X-ray thermal diffuse scattering as a texture-robust temperature diagnostic for dynamically compressed solids
Journal of Applied Physics AIP Publishing 138:15 (2025) 155903
Authors:
PG Heighway, DJ Peake, T Stevens, JS Wark, B Albertazzi, SJ Ali, L Antonelli, MR Armstrong, C Baehtz, OB Ball, S Banerjee, AB Belonoshko, CA Bolme, V Bouffetier, R Briggs, K Buakor, T Butcher, S Di Dio Cafiso, V Cerantola, J Chantel, A Di Cicco, AL Coleman, J Collier, G Collins, AJ Comley, F Coppari, TE Cowan, G Cristoforetti, H Cynn, A Descamps, F Dorchies, MJ Duff, A Dwivedi, C Edwards, JH Eggert, D Errandonea, G Fiquet, E Galtier, A Laso Garcia, H Ginestet, L Gizzi, A Gleason, S Goede, JM Gonzalez, MG Gorman, M Harmand, NJ Hartley, C Hernandez-Gomez, A Higginbotham, H Höppner, OS Humphries, RJ Husband, TM Hutchinson, H Hwang, DA Keen, J Kim, P Koester, Z Konopkova, D Kraus, A Krygier, L Labate, AE Lazicki, Y Lee, H-P Liermann, P Mason, M Masruri, B Massani, EE McBride, C McGuire, JD McHardy, D McGonegle, RS McWilliams, S Merkel, G Morard, B Nagler, M Nakatsutsumi, K Nguyen-Cong, A-M Norton, II Oleynik, C Otzen, N Ozaki, S Pandolfi, A Pelka, KA Pereira, JP Phillips, C Prescher, T Preston, L Randolph, D Ranjan, A Ravasio, J Rips, D Santamaria-Perez, DJ Savage, M Schoelmerich, J-P Schwinkendorf, S Singh, J Smith, RF Smith, A Sollier, J Spear, C Spindloe, M Stevenson, C Strohm, T-A Suer, M Tang, M Toncian, T Toncian, SJ Tracy, A Trapananti, T Tschentscher, M Tyldesley, CE Vennari, T Vinci, SC Vogel, TJ Volz, J Vorberger, JT Willman, L Wollenweber, U Zastrau, E Brambrink, K Appel, MI McMahon
Abstract:
We present a model of x-ray thermal diffuse scattering (TDS) from a cubic polycrystal with an arbitrary crystallographic texture, based on the classic approach of Warren [B. E. Warren, Acta Crystallogr. 6, 803 (1953)]. We compare the predictions of our model with femtosecond x-ray diffraction patterns gathered from ambient and dynamically compressed rolled copper foils obtained at the High Energy Density instrument of the European X-Ray Free-Electron Laser facility and find that the texture-aware TDS model yields more accurate results than does the conventional powder model owed to Warren. Nevertheless, we further show: with sufficient angular detector coverage, the TDS signal is largely unchanged by sample orientation and in all cases strongly resembles the signal from a perfectly random powder; shot-to-shot fluctuations in the TDS signal resulting from grain-sampling statistics are at the percent level, in stark contrast to the fluctuations in the Bragg-peak intensities (which are over an order of magnitude greater); and TDS is largely unchanged even following texture evolution caused by compression-induced plastic deformation. We conclude that TDS is robust against texture variation, making it a flexible temperature diagnostic applicable just as well to off-the-shelf commercial foils as to ideal powders.