Hydrodynamic simulations of black hole evolution in AGN discs II: inclination damping for partially embedded satellites

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:4 (2025) 3768-3782

Authors:

Henry Whitehead, Connar Rowan, Bence Kocsis

Abstract:

ABSTRACT We investigate the evolution of black holes on orbits with small inclinations ($i < 2^\circ$) to the gaseous discs of active galactic nuclei (AGNs). We perform 3D adiabatic hydrodynamic simulations within a shearing frame, studying the damping of inclination by black hole-gas gravitation. We find that for objects with $i< 3H_0R_0^{-1}$, where $H_0R_0^{-1}$ is the disc aspect ratio, the inclination lost per mid-plane crossing is proportional to the inclination preceding the crossing, resulting in a net exponential decay in inclination. For objects with $i>3H_0R_0^{-1}$, damping efficiency decreases for higher inclinations. We consider a variety of different AGN environments, finding that damping is stronger for systems with a higher ambient Hill mass: the initial gas mass within the BH sphere of influence. We provide a fitting formula for the inclination changes as a function of Hill mass. We find reasonable agreement between the damping driven by gas gravity in the simulations and the damping driven by accretion under a Hill-limited Bondi–Hoyle–Lyttleton prescription. We find that gas dynamical friction consistently overestimates the strength of damping, especially for lower inclination systems, by at least an order of magnitude. For regions in the AGN disc where coplanar binary black hole formation by gas dissipation is efficient, we find that the simulated damping time-scales are especially short with $\tau _d < 10P_\mathrm{SMBH}$. We conclude that as the time-scales for inclination damping are shorter than the expected interaction time between isolated black holes, the vast majority of binaries formed from gas capture should form from components with negligible inclination to the AGN disc.

PowerBin: Fast Adaptive Data Binning with Centroidal Power Diagrams

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1726

Abstract:

Abstract Adaptive binning is a crucial step in the analysis of large astronomical datasets, such as those from integral-field spectroscopy, to ensure a sufficient signal-to-noise ratio ($\mathcal {S/N}$) for reliable model fitting. However, the widely-used Voronoi-binning method and its variants suffer from two key limitations: they scale poorly with data size, often as $\mathcal {O}(N^2)$, creating a computational bottleneck for modern surveys, and they can produce undesirable non-convex or disconnected bins. I introduce PowerBin, a new algorithm that overcomes these issues. I frame the binning problem within the theory of optimal transport, for which the solution is a Centroidal Power Diagram (CPD), guaranteeing convex bins. Instead of formal CPD solvers, which are unstable with real data, I develop a fast and robust heuristic based on a physical analogy of packed soap bubbles. This method reliably enforces capacity constraints even for non-additive measures like $\mathcal {S/N}$ with correlated noise. I also present a new bin-accretion algorithm with $\mathcal {O}(N\log N)$ complexity, removing the previous bottleneck. The combined PowerBin algorithm scales as $\mathcal {O}(N\log N)$, making it about two orders of magnitude faster than previous methods on million-pixel datasets. I demonstrate its performance on a range of simulated and real data, showing it produces high-quality, convex tessellations with excellent $\mathcal {S/N}$ uniformity. The public Python implementation provides a fast, robust, and scalable tool for the analysis of modern astronomical data.

High-Order Stellar Kinematic in MaNGA integral-field spectroscopy survey: classification, stellar population, and the impact of galaxy bars and mergers

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1760

Authors:

Youquan Fu, Michele Cappellari, Kai Zhu, Shude Mao, Shengdong Lu

Abstract:

Abstract We extract with ppxf and analyse the high-order stellar kinematic moments h3 (related to skewness) and h4 (related to kurtosis) in a complete subsample of 2230 galaxies with well-sampled line-of-sight velocity distributions (σe ≳ 140 km/s) from the final data release of 10010 unique galaxies of the MaNGA survey. To reduce template mismatch, we created a stellar library based on MaStar. We used proxies for the specific angular momentum parameter ($\lambda _{R_\mathrm{e}}$) and ellipticity (ϵ) to distinguish between fast and slow rotators. Using the Pearson correlation coefficient between spatially resolved h3 and V/σ within the isophotes of 2.5 half-light radii (Re), we classified 1,599 fast rotators into: (i) 1,073 galaxies showing a strong h3 versus V/σ anti-correlation, indicative of normal rotating stellar disks as observed in earlier studies. (ii) 526 galaxies exhibiting weak or no correlation between h3 and V/σ. These galaxies are likely disturbed, showing signs of bars or merging. Further inspection revealed that 85 galaxies from the latter group contain an anti-correlated inner disk, with half of these inner disks composed of younger stellar populations, indicative of recent gas accretion and nuclear star formation. This catalogue presents measurements of high-order stellar kinematic moments, providing a basis for exploring their potential links with the kinematic structures of galaxies. We have made the newly extracted high-order kinematics publicly available for further studies on stellar dynamics and galaxy formation.

