Phase transitions of Fe2O3 under laser shock compression

under review for Physical Review Letters

Authors:

A. Amouretti, C. Crépisson, S. Azadi, D. Cabaret, T. Campbell, D. A. Chin, B. Colin, G. R. Collins, L. Crandall, G. Fiquet, A. Forte, T. Gawne, F. Guyot, P. Heighway, H. Lee, D. McGonegle, B. Nagler, J. Pintor, D. Polsin, G. Rousse, Y. Shi, E. Smith, J. S. Wark, S. M. Vinko, M. Harmand

Abstract:

We present in-situ x-ray diffraction and velocity measurements of Fe2O3 under laser shock compression at pressures between 38-116 GPa. None of the phases reported by static compression studies were observed. Instead, we observed an isostructural phase transition from α-Fe2O3 to a new α′-Fe2O3 phase at a pressure of 50-62 GPa. The α′-Fe2O3 phase differs from α-Fe2O3 by an 11% volume drop and a different unit cell compressibility. We further observed a two-wave structure in the velocity profile, which can be related to an intermediate regime where both α and α′ phases coexist. Density functional theory calculations with a Hubbard parameter indicate that the observed unit cell volume drop can be associated with a spin transition following a magnetic collapse.

Proton imaging of high-energy-density laboratory plasmas

Reviews of Modern Physics American Physical Society 95:4 (2023) 045007

Authors:

Derek B Schaeffer, Archie FA Bott, Marco Borghesi, Kirk A Flippo, William Fox, Julian Fuchs, Chikang Li, Fredrick H Séguin, Hye-Sook Park, Petros Tzeferacos, Louise Willingale

Abstract:

Proton imaging has become a key diagnostic for measuring electromagnetic fields in high-energy-density (HED) laboratory plasmas. Compared to other techniques for diagnosing fields, proton imaging is a measurement that can simultaneously offer high spatial and temporal resolution and the ability to distinguish between electric and magnetic fields without the protons perturbing the plasma of interest. Consequently, proton imaging has been used in a wide range of HED experiments, from inertial-confinement fusion to laboratory astrophysics. An overview is provided on the state of the art of proton imaging, including a discussion of experimental considerations like proton sources and detectors, the theory of proton-imaging analysis, and a survey of experimental results demonstrating the breadth of applications. Topics at the frontiers of proton-imaging development are also described, along with an outlook on the future of the field.

Energy gain of wetted-foam implosions with auxiliary heating for inertial fusion studies

Plasma Physics and Controlled Fusion IOP Publishing 66:2 (2023) 025005

Authors:

Robert W Paddock, Tat S Li, Eugene Kim, Jordan J Lee, Heath Martin, Rusko T Ruskov, Stephen Hughes, Steven J Rose, Christopher D Murphy, Robbie HH Scott, Robert Bingham, Warren Garbett, Vadim V Elisseev, Brian M Haines, Alex B Zlystra, E Mike Campbell, Cliff A Thomas, Tom Goffrey, Tony D Arber, Ramy Aboushelbaya, Marko W Von der Leyen, Robin HW Wang, Abigail A James, Iustin Ouatu, Robin Timmis

Abstract:

Low convergence ratio implosions (where wetted-foam layers are used to limit capsule convergence, achieving improved robustness to instability growth) and auxiliary heating (where electron beams are used to provide collisionless heating of a hotspot) are two promising techniques that are being explored for inertial fusion energy applications. In this paper, a new analytic study is presented to understand and predict the performance of these implosions. Firstly, conventional gain models are adapted to produce gain curves for fixed convergence ratios, which are shown to well-describe previously simulated results. Secondly, auxiliary heating is demonstrated to be well understood and interpreted through the burn-up fraction of the deuterium-tritium fuel, with the gradient of burn-up with respect to burn-averaged temperature shown to provide good qualitative predictions of the effectiveness of this technique for a given implosion. Simulations of auxiliary heating for a range of implosions are presented in support of this and demonstrate that this heating can have significant benefit for high gain implosions, being most effective when the burn-averaged temperature is between 5 and 20 keV.

All-optical GeV electron bunch generation in a laser-plasma accelerator via truncated-channel injection.

Physical Review Letters American Physical Society 131:24 (2023) 245001

Authors:

A Picksley, J Chappell, E Archer, N Bourgeois, J Cowley, Dr Emerson, L Feder, Xj Gu, O Jakobsson, Aj Ross, W Wang, R Walczak, Sm Hooker

Abstract:

We describe a simple scheme, truncated-channel injection, to inject electrons directly into the wakefield driven by a high-intensity laser pulse guided in an all-optical plasma channel. We use this approach to generate dark-current-free 1.2 GeV, 4.5% relative energy spread electron bunches with 120 TW laser pulses guided in a 110 mm-long hydrodynamic optical-field-ionized plasma channel. Our experiments and particle-in-cell simulations show that high-quality electron bunches were only obtained when the drive pulse was closely aligned with the channel axis, and was focused close to the density down ramp formed at the channel entrance. Start-to-end simulations of the channel formation, and electron injection and acceleration show that increasing the channel length to 410 mm would yield 3.65 GeV bunches, with a slice energy spread ∼5×10^{-4}.

Quantitative proton radiography and shadowgraphy for arbitrary intensities

High Energy Density Physics Elsevier 49 (2023) 101067

Authors:

JR Davies, PV Heuer, AFA Bott