equilibrium conditions involve intensive

variables.

How do we decide how many particles are in the liquid and gas phases? Well, we know
that at fixed T and V , the equilibrium state of a system must minimise the Helmholtz free
energy. This means that our two phase solution will only be preferred by the system if
its resulting Helmholtz free energy, which is the sum of the Helmholtz free energy of the
two phases (F is additive), is smaller than the Helmholtz free energy of the homogeneous
system. Pushing this argument a bit further, we conclude that of all possible separations in
two phases, the one with the lowest Helmholtz free energy will constitute the equilibrium
state of the system.

We now turn to the task of calculating this minimal Helmholtz free energy. Let us call
Fliq ⌘ F (Vliq, T,N), the Helmholtz free energy of the homogeneous system of N molecules at
temperature T when it is in the liquid phase, and Fgas ⌘ F (Vgas, T,N), the Helmholtz free
energy of the homogeneous system when it is in the gas phase. If we build a two phase system
with Nliq molecules in the liquid phase and Ngas = N �Nliq molecules in the gas phase, the
volume occupied by this system will simply be V2ph ⌘ V = Vliq ⇥Nliq/N + Vgas ⇥Ngas/N ,
and its Helmholtz free energy F2ph = Fliq⇥Nliq/N +Fgas⇥Ngas/N . Eliminating Nliq/N =
1�Ngas/N from this latter expression, we can rewrite F as:

F2ph = Fliq +
V � Vliq

Vgas � Vliq
⇥ (Fgas � Fliq) (15.5)

where V is a volume point located between Vliq and Vgas. This is the equation of the straight
line joining the points (Vliq, Fliq) and (Vgas, Fgas) in Fig.15.3.
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R When T > Tc, F2ph(V ) > F (V ), as F is always convex in that case. In other words,
the straight line (chord) F2ph(V ) is always above the curve F (V ) and the system
remains homogenous in a single phase over all the volume range since this corresponds
to a smaller F .

To obtain the values of Vliq and Vgas geometrically, i.e. to determine which of all the
possible straight lines F2ph follows, we require the equilibrium condition p(Vliq) = p(Vgas)
on the isotherm, that is to say we require that the pressure be the same for the two
homogeneous phases which mark the beginning and the end of the system phase transition.
This is a “natural limit” requirement since the two phases must constitute an equilibrium
for the system when they co-exist, no matter how many particles are in which phase.
Mathematically, this means that (@F/@V )T,N (Vliq) = (@F/@V )T,N (Vgas), i.e. F2ph(V ) must
be tangent to F (V ) at both volume values Vliq and Vgas.

⌅ Example 15.2 — Calculation of Vliq and Vgas for the Van der Waals isotherm T= 3/4 Tc.

For this isotherm, T = 2a/(9kBb). Together with p(Vliq) = p(Vgas), µ(Vliq) = µ(Vgas) yields
a system of transcendental equations, as can easily be seen from the expression of the
chemical potential in the Van der Waals model (equation 14.10). In general such a system
must be solved numerically, but one can assume Vgas � Vliq for this particular isotherm and
Vliq ⇡ 3bN/2⇤ to eliminate the Vliq terms and obtain a simplified transcendental equation:
� ln(X/2) + 7X � 4 = 0, which is accurate to first order in X ⌘ bN/Vgas. Solving this
equation yields Vgas ' 19bN � Vliq, as initially assumed. Plugging this value of Vgas into
the pressure equilibrium constraint, we get p(Vliq) = p(Vgas) ' a/(104b2), so that the Van
der Waals EOS turns into the following cubic equation for Vliq: V

3
liq � (217/9)bNV

2
liq +

104b2N2
Vliq�104b3N3 = 0, whose root Vliq ' 1.47bN is the one compatible with our initial

assumption for Vliq
†. ⌅

R Note that F2ph is also a function of the temperature T , both explicitly because of the
expressions of Fliq and Fgas we derived in the previous chapter (see equation 14.6) but
also implicitly as the values of Vliq and Vgas depend on the Van der Waals isotherm
considered.

⇤We know that for the two phases to be able to achieve pressure equilibrium, the exact value of Vliq must
be very close to that which cancels the pressure as p is a very steep function of V for a liquid, see Fig.15.2.

†Normally one would need to iterate the procedure, i.e. inject this new value of Vliq back into the diffuse
equilibrium constraint to get a new value of Vgas, and so on and so forth until convergence of both Vliq and
Vgas to a pre-defined level of accuracy is achieved, but our initial guess is already accurate to the level of a
few percent, so we stop here.
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15.4 Liquid-vapour equilibrium

Figure 15.4: Typical three dimensional phase diagram representing surfaces of equilibrium
of a pure substance which contracts upon freezing (contrary to e.g. water), borrowed
from J. Carstensen (University of Kiel). Bold numbers in between brackets indicate the
number of phases of the substance which co-exist in the region. Note that the liquid-vapour
co-existence curve which joins together all the values of Vliq(T ) and Vgas(T ) (and is labelled
‘saturated liquid line’ and ’saturated vapor line’ on the diagram) is not planar. The critical
point is denoted by the letter ‘K’. Note that even though the solid phase (and its interface
with the liquid and gas phases) is missing from our analysis because the Van der Waals
model is a poor one for solids, you can intuitively understand what is happening in the
different regions of the diagram. For instance, the ‘sublimation line’ and ‘sublimation
region’ where solid and vapour co-exist, the ‘melting line’ and ‘melting region’ where solid
and liquid co-exist and the ‘triple line’ (in green) where all three phases co-exist. Two
interesting isobaric paths are marked on the figure (A to F in red, and G to J in green). On
both of these paths you heat the system to go progressively from the pure solid to the pure
gas phase, following the arrows, and see how the (specific) volume of the system changes.
Notice that from B to C (in the ‘melting region’), even though you continue heating the
system, its temperature does not change: the heat simply converts the solid into a liquid,
and similarly from D to E in the ‘wet steam region’, heat turns the liquid into vapour. We
will come back to this concept of latent heat later in this chapter, but it should not surprise
you: if the two phases co-exist in thermal equilibrium, their temperature must stay the
same as long as they co-exist. The same reasoning applies on the ‘triple line’ (from H to
I), where the three phases co-exist in equilibrium. Note that the specific volume increases
sharply (discontinuity) when such phase transitions occur, but that otherwise it varies very
little (especially in the pure solid and liquid phases, from A to B or C to D or G to H).

Looking back at Fig.15.2, it is now easy to describe the behaviour of the system at
equilibrium for T < Tc. Let us consider an isotherm at temperature T below the critical
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temperature and increase the volume slowly enough so that the system goes through a
series of equilibrium states. As long as V < Vliq(T ), the system is an homogeneous liquid
phase. When V becomes greater than Vliq and until it reaches a value of Vgas, the system
splits into two phases: a liquid phase with the characteristics of an homogenous system
occupying a volume of Vliq/N per molecule, and a gaseous phase (also called vapour) with
the characteristics of an homogenous system occupying a volume of Vgas/N per molecule.
The number of particles in the liquid phase is Nliq = N(Vgas � V )/(Vgas � Vliq), and the
number of particles in the vapour phase is Ngas = N(V � Vliq)/(Vgas � Vliq).

R The ratio Nliq/Ngas = (Vgas�V )/(V�Vliq) can be read directly on the isotherm (Figure
15.2): the number of particles in a phase is inversely proportional to the distance
which separates the volume V of the system from the volume of the homogeneous
phase in question (Vliq or Vgas). This is the so-called “lever rule”.

The Helmholtz free energy of the system is then F2ph(V ), which is a linear function of V
(see equation (15.5)), so that the pressure p = �(@F2ph/@V )T,N is a constant as long as the
two phases are present. It is called the saturation vapour pressure, and is a function of T
only. In other words, between volumes Vliq and Vgas on Fig.15.2, the system does not follow
the green Van der Waals isotherm, but the horizontal blue segment. For V > Vgas(T ), the
system becomes homogeneous again, but in a gas phase this time around. Finally, as T

increases, the volumes Vliq and Vgas get closer together, until they superimpose at a value
of Vc for T = Tc. For temperatures above Tc, the distinction between liquid and vapour
does not make much sense anymore. All this information can be summarised in a three
dimensional phase diagram, an example of which is plotted in Fig.15.4.

