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11. Electromagnetic waves & photons

We will consider here a system of photons, i.e. of the massless particles which are the
quanta associated with the electro-magnetic field. The behaviour of such photon “gases” in
thermal equilibrium can be analysed experimentally by measuring the thermodynamical
properties of the electro-magnetic radiation.

R • This is a very intuitive process: everybody knows that when you heat e.g. steel to
make a sword, the metal radiates in the visible part of the electro-magnetic spectrum
... it glows red!
• As we will see, photons are special bosons: their number is not conserved, which
gives them a very peculiar statistical behaviour: their chemical potential is nil.

Definition 11.0.1 We call blackbody a closed cavity which contains a photon gas in thermal
equilibrium with a thermostat.

R • It is easy to make a blackbody in practice. All one needs to do is to take a container
of volume V and keep it at constant temperature T . A system of electro-magnetic
waves is spontaneously created within the container, i.e. in Quantum Mechanical
parlance, a system of photons. The physical quantities associated with this system
can be measured by poking a hole of negligible size in one of the container walls and
observe the characteristics of the radiation emitted through it⇤.
• The characteristics of this radiation have been well known since the end of the 19th
century, and their analysis led Planck in 1900 to formulate the “quantum hypothesis”,
starting point of the scientific revolution which led to the discovery of Quantum
Mechanics†.

⇤Also called blackbody radiation or thermal radiation.
†This is sometimes referred to as the ”ultra-violet” catastrophe because as we will see, in the classical

formulation of Maxwell’s, each electro-magnetic wave behaves like an independent harmonic oscillator, and
so an infinite number of them implies infinite energy, which is contributed mostly from short wavelengths,
hence the ultra-violet name. This issue is resolved in Quantum Mechanics because quantum harmonic
oscillators cannot take any continuous energy value.
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11.1 Electro-magnetic eigenmodes of a container

Our starting point will be the classical theory of electro-magnetism, with the goal to use
it to determine the individual quantum states that the system of photons can occupy. In
other words we will follow in Planck’s footsteps.

Let us consider, without loss of generality, an empty cubic container of size L. From a
classical point of view, the most general electro-magnetic field that can exist inside this
container is given by Maxwell’s equations. Since these equations are linear, their general
solution is a linear superposition of monochromatic elementary solutions that fulfil the
boundary conditions imposed by the container walls. These monochromatic solutions are
called the eigenmodes of the cavity.

Let us derive them. Consider the case were the walls of the cavity are perfectly reflecting‡:
this enforces strict boundary conditions, in the sense that both the tangential component
of the electric field, ~E, and the normal component of the magnetic field, ~B, must vanish at
the walls§. Such boundary conditions allow to use simple progressive monochromatic plane
waves to describe the spatial and temporal and dependence of all ~E and ~B field components,
i.e. these two fields will be a sum of terms of the form exp

�
i(~k · ~r � !t)

�
, where ~k is the

wave vector, ~r is the position vector and ! is the angular frequency. Maxwell’s equations
in vacuum enforce k~kk ⌘ k = !/c with c the speed of light. The boundary conditions
restrict the values of ~k to kx = nx 2⇡/L, ky = ny 2⇡/L, kz = nz 2⇡/L, where nx, ny and
nz 2 Z¶. Maxwell’s equations also imply that for each ~k, the ~E and ~B fields of that wave
are perpendicular to ~k and perpendicular to one another: this allows two independent
polarization states in the plane perpendicular to ~k.

In summary, an electro-magnetic eigenmode of our cubic cavity is characterized by an
eigenvector ~k such that its components obey kx = nx 2⇡/L, ky = ny 2⇡/L, kz = nz 2⇡/L
and a polarization state. Its angular frequency is given by k = !/c and the most general
electro-magnetic field that can exist in the cavity is a linear combination of eigenmodes thus
defined. For macroscopic applications we want to know the number of eigenmodes, g(!) d!,
whose angular frequencies are comprised in the interval [!,! + d!]. We can calculate this
number by counting the number of eigenmodes whose wave vector ~k has a modulus between
[k, k + dk]. This number is 2⇥

�
L/(2⇡)

