The Velocity Field Olympics: assessing velocity field reconstructions with direct distance tracers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:2 (2025) staf1960

Authors:

Richard Stiskalek, Harry Desmond, Julien Devriendt, Adrianne Slyz, Guilhem Lavaux, Michael J Hudson, Deaglan J Bartlett, Hélène M Courtois

Abstract:

ABSTRACT The peculiar velocity field of the local Universe provides direct insights into its matter distribution and the underlying theory of gravity, and is essential in cosmological analyses for modelling deviations from the Hubble flow. Numerous methods have been developed to reconstruct the density and velocity fields at $z \lesssim 0.05$, typically constrained by redshift-space galaxy positions or by direct distance tracers such as the Tully–Fisher relation, the Fundamental Plane, or Type Ia supernovae. We introduce a validation framework to evaluate the accuracy of these reconstructions against catalogues of direct distance tracers. Our framework assesses the goodness-of-fit of each reconstruction using Bayesian evidence, residual redshift discrepancies, velocity scaling, and the need for external bulk flows. Applying this framework to a suite of reconstructions – including those derived from the Bayesian Origin Reconstruction from Galaxies (BORG) algorithm and from linear theory – we find that the non-linear BORG reconstruction consistently outperforms others. We highlight the utility of such a comparative approach for supernova or gravitational wave cosmological studies, where selecting an optimal peculiar velocity model is essential. Additionally, we present calibrated bulk flow curves predicted by the reconstructions and perform a density–velocity cross-correlation using a linear theory reconstruction to constrain the growth factor, yielding $S_8 = 0.793 \pm 0.035$. The result is in good agreement with both weak lensing and Planck, but is in strong disagreement with some peculiar velocity studies.

Discovery of a z ∼ 0.8 ultra steep spectrum radio halo in the MeerKAT-South Pole Telescope Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:1 (2025) staf2022

Authors:

Isaac S Magolego, Roger P Deane, Kshitij Thorat, Ian Heywood, William Rasakanya, Manuel Aravena, Lindsey E Bleem, Maria G Campitiello, Kedar A Phadke, Justin Spilker, Joaquin D Vieira, Dazhi Zhou, Bradford A Benson, Scott Chapman, Ana Posses, Tim Schrabback, Antony Stark, David Vizgan

Abstract:

ABSTRACT Radio haloes are diffuse synchrotron sources that trace the turbulent intracluster medium (ICM) of galaxy clusters. However, their origin remains unknown. Two main formation models have been proposed: the hadronic model, in which relativistic electrons are continuously injected by cosmic-ray protons; and the leptonic turbulent re-acceleration model, where cluster mergers re-energize electrons in situ. A key discriminant between the two models would be the existence of ultra-steep spectrum radio haloes (USSRHs), which can only be produced through turbulent re-acceleration. Here, we report the discovery of an USSRH in the galaxy cluster SPT-CLJ2337–5942 at redshift $z = 0.78$ in the MeerKAT-South Pole Telescope 100 deg$^2$ UHF (0.58–1.09 GHz) survey. This discovery is noteworthy for two primary reasons: it is the highest redshift USSRH system to date; and the close correspondence of the radio emission with the thermal ICM as traced by Chandra X-ray observations, further supporting the leptonic re-acceleration model. The halo is underluminous for its mass, consistent with a minor merger origin, which produces steep-spectrum, lower luminosity haloes. This result demonstrates the power of wide-field, high-fidelity, low-frequency ($\lesssim 1$ GHz) surveys like the MeerKAT-SPT 100 deg$^2$ programme to probe the origin and evolution of radio haloes over cosmic time, ahead of the Square Kilometre Array.

The critical role of clumping in line-driven disc winds

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2183

Authors:

Amin Mosallanezhad, Christian Knigge, Nicolas Scepi, Knox S Long, James H Matthews, Stuart A Sim, Austen Wallis

Abstract:

Abstract Radiation pressure on spectral lines is a promising mechanism for powering disc winds from accreting white dwarfs (AWDs) and active galactic nuclei (AGN). However, in radiation-hydrodynamic simulations, overionization reduces line opacity and quenches the line force, which suppresses outflows. Here, we show that small-scale clumping can resolve this problem. Adopting the microclumping approximation, our new simulations demonstrate that even modest volume filling factors (fV ∼ 0.1–0.01) can dramatically increase the wind mass-loss rate by lowering its ionization state—raising $\dot{M}_{\rm wind}$ and yielding $\dot{M}_{\rm wind}/\dot{M}_{\rm acc}\!\gtrsim \!10^{-4}$ for such modest filling factors. Clumpy wind models produce the UV resonance lines that are absent from smooth wind models. They can also reprocess a significant fraction of the disc luminosity and thus dramatically modify the broad-band optical/UV SED. Given that theory and observations indicate that disc winds are intrinsically inhomogeneous, clumping offers a physically motivated solution. Together, these results provide the first robust, self-consistent demonstration that clumping can reconcile line-driven wind theory with observations across AWDs and AGNs.