As indicated by the front red arrow on Fig.15.4, the equilibrium surfaces of this three
dimensional phase diagram can be projected onto the (p, V ) plane that we have used to
study the Van der Waals isotherms.
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Figure 15.5: Two dimensional phase diagram representing projected surfaces of equilibrium
of the Van der Waals fluid onto the (p, V ) plane (corresponding to, from top to bottom,
isotherms with T = 1.5Tc (red), T = Tc (orange), T = 0.9Tc (blueish-green), T = 0.75Tc

(green) and T = 0.6Tc (blue)). Note the existence of meta-stable states of the system
sandwiched between the co-existence curve (solid black line) and the spinodial curve (dotted
black line) which links together all the pressure extrema of the Van der Waals isotherms
(see Fig. 15.2). We will discuss their meaning shortly.

Alternatively, one can project these surfaces onto the (p, T ) plane as indicated by the
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right hand side red arrow on Fig.15.4:
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Figure 15.6: Two dimensional phase diagram representing projected surfaces of equilibrium
of the Van der Waals fluid onto the (p, T ) plane. The solid blue curve which separates
the homogeneous liquid phase (blank region above the curve) from its gaseous counterpart
(blank region below the curve) is called the vaporization curve. The two phases only co-exist
along that curve, which is bounded by the critical point at the top, and the triple point at
the bottom. This latter is not represented on the diagram as it corresponds to the existence
of a solid phase at low T (see Fig.15.4), that the Van der Waals approximation fails to
account for. The shaded light blue region marks the domain where the distinction between
liquid and vapour makes little sense and one only talks about a Van der Waals fluid.

15.5 Characteristics of the transition

The liquid-vapour transition we have just studied presents three fundamental properties
which pertain to a whole class of phase transitions called first order phase transitions.

15.5.1 Co-existence of the two phases

If T < Tc, we have seen that the liquid and vapour phases co-exist in thermal and mechanical
equilibrium for all values of V between Vliq and Vgas. This means that if the vaporization (or
liquefaction) happens at fixed pressure (temperature), the temperature (pressure) remains
constant all along the process. We will now demonstrate that the associated thermodynamics
potential, namely the Gibbs free energy, G, stays constant as well during the process‡.
Indeed, during the co-existence regime, we have G2ph = F2ph + pV , where F2ph is given by
equation (15.5) and p = �(@F2ph/@V )T,N so that:

G2ph = Fliq +
V � Vliq

Vgas � Vliq
⇥ (Fgas � Fliq)� V

Fgas � Fliq

Vgas � Vliq

=
FliqVgas � FgasVliq

Vgas � Vliq
(15.6)

and since, as we have seen previously, Vliq and Vgas are functions of temperature alone and
so are Fliq and Fgas and by extension G2ph. As the temperature is constant during the
phase transition process, G2ph is therefore a constant. From this result, one deduces that at
equilibrium between the phases, the Gibbs energy per particle of each homogeneous phase,

‡We have already used this result to calculate Vliq and Vgas on the specific isotherm T = 3Tc/4 in a
previous example, but here we establish why this was a legitimate thing to do.
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a.k.a. the chemical potentials of the two phases, µliq ⌘ Gliq/N and µgas ⌘ Ggas/N , are equal.
Indeed, proceeding as we previously did for F , we can call Gliq(p, T,N) and Ggas(p, T,N)
the Gibbs free energies of the homogeneous system when all its N particles are in the liquid
and vapour phases respectively. We then have G2ph = Gliq ⇥Nliq/N +Ggas ⇥Ngas/N . As
we have just demonstrated that G2ph is a constant and given that p, T and N are fixed, we
can differentiate this expression to obtain dG2ph = Gliq/N ⇥ dNliq +Ggas/N ⇥ dNgas = 0
so that (µliq � µgas)dNliq = 0 and the equality between chemical potentials immediately
follows. As previously mentioned, this form µliq = µgas is often used to characterise the
diffusive equilibrium between two phases, in direct analogy with pliq = pgas and Tliq = Tgas

for the mechanical and thermal equilibria respectively.

