Room Temperature Control of Axial and Basal Antiferromagnetic Anisotropies Using Strain

ACS Nano American Chemical Society (ACS) (2025)

Authors:

Jack Harrison, Junxiong Hu, Charles Godfrey, Jheng-Cyuan Lin, Tim A Butcher, Jörg Raabe, Simone Finizio, Hariom Jani, Paolo G Radaelli

Abstract:

Antiferromagnetic materials are promising platforms for the development of ultrafast spintronics and magnonics due to their robust magnetism, high-frequency relativistic dynamics, low-loss transport, and the ability to support topological textures. However, achieving deterministic control over antiferromagnetic order in thin films is a major challenge due to the formation of multidomain states stabilized by competing magnetic and destressing interactions. Thus, the successful implementation of antiferromagnetic materials necessitates careful engineering of their anisotropy. Here, we demonstrate strain-based, robust control over multiple antiferromagnetic anisotropies and nanoscale domains in the promising spintronic candidate α-Fe2O3 at room temperature. By applying isotropic and anisotropic in-plane strains across a broad temperature-strain phase space, we systematically tune the interplay between magneto-crystalline and magneto-elastic interactions. We observe that strain-driven control steers the system toward an aligned antiferromagnetic state, while preserving topological spin textures, such as merons, antimerons, and bimerons. We directly map the nanoscale antiferromagnetic order using linear dichroic scanning transmission X-ray microscopy integrated with in situ strain and temperature control. A Landau model and micromagnetic simulations reveal how strain reshapes the magnetic energy landscape. These findings suggest that strain could serve as a versatile control mechanism to reconfigure equilibrium or dynamic antiferromagnetic states on demand in α-Fe2O3 for implementation in next-generation spintronic and magnonic devices.

A new dawn for Advances in Physics

Advances In Physics Taylor & Francis ahead-of-print:ahead-of-print (2025) 1-2

Authors:

Paolo Radaelli, Nigel Balmforth

Tailoring a Lead-Free Organic–Inorganic Halobismuthate for Large Piezoelectric Effect

Journal of the American Chemical Society (2025)

Authors:

Esther YH Hung, Benjamin M Gallant, Robert Harniman, Jakob Möbs, Santanu Saha, Khaled Kaja, Charles Godfrey, Shrestha Banerjee, Nikolaos Famakidis, Harish Bhaskaran, Marina R Filip, Paolo Radaelli, Nakita K Noel, Dominik J Kubicki, Harry C Sansom, Henry J Snaith

Abstract:

Molecular piezoelectrics are a potentially disruptive technology, enabling a new generation of self-powered electronics that are flexible, high performing, and inherently low in toxicity. Although significant efforts have been made toward understanding their structural design by targeted manipulation of phase transition behavior, the resulting achievable piezoresponse has remained limited. In this work, we use a low-symmetry, zero-dimensional (0D) inorganic framework alongside a carefully selected 'quasi-spherical' organic cation to manipulate organic-inorganic interactions and thus form the hybrid, piezoelectric material [(CH3)3NCH2I]3Bi2I9. Using variable-temperature single crystal X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy, we demonstrate that this material simultaneously exhibits an order-disorder and displacive symmetry-breaking phase transition. This phase transition is mediated by halogen bonding between the organic and inorganic frameworks and results in a large piezoelectric response, d33 = 161.5 pm/V. This value represents a 4-fold improvement on previously reported halobismuthate piezoelectrics and is comparable to those of commercial inorganic piezoelectrics, thus offering a new pathway toward low-cost, low-toxicity mechanical energy harvesting and actuating devices.

Room temperature control of axial and basal antiferromagnetic anisotropies using strain

(2025)

Authors:

Jack Harrison, Junxiong Hu, Charles Godfrey, Jheng-Cyuan Lin, Tim A Butcher, JÃ rg Raabe, Simone Finizio, Hariom Jani, Paolo G Radaelli

Photo-induced nonvolatile rewritable ferroaxial switching

Science American Association for the Advancement of Science 390:6769 (2025) 195-198

Authors:

Z Zeng, M Först, M Fechner, D Prabhakaran, Pg Radaelli, A Cavalleri

Abstract:

Ultrafast switching of ferroic phases is an active research area with technological potential. Yet, some key challenges remain, ranging from limited speeds in ferromagnets to intrinsic volatility of switched domains owing to depolarizing fields in ferroelectrics. Unlike these ferroic systems, ferroaxial materials host bistable states that preserve spatial-inversion and time-reversal symmetry and are therefore immune to depolarizing fields but also difficult to manipulate with conventional methods. We demonstrate photo-induced switching of ferroaxial order by engineering an effective axial field composed of circularly driven terahertz phonon modes. A switched ferroaxial domain remains stable for many hours and can be reversed back with a second terahertz pulse of opposite helicity. The effects demonstrated in this work may lead to the development of a robust platform for ultrafast information storage.