The JADES Origins Field: A New JWST Deep Field in the JADES Second NIRCam Data Release

The Astrophysical Journal: Supplement Series American Astronomical Society 281:2 (2025) 50

Authors:

Daniel J Eisenstein, Benjamin D Johnson, Brant Robertson, Sandro Tacchella, Kevin Hainline, Peter Jakobsen, Roberto Maiolino, Nina Bonaventura, Andrew J Bunker, Alex J Cameron, Phillip A Cargile, Emma Curtis-Lake, Ryan Hausen, Dávid Puskás, Marcia Rieke, Fengwu Sun, Christopher NA Willmer, Chris Willott, Stacey Alberts, Santiago Arribas, William M Baker, Stefi Baum, Rachana Bhatawdekar, Stefano Carniani, Jacopo Chevallard, Gareth C Jones, Aayush Saxena

Abstract:

We summarize the properties and initial data release of the JADES Origins Field (JOF), the longest single pointing yet imaged with the James Webb Space Telescope (JWST). This field falls within the GOODS-S region about 8′ southwest of the Hubble Ultra Deep Field (HUDF), where it was formed initially in Cycle 1 as a parallel field of HUDF spectroscopic observations within the JWST Advanced Deep Extragalactic Survey (JADES). This imaging was greatly extended in Cycle 2 program 3215, which observed the JOF for 5 days in six medium-band filters, seeking robust candidates for z > 15 galaxies. This program also includes ultradeep parallel NIRSpec spectroscopy (up to 91 hr on source, summing over the dispersion modes) on the HUDF. Cycle 3 observations from program 4540 added 20 hr of NIRCam slitless spectroscopy and F070W imaging to the JOF. With these three campaigns, the JOF was observed for 380 open-shutter hours with NIRCam using 15 imaging filters and two grism bandpasses. Further, parts of the JOF have deep 43 hr MIRI observations in F770W. Taken together, the JOF is one of the most compelling deep fields available with JWST and a powerful window into the early Universe. This paper presents the second data release from JADES, featuring the imaging and catalogs from the year 1 JOF observations.

A MeerKAT view of the parsec-scale jets in the black-hole X-ray binary GRS 1758–258

Astronomy & Astrophysics EDP Sciences 704 (2025) A239-A239

Authors:

I Mariani, SE Motta, P Atri, JH Matthews, RP Fender, J Martí, PL Luque-Escamilla, I Heywood

Abstract:

Context. Jets from accreting black-hole (BH) X-ray binary (XRB) systems are powerful outflows that release a large fraction of the accretion energy to the surrounding environment, providing a feedback mechanism that may alter the properties of the interstellar medium (ISM). Studying accretion processes alongside their feedback on the environment may enable one to estimate the matter and energy input and output around accreting BHs. Aims. We aim to study the extended jet structures around the BH XRB GRS 1758–258. First observed in VLA data, these parsec-scale jet structures originate from jet-ISM interaction, and are characterised by a peculiar Z-shape morphology. Methods. Using the MeerKAT radio telescope we observed GRS 1758–258 in the L band for a total exposure of 7 hr. Following a calorimetry-based method originally proposed for active galactic nuclei (AGN) and later applied to X-ray binaries, we estimated the properties of the jets and of the surrounding ISM. Results. We detect a jet and a counter-jet terminating in bow-shock structures induced by their interaction with the ISM. We identified both synchrotron and bremsstrahlung emitting regions within the northern lobe, while the southern lobe is dominated by thermal emission. We measured an ISM particle density of between 10 and 40 cm −3 across both the northern and southern jets, slightly lower in the northern region. The estimated ages of the two jet sides range from 6 to 51 kyr, with the northern jet seemingly younger than the southern one. The time-averaged transferred jet energy for both jets falls between 4.4 × 10 33 and 3.3 × 10 36 erg s −1 , with slight differences between the northern and southern jets ascribed to different local environmental conditions. Comparing the new MeerKAT with archival VLA observations, we measured a proper motion of a portion of the northern jet of ∼130 mas/year. Conclusions. Jet-ISM interaction structures on both sides of GRS 1758–258 reveal different local ISM properties. The comparison between the morphology of these structures and those from other XRBs indicates that the lobes in GRS 1758–258 may be younger and may result from a number of jet activity phases. The estimated time-averaged energy transferred to the environment is slightly lower than, but comparable to, that observed in other XRBs, consistent with the younger age of the lobes in GRS 1758–258 relative to those of other systems.