15.5.2 Entropy variation during the phase transition

When n molecules out of N go (at constant T and p) from the liquid state to the vapour
state, the entropy of the system, S, increases by:

�S ⌘
n

N
(Sgas � Sliq) = nkB ln

✓
Vgas � bN

Vliq � bN

◆
(15.7)

given equation (14.9) and using the same notation for the entropies Sliq and Sgas as
previously used for the Helmholtz and Gibbs free energies. This increase is positive since
Vgas > Vliq > bN and proportional to the number of particles vaporized, n. This entropy
variation must be accompanied by a heat exchange of the system with its surroundings.
Indeed, since G = U � TS + pV stays constant during the vaporization, as do T and p,
we must have �G = �U � T�S + p�V = 0. Defining W and Q as the work and heat
given to the system during the vaporization process, the first law of thermodynamics yields
�U = W + Q, and since the transformation is reversible (the system stays in thermal,
mechanical and diffusive equilibrium throughout), W = �p�V and Q = T�S. We thus
conclude that Q > 0, i.e. heat must be given to the system for �G to cancel: this is an
endothermic process. This heat needed to change the state of the system from the liquid to
the vapour phase is called latent heat of vaporization and is usually defined per mole:

L =
NA

n
T�S = RT ln

✓
Vgas � bN

Vliq � bN

◆
(15.8)

Note that this is completely intuitive: you have to keep on heating liquid water when it
starts boiling to turn all of it into water vapour at the same temperature! As the simple
exercise given below shows, this latent heat is large when compared to the amount of
heat required to raise the temperature of each different homogeneous phase by tens of
degrees.

Exercise 15.1 Take a litre of water at 10oC and vaporize it to 160oC at constant standard
pressure p = 105 Pa. How much heat Q, do you need?
[The specific heat capacities of water in its liquid and vapour phases are c

liq
p = 4200

J kg�1K�1 and c
gas
p = 1900 J kg�1K�1 respectively, and its specific latent heat of

vaporization at 100oC LV = 2.3⇥ 106 J kg�1.]
Ans: Q = 2.8⇥ 106 J. ⌅

R • As Vliq and Vgas are functions of T alone, so is L.
• L = 0 when T = Tc as Vliq = Vgas for that particular isotherm.
• S(T ) will exhibit a discontinuity when the phase transition occurs, as �S > 0 but
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the temperature does not change. This jump in the value of S will be of order L/T .
• The reverse process also exists: vapour can condense into a liquid. This is an
exothermic process where the latent heat is given to the surroundings of the system.

15.5.3 Meta-stable states

Let us come back to the Van der Waals isotherms in Fig.15.2. Between point p(Vliq) and
the minimum of p as well as between the maximum of p and p(Vgas), p still is a decreasing
function of V , and thus the compressibility of the system is positive. Of course we have
shown that the true equilibrium state of the system does not follow the Van der Waals
isotherms between p(Vliq) and p(Vgas), but the points in the two regions previously defined
can still be reached by the system: they are called meta-stable states.

Indeed, considering our F2ph formulation as a linear function of V (equation (15.5)),
one clearly sees that any “local” straight line connecting two points located either between
point Fliq and the first inflection point of F (V ) or between its second inflection point
and point Fgas will be above F (V ) (see Fig.15.3). Conversely, only straight lines joining a
point between point Fliq and the first inflection point of F (V ) to another point between
its second inflection point and point Fgas are below F (V ). This tells us that if somehow
the system manages, one way of another, to find itself trapped between Fliq and the first
inflection point of F (V ) or between its second inflection point and Fgas, fluctuations of
small amplitude will not be able to move it away from this point: the system is locally

stable. However, a fluctuation with a large enough amplitude will “see” that there exists a
possibility of realizing a more stable state by separating into two phases. As the probability
of fluctuations goes down rapidly when their amplitude increases, a meta-stable state can
therefore be maintained for quite a long time.

In practice, when we slowly increase the volume available to the liquid at constant
T , the system can remain homogeneous beyond point Fliq, in a state called superheated

liquid, but not beyond the first inflection point of F (V ) when it becomes violently unstable
(negative compressibility). In a similar manner, if we slowly reduce the volume available
to the vapour at fixed T , we will be able to keep it in a homogeneous phase beyond point
Fgas (but not beyond the second inflection point of F (V )), in a meta-stable state called
supercooled vapour. Important perturbations (like a drop of liquid in supercooled vapour,
or a vapour bubble in a superheated liquid, impurities, or a simple shock) will trigger an
evolution of the system towards its true equilibrium: the two-phase state. The meta-stable
domain is bounded by the two phase co-existence curve on one side, and the curve linking
the extrema of the different Van der Waals isotherms (or equivalently the inflection points
of the different corresponding F (V )) as T varies. Such a curve is called a spinodial curve

and is represented on Fig.15.5.

