Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades

Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122

Authors:

Charles Arrowsmith, Francesco Miniati, Pablo J Bilbao, Pascal Simon, Archie Bott, Stephane Burger, Hui Chen, Filipe D Cruz, Tristan Davenne, Anthony Dyson, Ilias Efthymiopoulos, Dustin H Froula, Alice Goillot, Jon T Gudmundsson, Dan Haberberger, Jack WD Halliday, Thomas Hodge, Brian T Huffman, Sam Iaquinta, G Marshall, Brian Reville, Subir Sarkar, Alexander Schekochihin, Luis O Silva, Raspberry Simpson, Vasiliki Stergiou, Raoul MGM Trines, Thibault Vieu, Nikolaos Charitonidis, Robert Bingham, Gianluca Gregori

Abstract:

The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.

Proposal to use laser-accelerated electrons to probe the axion-electron coupling

Physical Review Letters American Physical Society 135:19 (2025) 195003

Authors:

Georgios Vacalis, Atsushi Higuchi, Robert Bingham, Gianluca Gregori

Abstract:

The axion is a hypothetical particle associated with a possible solution to the strong CP problem and is a leading candidate for dark matter. In this paper we investigate the emission of axions by accelerated electrons. We find the emission probability and energy within the WKB approximation for an electron accelerated by an electromagnetic field. As an application, we estimate the number of axions produced by electrons accelerated using two counter-propagating high-intensity lasers and discuss how they would be converted to photons to be detected. We find that, under realistic experimental conditions, competitive model-independent bounds on the coupling between the axion and the electron could be achieved in such an experiment.

Modeling partially-ionized dense plasma using wavepacket molecular dynamics

(2025)

Authors:

Daniel Plummer, Pontus Svensson, Wiktor Jasniak, Patrick Hollebon, Sam M Vinko, Gianluca Gregori

Modelling cosmic-ray transport: magnetised versus unmagnetised motion in astrophysical magnetic turbulence

Journal of Plasma Physics Cambridge University Press 91:5 (2025) E147

Authors:

Jeremiah Lübke, Patrick Reichherzer, Sophie Aerdker, Frederic Effenberger, Mike Wilbert, Horst Fichtner, Rainer Grauer

Abstract:

Cosmic-ray transport in turbulent astrophysical environments remains a multifaceted problem and, despite decades of study, the impact of complex magnetic field geometry – evident in simulations and observations – has only recently received more focussed attention. To understand how ensemble-averaged transport behaviour emerges from the intricate interactions between cosmic rays and structured magnetic turbulence, we run test-particle experiments in snapshots of a strongly turbulent magnetohydrodynamics simulation. We characterise particle–turbulence interactions via the gyro radii of particles and their experienced field-line curvatures, which reveals two distinct transport modes: magnetised motion, where particles are tightly bound to strong coherent flux tubes and undergo large-scale mirroring; and unmagnetised motion, characterised by chaotic scattering through weak and highly tangled regions of the magnetic field. We formulate an effective stochastic process for each mode: compound subdiffusion with long mean free paths for magnetised motion, and a Langevin process with short mean free paths for unmagnetised motion. A combined stochastic walker that alternates between these two modes accurately reproduces the mean squared displacements observed in the test-particle data. Our results emphasise the critical role of coherent magnetic structures in comprehensively understanding cosmic-ray transport and lay a foundation for developing a theory of geometry-mediated transport.

Measurement of turbulent velocity and bounds for thermal diffusivity in laser shock compressed foams by X-ray photon correlation spectroscopy

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics American Physical Society 112 (2025) 045218

Authors:

Charles Heaton, Celine Crepisson, Charlotte Stuart, Gianluca Gregori

Abstract:

Experimental benchmarking of transport coefficients under extreme conditions is required for validation of differing theoretical models. To date, measurement of transport properties of dynamically compressed samples remains a challenge with only a limited number of studies able to quantify transport in high pressure and temperature matter. X-ray photon correlation spectroscopy utilizes coherent X-ray sources to measure time correlations of density fluctuations, thus providing measurements of length and time scale dependent transport properties. Here,we present a first-of-a-kind experiment to conduct X-ray photon correlation spectroscopy in laser shock compression experiments. We report measurement of the turbulent velocity in the wake of a laser driven supersonic shock and place an upper bound on thermal diffusivity in a solid density plasma on nanosecond timescales.