�3
⇥ 4⇡k2 dk, where the three multiplicative factors

represent the number of polarization states, the inverse volume of an elementary cell and
the volume of a spherical shell in k�space respectively. Replacing k by !/c and dk by
d!/c, we obtain the classical spectral density of eigenmodes:

g(!) =
L
3
!
2

⇡2c3
=

V !
2

⇡2c3
(11.1)

11.2 Quantification of eigenmodes: photons

If we remained in the classical world, the amplitude of each eigenmode (i.e. of the
corresponding ~E and ~B fields) and consequently its energy, could take any continuous value

‡This is the case where the container is made of a perfect conductor.
§As usual, real life boundary conditions are more complex than that, but it is not necessary to know

them perfectly to determine the macroscopic behaviour of the system. In other words, we can choose
“perfect” boundary conditions, as long as the size of the box L is much larger than the particle de Broglie
wavelength, �B ⌘ h/p, where p is the momentum of the particles, they will not affect the behaviour of the
system.

¶This calculation is very similar to the one you have already seen for the wave function of an ideal gas
in a box. Note that the eigenmode nx = ny = nz = 0, i.e. ~k = ~0 and ! = 0 must, in general, be set aside.
It exists whatever the size of the cavity and corresponds to a constant electro-magnetic field, but given our
specific choice of boundary conditions its amplitude is equal to zero.
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in [0,+1]. In reality, the energy of the electro-magnetic field, as that of a material system
is quantified.

More precisely, to an electro-magnetic wave with wave vector ~k and angular frequency
!, we can associate particles called photons whose momentum ~p and energy ✏ are given
by the Planck-Einstein relations ~p = ~~k and ✏ = ~!k. From k = !/c, we thus get that
✏ = k~pkc ⌘ pc for photons. If one compares this relation between energy and momentum
to that of a particle of mass m given by special relativity, ✏ =

p
p2c2 +m2c4, one deduces

that photons must be massless particles. The two possible polarization states of the electro-
magnetic wave with wave vector ~k translate into two independent spin states⇤⇤ for the
corresponding photons with momentum ~p = ~~k. So a classical eigenmode characterized by
~k and a polarization state appears as a possible individual state for photons trapped in the
cavity††.

From the classical spectral density of eigenmodes (11.1) (and using ! = ✏/~ and
d! = d✏/~), we therefore deduce the following individual density of state for photons:

g(✏) =
V ✏

2

⇡2~3c3 (11.2)

11.3 Statistical properties of photons

11.3.1 Peculiarities of photons

• As their spin is an integer, they are bosons.
• They do not interact with one another, but only with the cavity walls which is how the
system reaches thermal equilibrium, so they constitute an ideal gas.

R Truly speaking, this last statement is not correct, as you will see when you study
Quantum Electro Dynamics (the theory of quantification of the electro-magnetic field
which accounts for its coupling to charged particles). Pairs of photons can interact to
momentarily produce an e

�
e
+ pair for instance. However this effect scales like ↵

2

times the coupling between matter and radiation which thermalises, where ↵ ⌘ 1/137
is the fine structure constant, so it is negligible for our blackbody study.

• Their number is not conserved. This is a new situation. To better understand what
it means, let us look more closely at how the electro-magnetic field, i.e. the photon gas,
arises in the cavity and reaches thermal equilibrium. As the walls are kept at constant
temperature T , thermal agitation sets the charged particles they contain (essentially the e

�)
in motion. These random motions create (classically) random electro-magnetic fields which
propagate freely inside the cavity and in turn induce motions of the charged particles in its
walls. So a (quite) weak coupling (for a macroscopic cavity) exists between the photon gas
and the matter that makes the walls. This drives the system to thermal equilibrium.

R One could think that since walls are made of atoms, emission lines specific to these
atoms would preferentially appear in the blackbody radiation spectrum, which would

kThis means that the energy of the wave with angular frequency ! is N! ~! where N! is the number of
photons the wave is made of.

⇤⇤This does not mean, however that the photon is a fermion with spin s = 1/2. A more careful study
shows that photons are bosons with spin s = 1, and the reason why the spin can only be ±1 and not 0 is
that for massless particles, the momentum ~p can never be ~0 since their speed must remain equal to c no
matter the reference frame chosen. Choosing ~p as the quantification axis, the only two possible states are
therefore ± s~ for the projected value of the spin along this axis. These correspond to the left and right
circular polarization of the corresponding electro-magnetic wave.