15.6 The Clausius-Clapeyron equation

Let us now examine the other two dimensional phase diagram, the one obtained when
projecting in the (p, T ) plane (see Fig.15.6). The line in this diagram defines the region
where the two phases co-exist.In other words, if we are in the homogeneous gas phase on
the line (i.e. T < Tc) and p increases slightly, we will jump to the homogeneous liquid
phase immediately. This will appear as a volume discontinuity and is a characteristic of
the liquid-vapour phase transition.

On either side of the line, all N particles are either in the gas or the liquid phase. As
we have previously shown, the Gibbs free energy (at fixed p and T ) of these two phases are
equal: Gliq = Ggas. This means that G is continuous as we cross the phase transition line.
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Let us then sit on this line and move upwards along it by an infinitesimal amount. As the
total number of particles, N , is constant, the change in G caused by this displacement for
each phase is given by:

dGliq = �SliqdT + Vliqdp

dGgas = �SgasdT + Vgasdp (15.9)

Equating these two expressions to enforce the continuity of G across the phase transition
line at the new position yields:

dp

dT
=

Sgas � Sliq

Vgas � Vliq
=

L

T (Vgas � Vliq)
(15.10)

where the last equality arises from the definition of latent heat (L = T�S). This relation
which defines the slope of the phase transition line as the ratio of the latent heat released
by the phase transition and the discontinuity in volume between the phases is known as
the Clausius-Clapeyron equation.

Exercise 15.2 Find an approximated solution, p(T ), to the Clausius-Clapeyron equation.
[Assume that L is independent of T , Vgas � Vliq and that the gas EOS is that of an
ideal gas.]
Ans: p = p0 exp(�L/(kBT )). ⌅

15.7 Classification of phase transitions

The liquid-gas phase transition that we have just studied is not the only kind of phase
transition that exists in nature. Ehrenfest thus proposed to classify phase transitions based
on whether the derivatives of the thermodynamical potential (usually F or G) of a system
are continuous. This means that if the n

th derivative of this potential is discontinuous,
we will say that we have a n

th order phase transition. In the case of the liquid-gas phase
transition, as we have seen, latent heat is released/absorbed, so S = �(@F/@T )V,N is
discontinuous, as is V = (@G/@p)T,N . So we are dealing with a first order phase transition.

In practice, phase transitions of order greater than two are rare, and the thermodynamical
limit tends to break down at phase transition (fluctuations are large), so the thermodynamic
potentials are not well defined. For these reasons, the modern classification is more simple
than that originally advocated by Ehrenfest: if latent heat is present, the phase transition
is first order; if not, the phase transition is called continuous.

R • Note that when T ! Tc, the amplitude of the discontinuity diminishes as Sliq ! Sgas,
and that for T � Tc we do get a continuous phase transition.
• For most simple materials, the liquid-gas phase transition is part of a larger phase
transition which includes a solid phase at smaller T or higher p, as illustrated on
Fig.15.4.



16. Cooling of real gases

The purpose of these final lectures is to close the loop. Recall the Basic Thermodynamics
part of the course at the beginning of the year, where we studied the thermal behaviour of
ideal gas under certain practical transformations (adiabatic, isothermal expansions, etc ...).
We will now see how real gases behave during similar transformations and what practical
consequences this has.

16.1 Joule expansion revisited

Remember the Joule expansion for ideal gases (section 5.6.2). No heat enters or leaves the
system as the containers are thermally insulated, no work is done either by or on the gas as
it expands in a vacuum, so its internal energy, U , is unchanged according to the first law.
For an ideal gas, U is a function of T alone, so �U = 0 =) �T = 0.

