Dynamic shocks powered by a wide, relativistic, super-Eddington outflow launched by an accreting neutron star in the mid-20th century
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag163
Abstract:
Simulating radio emission from flickering AGN jets: travelling shocks and hotspot brightening
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 546:2 (2026) stag131
Abstract:
Calibrating Mid-Infrared Emission Features As Diagnostics of Star Formation in Infrared-Luminous Galaxies via Radiative Transfer Modeling
(2026)
Cosmic rays, gamma rays and neutrinos from discrete black hole X-ray binary ejecta
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag080
Abstract:
Abstract The origin of cosmic rays from outside the Solar system are unknown, as they are deflected by the interstellar magnetic field. Supernova remnants are the main candidate for cosmic rays up to PeV energies but due to lack of evidence, they cannot be concluded as the sources of the most energetic Galactic CRs. We investigate discrete ejecta produced in state transitions of black hole X-ray binary systems as a potential source of cosmic rays, motivated by recent >100 TeV γ-ray detections by LHAASO. Starting from MAXI J1820+070, we examine the multi-wavelength observations and find that efficient particle acceleration may take place (i.e. into a robust power-law), up to ∼2 × 1016μ−1/2 eV, where μ is the ratio of particle energy to magnetic energy. From these calculations, we estimate the global contribution of ejecta to the entire Galactic spectrum to be $\sim 1~{{\ \rm per\ cent}}$, with the cosmic ray contribution rising to $\sim 5~{{\ \rm per\ cent}}$ at PeV energies, assuming roughly equal energy in non-thermal protons, non-thermal electrons and magnetic fields. In addition, we calculate associated γ-ray and neutrino spectra of the MAXI J1820+070 ejecta to investigate new detection methods with CTAO, which provide strong constraints on initial ejecta size of order 107 Schwarzschild radii (10−5 pc) assuming a period of adiabatic expansion.Exploring the quasar disc-wind-jet connection with LoTSS and SDSS
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag065