(py)LIon: A package for simulating trapped ion trajectories

Computer Physics Communications Elsevier 253 (2020) 107187

Authors:

E Bentine, CJ Foot, D Trypogeorgos

Abstract:

The (py)LIon package is a set of tools to simulate the classical trajectories of ensembles of ions in electrodynamic traps. Molecular dynamics simulations are performed using LAMMPS, an efficient and feature-rich program. (py)LIon has been validated by comparison with the analytic theory describing ion trap dynamics. Notable features include GPU-accelerated force calculations, and treating collections of ions as rigid bodies to enable investigations of the rotational dynamics of large, mesoscopic charged particles.

Programme summary

Program Title: (py)LIon

Program Files doi: http://dx.doi.org/10.17632/ywwd9nnxjh.1

Licencing provisions: MIT

Programming language: Matlab, Python

Subprograms used: LAMMPS

Nature of problem: Simulating the dynamics of ions and mesoscopic charged particles confined in an electrodynamic trap using molecular dynamics methods

Solution method: Provide a tested, feature-rich API to configure molecular dynamics calculations in LAMMPS

Unusual features: (py)LIon can treat collections of ions as rigid bodies to simulate larger objects confined in electrodynamic traps. GPU acceleration is provided through the LAMMPS package.

Raman quantum memory with built-in suppression of four-wave-mixing noise

Physical Review A American Physical Society 100:3 (2019) 033801

Authors:

Thomas, Thomas Hird, J Munns, B Brecht, D Saunders, J Nunn, IA Walmsley, PM Ledingham

Abstract:

Quantum memories are essential for large-scale quantum information networks. Along with high efficiency, storage lifetime, and optical bandwidth, it is critical that the memory adds negligible noise to the recalled signal. A common source of noise in optical quantum memories is spontaneous four-wave mixing. We develop and implement a technically simple scheme to suppress this noise mechanism by means of quantum interference. Using this scheme with a Raman memory in warm atomic vapor, we demonstrate over an order of magnitude improvement in noise performance. Furthermore we demonstrate a method to quantify the remaining noise contributions and present a route to enable further noise suppression. Our scheme opens the way to quantum demonstrations using a broadband memory, significantly advancing the search for scalable quantum photonic networks.

Probing multiple-frequency atom-photon interactions with ultracold atoms

New Journal of Physics IOP Publishing 21:5 (2019) 073067

Authors:

Kathrin Luksch, Elliot Bentine, Adam Barker, Shinichi Sunami, TL Harte, Ben Yuen, Christopher Foot

Abstract:

We dress atoms with multiple-radiofrequency fields and investigate the spectrum of transitions driven by an additional probe field. A complete theoretical description of this rich spectrum is presented, in which we find allowed transitions and determine their amplitudes using the resolvent formalism. Experimentally, we observe transitions up to sixth order in the probe field using radiofrequency spectroscopy of Bose-Einstein condensates trapped in single- and multiple-radiofrequency-dressed potentials. We find excellent agreement between theory and experiment, including the prediction and verification of previously unobserved transitions, even in the single-radiofrequency case.

Raman Quantum Memory with Built-In Suppression of Four-wave Mixing Noise

(2019)

Authors:

Sarah E Thomas, Thomas M Hird, Joseph HD Munns, Benjamin Brecht, Dylan J Saunders, Joshua Nunn, Ian A Walmsley, Patrick M Ledingham

Noise suppression via atomic absorption in a Raman quantum memory

Quantum Information and Measurement (QIM) V: Quantum Technologies, OSA Technical Digest (Optical Society of America, 2019) OSA Publishing (2019)

Authors:

Tm Hird, SE Thomas, JHD Munns, B Brecht, DJ Saunders, J Nunn, IA Walmsley, Patrick Ledingham

Abstract:

We demonstrate strong suppression of noise on the output of a Raman quantum memory.