Dark matter in the central regions of early type galaxies
EAS Publications Series 20 (2006) 127-130
Abstract:
We investigate the well-known correlations between the dynamical rnass-to-light ratio M/L and other global observables of elliptical (E) arid lenticular (S0) galaxies. We construct two-integral Jeans and three-integral Schwarzschild dynamical models for a sample of 25 E/S0 galaxies with SAURON integral-field stellar kinematics to about one effective (half-light) radius Re. The comparison of the dynamical M/L with the (M/L)pop inferred from the analysis of the stellar population, indicates that dark matter in early-type galaxies contributes ∼30% of the total mass inside one Re, in agreement with previous studies, with significant variations from galaxy to galaxy. Our results suggest a variation in M/L at constant (M/L)pop, which seems to be linked to the galaxy dynamics. We speculate that fast rotating galaxies have lower dark matter fractions than the slow rotating and generally more massive ones. © EAS, EDP Sciences 2006.The Stellar Mass Density at z~6 from Spitzer Imaging of i-drop Galaxies
(2006)
Sinfoni integral field spectroscopy of z ∼ 2 UV-selected galaxies: Rotation curves and dynamical evolution
Astrophysical Journal 645:2 I (2006) 1062-1075
Abstract:
We present ∼0″5 resolution near-infrared integral field spectroscopy of the Hα line emission of 14 z ∼ 2 UV-selected BM/BX galaxies, obtained with SINFONI at the ESO Very Large Telescope. The average Hα half-light radius is r1/2 ≈4 h70-1 kpc, and line emission is detected over ≳20 h70-1 kpc in several sources. In nine galaxies, we detect spatially resolved velocity gradients, from 40 to 410 km s-1 over ∼10 h70-1 kpc. The kinematics of the larger systems are generally consistent with orbital motions. Four galaxies are well described by rotating clumpy disks, and we extracted rotation curves out to radii ≳10 h 70-1 kpc. One or two galaxies exhibit signatures more consistent with mergers. Analyzing all 14 galaxies in the framework of rotating disks, we infer mean inclination- and beam-corrected maximum circular velocities of vc ∼ 180 ± 90 km s-1 and dynamical masses from ∼0.5 to 25 × 1010 h70-1 M ⊙ within r1/2- The specific angular momenta of our BM/BX galaxies are similar to those of local late-type galaxies. Moreover, the specific angular momenta of their baryons are comparable to those of their dark matter halos. Extrapolating from the average vc at 10 h 70-1 kpc, the virial mass of the typical halo of a galaxy in our sample is 1011.7±0.5 h70-1 M ⊙. Kinematic modeling of the three best cases implies a ratio of vc to local velocity dispersion vc/σ ∼ 2-4 and, accordingly, a large geometric thickness. We argue that this suggests a mass accretion (alternatively, gas exhaustion) timescale of ∼500 Myr. We also argue that if our BM/BX galaxies were initially gas-rich, their clumpy disks would subsequently lose their angular momentum and form compact bulges on a timescale of ∼1 Gyr. © 2006. The American Astronomical Socieity. All rights reserved.The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies and Implications for the Space Density of the Most Massive Black Holes
(2006)
Probing unexplored territories with MUSE: a second generation instrument for the VLT
ArXiv astro-ph/0606329 (2006)