††Note that we naturally excluded the classical mode ~k = ~0 in this quantification.
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then be expected to depend on the nature of the walls. However, this does not happen:
the structure of the walls is sufficiently rich that all frequencies are coupled to the
thermostat (vibration of atoms, impurities, defects, etc ...). So at equilibrium, the
number of photons of a given frequency solely depends on the temperature T of the
thermostat.

The coupling thus described looks similar to what happens with paramagnets or molecules:
the photons exchange energy with the thermostat to reach thermal equilibrium and the
total energy is conserved in these exchanges. However, the fundamental difference with
these other systems is that the interaction between matter and radiation occurs through
the absorption or emission of photons, so that their total number does not remain constant.
This is not a situation where the number of particles can fluctuate by exchanging some with
a reservoir, so that the total number of particles (gas + reservoir) remains constant either.
This is a completely different physical problem in which the total number of particles is not

conserved.

11.3.2 Photon distribution function

So how do we resolve this issue? In the same way you derived the Bose-Einstein statistics,
but realizing that the constraint of fixed mean number of particles does not apply, so that
the Lagrange multiplier ��µ, or equivalently the chemical potential of the photons, µ (since
�� = �1/(kBT ) is fixed), must be nil

‡‡. This immediately yields the following mean
occupation number of a single-particle state i for photons:

n̄i =
1

exp
�
✏i/(kBT )

�
� 1

(11.3)

R • ✏i = 0 is naturally excluded as it corresponds to ~k = ~0, which, as we have seen, is
impossible for photons. So the divergence of n̄i when ✏i ! 0 is irrelevant.
• Bose-Einstein condensation cannot happen for photons: one cannot fix the total
number of particles, it is µ which stays constant instead!

‡‡In other words, the grand canonical ensemble is the natural choice here as the number of particles
varies, but the mean number of particles, N̄ , is not constrained, so its associated Lagrange multiplier must
be nil.



12. Blackbody radiation laws

12.1 Planck’s law

This is the fundamental law from which one can deduce all the others. It concerns the
spectral electro-magnetic energy density u(!, T ) of the blackbody. Max Planck discovered
it empirically before demonstrating it from the notion of quantification⇤.

Within a cavity of macroscopic volume V as defined in the previous chapter, individual
possible energies for photons can practically be considered as continuous, and when thermal
equilibrium with the thermostat at temperature T is reached, the mean occupation number
n̄ of an individual state with energy ✏

† thus reads:

n̄(✏, T ) =
1

exp
�
✏/(kBT )

�
� 1

(12.1)

Assume that the system considered is sufficiently large so that one can neglect fluctuations
(i.e. we are in the thermodynamical limit). The number of photons dN(✏, T ) which have
individual energy in the range [✏, ✏+ d✏] at temperature T is obtained by multiplying the
number of photons occupying each of the individual states (12.1) by the number of such
states, g(✏) d✏:

dN(✏, T ) = n̄(✏, T )g(✏) d✏ (12.2)

As each of them has energy ✏ (with error d✏), plugging in equation (11.2) for g(✏), the total
energy dU(✏, T ) of this system of photons is:

dU(✏, T ) = ✏ dN(✏, T ) =
✏

exp
�
✏/(kBT )

�
� 1

✓
V ✏

2

⇡2~3c3

◆
d✏ (12.3)

and since ✏ = ~! for a photon, we get dU(✏, T ) = V u(!, T ) d!, with
⇤We will discuss more in detail later in this chapter why the mathematical form of u for the blackbody

contradicts the classical theory of electromagnetism.
†Note that we have dropped the subscripts i for n̄ and ✏ in equation (11.3) in order to simplify notation.
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Law 8 — Planck’s law.

u(!, T ) =
~!3

⇡2c3

1

exp
�
~!/(kBT )

�
� 1

(12.4)

R The Planck law is only valid in the case where the radiation is in thermal equilibrium
with a thermostat. This constitute an important restriction, as in practice most
emission/absorption of photons takes place out of equilibrium. Arguably the most
common example is lighting by an electric lamp which irreversibly transforms electric
energy into radiation.