Impact of Cosmic Ray-driven Outflows on Ly α Emission in Cosmological Simulations

The Astrophysical Journal American Astronomical Society 992:1 (2025) 67

Authors:

Taysun Kimm, Julien Devriendt, Francisco Rodríguez Montero, Adrianne Slyz, Jérémy Blaizot, Harley Katz, Beomchan Koh, Hyunmi Song

Abstract:

Cosmic ray (CR) feedback has been proposed as a powerful mechanism for driving warm gas outflows in galaxies. We use cosmological magnetohydrodynamic simulations to investigate the impact of CR feedback on neutral hydrogen (H i) in a 1011 M⊙ dark matter halo at 2 < z < 4. To this end, we postprocess the simulations with ionizing radiative transfer and perform Monte Carlo Lyman-α (Lyα) transfer calculations. CR feedback reduces H i column densities around young stars, thereby allowing more Lyα photons to escape and consequently offering a better match to the Lyα luminosities of observed Lyα emitters. Although galaxies with CR-driven outflows have more extended H i in the circumgalactic medium, two Lyα line properties sensitive to optical depth and gas kinematic—the location of the red peak relative to the Lyα line center in velocity space (vred) and relative strength of the blue-to-red peaks (B/R)—cannot distinguish between the CR-driven and non-CR simulations. This is because Lyα photons propagate preferentially along low H i density channels created by the ionizing radiation, thereby limiting the scattering with volume-filling H i. In contrast, the observed low flux ratios between the valley and peak and the surface brightness profiles are better reproduced in the model with CR-driven outflows because the Lyα photons interact more before escaping, rather than being destroyed by dust as is the case in the non-CR simulation. We discuss the potential cause of the paucity of sightlines in simulations that exhibit prominent red peaks and large vred, which may require the presence of more volume-filling H i.

The Interstellar Medium in I Zw 18 Seen with JWST/MIRI. I. Highly Ionized Gas

The Astrophysical Journal American Astronomical Society 992:1 (2025) 48

Authors:

LK Hunt, A Aloisi, MG Navarro, RJ Rickards Vaught, BT Draine, A Adamo, F Annibali, D Calzetti, S Hernandez, BL James, M Mingozzi, R Schneider, M Tosi, B Brandl, MG del Valle-Espinosa, F Donnan, AS Hirschauer, M Meixner, D Rigopoulou, CT Richardson, JM Levanti, AR Basu-Zych

Abstract:

We present JWST/MIRI spectra from the Medium-Resolution Spectrometer of I Zw 18, a nearby dwarf galaxy with a metallicity of ∼3% solar. Its proximity enables a detailed study of highly ionized gas that can be interpreted in the context of newly discovered high-redshift dwarf galaxies. We derive aperture spectra centered on 11 regions of interest; the spectra show very low extinction, AV ≲ 0.1, consistent with optical determinations. The gas is highly ionized; we have detected 10 fine-structure lines, including [O iv] 25.9 μm with an ionization potential (IP) of ∼55 eV, and [Ne v] 14.3 μm with an IP of ∼97 eV. The ionization state of I Zw 18 falls at the extreme upper end of all of the line ratios we analyzed, but not coincident with galaxies containing an accreting massive black hole (active galactic nucleus). Comparison of the line ratios with state-of-the-art photoionization and shock models suggests that the high-ionization state in I Zw 18 is not due to shocks. Rather, it can be attributed to metal-poor stellar populations with a self-consistent contribution of X-ray binaries or ultra-luminous X-ray sources. It could also be partially due to a small number of hot low-metallicity Wolf−Rayet stars ionizing the gas; a small fraction (a few percent) of the ionization could come from an intermediate-mass black hole. Our spectroscopy also revealed four 14 μm continuum sources, ≳30–100 pc in diameter, three of which were not previously identified. Their properties are consistent with H ii regions ionized by young star clusters.