We can reformulate this statement using the Joule coefficient, µJ ⌘ (@T/@V )U , i.e.
the change of temperature induced by a change in volume at constant internal energy,
which is the relevant constraint in the case of a Joule expansion. Using the reciprocity and
reciprocal theorems, we can re-write the Joule coefficient as µJ = �(@T/@U)V (@U/@V )T =
�1/CV (@U/@V )T . From the first law of Thermodynamics, dU = TdS � pdV , so that
(@U/@V )T = T (@S/@V )T � p, and using the Maxwell relation for F (equation (6.3)), one
gets (@U/@V )T = T (@p/@T )V � p, therefore

µJ = �
1

CV


T

✓
@p

@T

◆

V

� p

�
(16.1)

As we have just recalled, for a mole of an ideal gas with EOS p = RT/V , µJ = 0. Now for a
real gas, we have seen than the pressure is always lower than for an ideal gas because of the
presence of an attractive long-range force between molecules. This means that since CV > 0,
µJ < 0 for a real gas. Indeed, as U is not changing in a Joule expansion (Q = W = 0), and
the potential energy of the gas becomes less negative as it expands (the distance between
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gas molecules increases and the intermolecular attraction becomes weaker), then the kinetic
energy of the gas must also decrease and the real gas must thus cool.

Let us calculate by how much. That is where µJ becomes handy. Indeed, during a
Joule expansion, the change of T is simply:

�T =

Z
Vf

Vi

µJ dV = �

Z
Vf

Vi

1

CV


T

✓
@p

@T

◆

V

� p

�
dV (16.2)

Take the Van der Waals EOS. For one mole of gas, it yields p = RT/(V � b) � a/V
2

so (@p/@T )V = R/(V � b) and µJ = �a/(CV V
2). As Vi < Vf , we deduce that �T =

�a/CV ⇥(1/Vi�1/Vf ) < 0 for a Van der Waals gas: as expected, it cools.

Exercise 16.1 What is the temperature change when one Joule expands 1 mole of Helium
enclosed in a (0.1 m)3 container into a (0.2 m)3 container?
[Use the Van der Waals EOS with a = 0.00346 J m3 mol2 and the molar heat capacity

a

of Helium, CV = 12.48 J K�1 mol�1.]
Ans: �T = �0.243 K. ⌅

aThis is the specific heat of Helium times its molar mass (4g).

16.2 Joule-Kelvin expansion

The Joule expansion is interesting conceptually, but of little practical use. As we have seen,
the gas cools a bit when it expands but then “so what”? What you would want in practice
is a kind of “cooling machine” where you feed in warm gas and get out cold liquid! As it
turns out, James Joule and William Thomson (a.k.a. Lord Kelvin) discovered the process
such a machine could be based on. Note that this process, similarly to the Joule expansion,
is inherently irreversible.

⇢
⇢
⇢
⇢
⇢
⇢⇢⇢
⇢⇢⇢⇢⇢
⇢

thermally insulated walls

(virtual) piston # 2(virtual) piston # 1 Vi Vf (> Vi)
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porous plug
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� 
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Figure 16.1: Schematic diagram of a Joule-Kelvin expansion.

Consider a highly pressurized gas at pressure pi enclosed in a thermally insulated
container of volume Vi, which is forced through a porous plug (see Fig. 16.1). It might be
helpful to pretend it is pushed by a piston⇤. The internal energy of this gas is Ui and the
work done by the piston is piVi. This gas expands as it goes through the plug and occupies
another thermally insulated container of volume Vf > Vi. It also has to do work to push
another piston which exerts a lower pressure pf < pi at the back of the container†. This

⇤In reality, this piston could be “virtual” and it would then be the inflowing gas behind the gas that is
enclosed in volume Vi that is doing the pushing.

†Again, in reality, the expanding gas could be pushing the lower pressure gas in front of it instead of
the piston, as long as any change in the bulk kinetic energy of the gas flow can be considered negligible
throughout the process.
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work is pfVf . The temperature of the gas may change in the process, so we will denote its
internal energy by Uf .

The first law tells us that since there is no heat exchange, the change of energy
�U = Uf � Ui must be equal to the amount of work done on the gas to get it through the
plug, minus the amount of work done by the gas as it comes out of it. Mathematically,
�U = piVi � pfVf , i.e Ui + piVi = Uf + pfVf or Hi = Hf , that is to say the process
conserves the enthalpy of the gas. As in the Joule expansion we want to know how much
the temperature of the gas has changed during the process, so we define the Joule-Kelvin

coefficient, µJK ⌘ (@T/@p)H , which measures the temperature change of the gas as we
reduce its pressure at constant enthalpy. In a similar fashion as what we did for µJ ,
we can use the reciprocity and reciprocal theorems, coupled to the definition of Cp