12.2 How does it look like?

Let us draw u as a function of ! for a fixed T . As usual, we identify the function main
features (asymptotic behaviour, extrema) to do so:

• At low frequencies, when ~! ⌧ kBT , we can expand the exponential term to obtain
u(!, T ) ' kBT!

2
/(⇡2

c
3), which is called the Rayleigh-Jeans formula. So the spectral

energy density is a parabola when ! ! 0.
• At high frequencies, when ~! � kBT , we get u(!, T ) ' ~!3 exp

�
�~!/(kBT )

�
/(⇡2

c
3),

which is the so-called Wien’s law. So the spectral energy density decreases exponen-
tially when ! ! +1.

• The maximum of u, !max, can be derived from the calculation of the logarithmic
derivative u

�1(@u/@!)T , which yields a simple transcendental equation which one
can easily solve numerically. We leave it as an exercise to show that this procedure
yields to Wien’s displacement law !max = 2.821 kBT/~, where the maximum angular
frequency is proportional to the temperature, T .

These considerations lead to the graph below (Fig. 12.1).
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Figure 12.1: Planck’s law (equation (12.4)) plot for several temperatures: 3000K in blue,
4000K in orange, 5000K in green and 6000K (approximate temperature of the Sun surface)
in red. The band shaded in light purple indicates the visible light frequency range.

R • While the peak in frequency, !max shifts to higher frequencies proportionally to T

as T increases, the total energy (area under the u curve in Fig. 12.1) grows like T
4.

• Also note that the number of photons N(!, T ) has a similar shape to u(!, T ) with
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only the power law index of ! reduced by one. This means that the photon number
increases dramatically with T !

12.3 Why classical theory fails

In the classical wave theory of electro-magnetism, each of the eigenmodes of the cavity
behaves like a simple harmonic oscillator with the same angular frequency. Indeed, taking
the curl of Maxwell’s curl equations for the electric and magnetic fields and eliminating ~B

from the equation for ~E yields the standard wave equation:

r
2 ~E(~r, t)�

1

c2

@
2 ~E(~r, t)

@t2
= ~0 (12.5)

As previously discussed, we can write the electric field as a linear combination of all the
eigenmodes of the cavity, which upon explicitly separating the time and spatial dependence
of the progressive monochromatic plane waves reads‡:

~E(~r, t) =
X

~k,�

A~k,�
(t) ~E~k,�

(~r)

Injecting this in the wave equation (12.5) gives:

X

~k,�

 
d2A~k,�

(t)

dt2
+ c

2
k
2
A~k,�

(t)

!
~E~k,�

(~r) = ~0 (12.6)

where the term in between brackets must vanish for each combination of (~k,�) in order for a
non-nil ~E to obey Maxwell’s equations. This term has the well-known form of a sum of one
dimensional simple harmonic oscillators, and we know from the classical equipartition of
energy theorem (see 9.1.1) that when they are in contact with a thermostat at temperature
T , the mean energy of each one of these is kBT . So classical theory predicts a spectral
energy density, using the spectral density of eigenmodes (11.1):

uclass(!, T ) = kBTg(!)/V = kBT!
2
/(⇡2

c
3) (12.7)

which dramatically fails to reproduce Wien’s experimental results (high frequency exponen-
tial decrease and maximum which shifts linearly with temperature). Furthermore, upon
integrating uclass(!, T ) over the whole range of frequency ! 2 [0,+1[, one finds that the
total energy density uclass(T ) diverges! This is the so-called “ultra-violet” catastrophe as
the energy divergence comes from short wavelengths, i.e. large !.

12.4 Thermodynamical quantities

12.4.1 Total energy: towards Stefan-Boltzmann’s law

On the other hand, integrating equation (12.4) over the entire range of possible frequencies
! 2 [0,+1[ and multiplying by the volume, V , one obtains the total energy

U(T, V ) =
V ~
⇡2c3

Z +1

0

!
3

exp
�
~!/(kBT )

�
� 1

d! (12.8)

‡The summation over � includes the possible different polarization states.
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which, contrary to the classical result, does converge§! Let us calculate it. A change of
variable x = ~!/(kBT ) gives

U(T, V ) =
V ~
⇡2c3

✓
kBT

~

◆4 Z +1

0

x
3

exp(x)� 1
dx

| {z }

=
V ~
⇡2c3

✓
kBT

~

◆4
⇡
4

15
(12.9)

as the integral in the first equality is a known combination of Gamma functions which
equals to ⇡