‡ to
re-write this coefficient as µJK = �(@T/@H)p(@H/@p)T = �1/Cp(@H/@p)T . Again from
the first law of Thermodynamics, dU = TdS � pdV , so that dH = TdS + V dp and
(@H/@p)T = T (@S/@p)T + V , and using the Maxwell relation for G (equation (6.4)), one
gets (@H/@p)T = �T (@V/@T )p + V , therefore

µJK =
1

Cp

"
T

✓
@V

@T

◆

p

� V

#
(16.3)

As for µJ , for a mole of an ideal gas with EOS V = RT/p, µJK = 0, and thus the change
in temperature during a Joule-Kelvin expansion,

�T =

Z
pf

pi

µJK dp =

Z
pf

pi

1

Cp

"
T

✓
@V

@T

◆

p

� V

#
dp (16.4)

is also nil. But what about a real gas? Will �T be positive or negative? Well, it depends
on the sign of µJK , which can, contrary to µJ , be positive or negative; and since Cp > 0, it
ultimately depends on the sign of T (@V/@T )p � V .

R The change in entropy during a Joule-Kelvin expansion can be calculated quite
straightforwardly. As the enthalpy is constant, we have dH = TdS + V dp = 0, so
that dS = �V/Tdp, and thus

�S = �

Z pf

pi

V

T
dp

which for a mole of ideal gas with EOS V/T = R/p yields �S = R ln(pi/pf ) > 0, in
line with what we expect for an irreversible process.

Therefore, the equation
✓
@V

@T

◆

p

=
V

T
(16.5)

defines the so called inversion curve in the T �p plane, i.e. the locus where the Joule-Kelvin
expansion switches from cooling the gas to heating it (see Fig.16.2).

⌅ Example 16.1 — Calculation of the inversion curve for a Van der Waals gas. Starting
from the Van der Waals EOS in the form p = NkBT/(V � bN)� aN

2
/V

2, we calculate
‡At constant p we have dH = dU + pdV , as we used in equation (3.1).
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(@T/@V )p, take its inverse, multiply it by T and substract V from the result to obtain
equation (16.5) in the form (V � bN)/(1� ⇠)� V = 0, with ⇠ = 2aN(V � bN)2/(kBTV 3).
This yields ⇠ = bN/V () (V �bN)2 = bkbTV

2
/(2a)§. As V , (V �bN), T , a and b are all

positive, we can take the square root of this last equation to get V = bN/(1�
p
bkBT/2a).

Injecting this expression for V in the Van der Waals EOS then yields the following explicit
form of the inversion curve:

p =
1

b2

✓
�
3bkB
2

T +
p
8abkBT

1/2
� a

◆

The (quadratic) equation p = 0 has two roots, T+ = 2a/(bkB) = 27Tc/4 and T� =
2a/(9bkB) = 3Tc/4, and a maximum pressure pmax = 9pc, achieved when dp/dT = 0, i.e.
for T = 8a/(9bkB) = 3Tc. This curve is plotted in Fig.16.2. ⌅
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Figure 16.2: Joule-Kelvin expansion inversion curve (in solid red) for a Van der Waals gas,
as calculated in example 16.1. The inversion curve separates a light blue shaded domain
where µJK < 0 which means that the Joule-Kelvin expansion is cooling the gas, from a
blank region where µJK > 0 and the Joule-Kelvin expansion heats the gas. Note that
the inversion curve also crosses the co-existence curve (in solid blue), which makes it very
interesting a process to liquefy gases!

T+, as calculated in example 16.1 for the Van der Waals gas, is called the maximum

inversion temperature, as it is clear that above this temperature the Joule-Kelvin expansion
can only heat the gas, regardless of its pressure. Note that this maximum temperature can
be quite low. For instance, 4He has T+ = 43 K. This means that to cool Helium using the
Joule-Kelvin process, one needs to cool it below 43 K first! Finally, let us mention that the
Joule-Kelvin process is very useful to liquefy gases (intersection with the co-existence curve:
see Fig.16.2), and one can show that a liquefier needs to work on the inversion curve for
maximal efficiency.

§Rigorously speaking, this solution is only valid for ⇠ 6= 1, but in the case ⇠ = 1, we have (@T/@V )p = 0
so T independent of V and the solution to the inversion curve equation is V = 0, which we can rightfully
discard.