4
/15. So we finally get:

U(T, V ) = V u(T ) = V
⇡
2
k
4
B

15 ~3c3T
4
⌘ aV T

4 (12.10)

where the constant a = ⇡
2
k
4
B
/(15 ~3c3) is not the Stefan-Boltzmann constant, �, which

appears in front of the power emitted per unit surface rather than the energy. We will
derive it in the next chapter. However, the scaling of the total energy in T

4 is identical to
that of the power emitted per unit surface, which hints that Stefan-Boltzmann’s law, as we
will see later, is a consequence of Planck’s.

12.4.2 Grand potential, pressure and entropy

The grand potential of the photon system, by definition is:

� = �kBT

X

i

ln(1 + n̄i)

= �kBT

Z +1

0
g(✏) ln(1 + n̄(✏, T )) d✏

= �kBT
V

⇡2~3c3

Z +1

0
✏
2 ln

 
1 +

1

exp
�
✏/(kBT )

�
� 1

!
d✏

= �
V

⇡2~3c3

Z +1

0

✏
3

3

1

exp
�
✏/(kBT )

�
� 1

d✏

= �
1

3
U(T, V ) (12.11)

where the intermediate step of calculating the integral over the logarithm function is
performed using an integration by parts. This naturally yields the equation of state of the

§Strictly speaking, we are faced with a consistency problem: we should be able to derive the total
energy of the photon gas from a purely quantised point of view, rather than the semi-classical approach
we have followed in these notes. In other words, we should be able to use the average energy of a simple
quantum harmonic oscillator (equation (9.8) divided by N and with U

(1D)
0 = 0), representing a particular

field eigenmode, to write:

U(T, V ) =

Z +1

0

g(!)

 
~!
2

+
~!

exp
�
~!/(kBT )

�
� 1

!
d! =

V

⇡2c3

Z +1

0

 
~!3

2
+

~!3

exp
�
~!/(kBT )

�
� 1

!
d!

However, whilst the second term in the integral does yield the same result as equation (12.8) there also
appears a first term ~!3

/2 which diverges when integrated over the whole range of possible ! values. This
term arises because the energy of the fundamental level of a quantum harmonic oscillator is not zero (as can
be seen by setting the quantum number n, interpreted here as the number of photons in the field eigenmode
(earlier defined as N!), to n = 0 in equation (9.4)). This energy of the quantised electro-magnetic field
which is present even in the absence of photons is referred to as vacuum energy or zero-point energy and
(more or less) happily renormalised away, but this is another (long and very involved) story!
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photon gas by calculating the pressure:

p = �

✓
@�

@V

◆

T

=
1

3
u(T ) (12.12)

which is the classical radiation pressure traditionally derived for isotropic radiation.

R • As µ = 0 for the photon gas, there are only two variables, T & V .
• As the number of photons N is not fixed, the equation of state cannot be a function
of the volume because V is the only extensive variable left! So this “extensiveness”
cannot be compensated to make the pressure intensive, as is the case for an ideal
gas where one can multiply by N to get the intensive factor N/V in front of the
temperature dependence. As a consequence, the photon gas pressure is a function of
temperature alone.

As for the entropy, we have

S = �

✓
@�

@T

◆

V

=
4

3

U(T, V )

T
(12.13)

which goes to zero when T ! 0 in the same way that fermions and massive bosons do.





13. Absorption & emission of radiation

Experiment shows that a sufficiently heated body emits light, e.g. the filament of a lamp,
hot iron etc ... This thermal radiation emission is the subject of this section and we will
show that it is intrinsically linked to the ability of the body to absorb radiation externally
emitted.

13.1 Definitions

Let the power radiated by an infinitesimal surface element dS, centred on point M of a
body B, in an infinitesimal solid angle d⌦ around the direction defined by unit vector k̂

and in an infinitesimal band of angular frequency [!,! + d!] be:

dP ⌘ ⌘(!, k̂,M, T ) d! d⌦ dS (13.1)

This relation defines the emissivity, ⌘, of the body B. It has the dimension of an energy
per unit surface [J m�2] and depends on the nature of the body B, the point M chosen
on its surface, the temperature T at which the body is heated, the angular frequency !

at which the emitted radiation is observed as well as the direction k̂ along which this
latter propagates⇤. If we call # and ' (0  #  ⇡ ; 0  '  2⇡) the angles which mark
the direction of k̂ with respect to the normal to dS in M and an axis perpendicular to
this normal which serves as origin for ', we then have, as usual for a spherical coordinate
system, d⌦ = sin# d# d'.

Suppose now that B receives electro-magnetic radiation emitted by external sources.
By analogy with what we just did for emission, let us write the power received at the same
point M by the same surface element dS, but in the angular frequency range [!0

,!
0 + d!0]

and which arrives within the solid angle d⌦0 around the direction defined by the unit vector
k̂
0 as:

dP ⌘ $(!0
, k̂

0
,M) d!0 d⌦0 dS (13.2)

⇤To be complete, in some cases it also depends on the polarization state of the emitted radiation, but
we will neglect this in these lectures.
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Quite clearly, the quantity $ has the same dimension as the emissivity ⌘. In the most
general case, part of this power dP is absorbed by B, and the rest is sent back, whether by
reflection or diffusion†. We then define the absorptivity, ↵ of the body B at point M as
the fraction of the received power that is absorbed. This is a dimensionless number that
depends on the nature of the body B, the point M chosen on its surface, the temperature
T at which the body is heated, but also on the angular frequency !

0 and the direction k̂
0 of

the incident radiation. In other words, ↵ = ↵(!0
, k̂

0
,M, T ).

13.2 The case of the blackbody

We (would like to) call “blackbody” , a body B whose absorptivity verifies:

↵(!0
, k̂

0
,M, T ) = 1 , 8(!0

, k̂
0)

That is to say, a blackbody is a body which absorbs all the power of the incident radiation
it receives at point M , regardless of its wavelength and direction. It is called that way
because if you illuminate it with any radiation, it does not reflect or diffuse any component
of this radiation, which makes it look black.

R • It is possible for a body to be a blackbody only in a certain range of temperature.
• As we have already seen, a black body emits radiation, so it will only appear black
to the eye if its temperature is not too high, because in that case its emission at visible
wavelengths is negligible. If you shine visible light on it, it will absorb it entirely and
therefore does not send back any colour!

Figure 13.1: Schematics of the closest practical realisation of a true blackbody. A light ray
(red line with arrows) is trapped inside a spherical cavity.

A surface plastered with soot is an approximative blackbody (at least for radiation at
visible and near-visible wavelengths), but the practical realisation that is closest to a true

†We assume that B is sufficiently thick and opaque that no radiation can go through it.
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blackbody consists in poking a small hole in a closed container (see Fig. 13.1). Indeed, any
radiation directed towards this hole under any angle will be trapped in the cavity with
almost no chance of coming out of it. It is because we always refer to this prototype that
we say the blackbody.

R • The link with the previous chapter definition of the blackbody as a gas of photons
in thermal equilibrium in a cavity should be straightforward: if you poke a hole in
the said cavity, you find yourself in the same situation as in Fig. 13.1!
• Sometimes you will hear people talk about “white body” for a body with ↵ = 0, or
“grey body” for intermediate cases.

13.3 Kirschoff’s law

13.3.1 Statistical equilibrium

Let us put a body B in thermal equilibrium with a photon gas at temperature T , i.e. let us
place B in a closed container in contact with a thermostat at temperature T and wait for
the equilibrium to be established. In such an equilibrium situation, the total power emitted
and absorbed by B are equal.

Having picked a unit vector k̂, we consider the radiation emitted in that direction and
the radiation received in the same direction, i.e. along a unit vector �k̂, to mathematically
write this equilibrium condition as:

Z h
⌘(!, k̂,M, T )� ↵(!,�k̂,M, T )$(!,�k̂,M, T )

i
d! d⌦ dS = 0 (13.3)

However, this cancellation is not only global, it must also happen locally at each point of
B and for each ! and k̂. Indeed, should there exist a contribution (⌘ � ↵$) > 0 over a
small domain �1(!,#,',M) of the body B, it should then be compensated by a negative
contribution on another domain �2(!0

,#
0
,'

0
,M

0) since the integral must vanish. As we can
change ⌘ and ↵ for �2 without altering �1, by e.g. sticking a piece of opaque screen on
the surface element dS2 to prevent exchanges between this surface element and the gas of
photons in the container, this would destroy the global cancellation without affecting the
equilibrium between B and the radiation. We must therefore conclude that:

⌘(!, k̂,M, T ) = ↵(!,�k̂,M, T )$(!,�k̂,M, T ) (13.4)

Now we can calculate $(!,�k̂,M, T ) in this situation, because we know that the photon
gas at equilibrium must follow the Planck law derived in the previous chapter! The number
of photons dN(~k0, T ) with wave vectors in the range [~k0, ~k0+d~k0] at temperature T therefore
is:

dN(~k0, T ) = 2
V

(2⇡)3
d3k0

exp
�
~!0/(kBT )

�
� 1

(13.5)

All these photons have a speed c in the direction ~k0 and an energy ~!0 = ~ck0. Those which
hit the surface element, dS, of B, centred at M , during the time interval [t, t + dt], are
contained in a cylinder of base dS and axis of length c dt parallel to ~k0. This allows us to
write the energy received by dS during dt as:

$(!0
, k̂0,M, T ) dt dS d⌦0 d!0 = ~!0 dN(~k0, T )

c cos# dt dS

V
(13.6)

where # is the angle between �~k0 and the normal to dS at M (see Fig. 13.2).



104 Chapter 13. Absorption & emission of radiation

Figure 13.2: Geometrical view of photons in the cavity hitting the body B.

Given that d3k0 = k
02dk0 d⌦0 = !

02
/c

3d!0 d⌦0, we can inject equation (13.5) into (13.6) to
get:

$(!0
, k̂0,M, T ) =

~!03

4⇡3c2

cos#

exp
�
~!0/(kBT )

�
� 1

=
c

4⇡
u(!0

, T ) cos# (13.7)

where, as expected, the spectral energy density of Planck’s law, u(!0
, T ), given by equation

(12.4), appears. Going back to our cancellation equation (13.4), we are thus able to
derive:

Law 9 — Kirschoff’s law.

⌘(!, k̂,M, T )

↵(!,�k̂,M, T )
=

c

4⇡
u(!, T ) cos# (13.8)

R • The left hand side term in Kirschoff’s law only involves intrinsic properties of
the body studied, i.e., both ⌘ and ↵ are independent of the conditions in which B

is placed: they remain the same even when the body emits/absorbs radiation in a
non-equilibrium situation!
• The right hand side term, on the contrary, is a universal function of T , ! and
direction only.

In other words, Kirschoff’s law states that the ratio between emissivity and absorptivity is
independent of the body considered and of the point chosen on its surface. Another way to
state this is that “good absorbers are good emitters” and vice-versa.

13.3.2 Application to the blackbody: Stefan-Boltzmann’s law

In the case of the blackbody, as we have seen, the absorptivity is by definition ↵B(!,�k̂,M, T ) =
1 and so its emissivity, ⌘B(!, k̂,M, T ) = c/(4⇡)u(!, T ) cos# , is independent of its nature.
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It thus serves as a reference, as it is simply proportional to cos#, where # is the angle
between the direction of observation and the normal to the surface of the blackbody. This
dependence on direction is referred to as Lambert’s law. Integrating over all directions we
obtain the power emitted in the angular frequency band [!,! + d!] by the surface element
dS:

PB(!, T ) d! dS = d! dS

Z
⌘B(!, k̂,M, T ) d⌦

= d! dS
c

4⇡
u(!, T )

Z 2⇡

0
d'

Z
⇡/2

0
cos# sin# d# (13.9)

where the last integral over # only goes to ⇡/2 because radiation is only emitted outside
of the body. We thus deduce that PB(!, T ) = cu(!, T )/4. That is to say, a measure of
the power emitted per unit surface of the blackbody directly yields the energy density of a
photon gas in thermal equilibrium! This explains why Planck’s law, initially destined to
describe blackbody radiation, was deduced from the properties of the photon gas.

Finally, the total power per unit surface of the blackbody obeys:

Law 10 — Stefan-Boltzmann’s law.

PB(T ) =

Z +1

0
PB(!, T ) d! =

⇡
2
k
4

60c2~3T
4
⌘ �T

4 (13.10)

where � is called Stefan-Boltzmann’s constant.




