Black hole merger rates in AGN: contribution from gas-captured binaries

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1896

Authors:

Connar Rowan, Henry Whitehead, Bence Kocsis

Abstract:

Abstract Merging black hole (BH) binaries in AGN discs formed through two-body scatterings via the “gas-capture” process may explain a significant fraction of BH mergers in AGN and a non-negligible contribution to the observed rate from LIGO-VIRGO-KAGRA. We perform Monte Carlo simulations of binary BH formation, evolution and mergers across the observed AGN mass function using a novel physically motivated treatment for the gas-capture process derived from hydrodynamical simulations of BH-BH encounters in AGN. Our models suggest that gas-captured binaries could result in merger rates of 0.73 − 7.1Gpc−3yr−1. Mergers from AGN are dominated by AGN with supermassive BH masses of ∼107M⊙, with 90 % of mergers occurring in the range ∼106M⊙ − 108M⊙. The merging mass distribution is flatter than the initial BH mass power law by a factor Δξ = 1.1 − 1.2, as larger BHs align with the disc and form binaries more efficiently. Similarly, the merging mass ratio distribution is flatter, therefore the AGN channel could explain high mass and unequal mass ratio detections such as GW190521 and GW190814. Using a simpler dynamical friction treatment for the binary formation process, the results are similar, where the primary bottleneck is the alignment time with the disc. The most influential parameters are the anticipated number of BHs and their mass function. Given the many uncertainties that remain in the AGN channel, we expect the true uncertainty extends beyond our predicted rates. Nonetheless, we conclude that AGN remain an important channel for consideration, particularly for gravitational wave detections involving one or two high mass BHs.

MIGHTEE-H  i : The MiM ☆ relation of massive galaxies and the H  i mass function at 0.25 < z < 0.5

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1857

Authors:

Hengxing Pan, Matt J Jarvis, Ian Heywood, Tariq Yasin, Natasha Maddox, Mario G Santos, Maarten Baes, Anastasia A Ponomareva, Sambatriniaina HA Rajohnson

Abstract:

Abstract The relationship between the already formed stellar mass in a galaxy and the gas reservoir of neutral atomic hydrogen, is a key element in our understanding of how gas is turned into stars in galaxy haloes. In this paper, we measure the $M_{\rm H\, \small {\rm i}}-M_{\star }$ relation based on a stellar-mass selected sample at 0.25 < z < 0.5 and the MIGHTEE-H i DR1 spectral data. Using a powerful Bayesian stacking technique, for the first time we are also able to measure the underlying bivariate distribution of H i mass and stellar mass of galaxies with M⋆ > 109.5 M⊙, finding that an asymmetric underlying H i distribution is strongly preferred by our complete samples. We define the concepts of the average of the logarithmic H i mass, $\langle \log _{10}(M_{\rm H\, \small {\rm i}})\rangle$, and the logarithmic average of the H i mass, $\log _{10}(\langle M_{\rm H\, \small {\rm i}}\rangle )$, and find that the difference between $\langle \log _{10}(M_{\rm H\, \small {\rm i}})\rangle$ and $\log _{10}(\langle M_{\rm H\, \small {\rm i}}\rangle )$ can be as large as ∼0.5 dex for the preferred asymmetric H i distribution. We observe shallow slopes in the underlying $M_{\rm H\, \small {\rm i}}-M_{\star }$ scaling relations, suggesting the presence of an upper H i mass limit beyond which a galaxy can no longer retain further H i gas. From our bivariate distribution we also infer the H i mass function at this redshift and find tentative evidence for a decrease of 2-10 times in the co-moving space density of the most H i massive galaxies up to z ∼ 0.5.

MIGHTEE-H i: the direct detection of neutral hydrogen in galaxies at z > 0.25

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:1 (2025) 193-210

Authors:

Matt J Jarvis, Madalina N Tudorache, I Heywood, Anastasia A Ponomareva, M Baes, Natasha Maddox, Kristine Spekkens, Andreea Vărăşteanu, CL Hale, Mario G Santos, RG Varadaraj, Elizabeth AK Adams, Alessandro Bianchetti, Barbara Catinella, Jacinta Delhaize, M Maksymowicz-Maciata, Pavel E Mancera Piña, Hengxing Pan, Amélie Saintonge, Gauri Sharma, O Ivy Wong

Abstract:

ABSTRACT Atomic hydrogen constitutes the gas reservoir from which molecular gas and star formation in galaxies emerges. However, the weakness of the line means it has been difficult to directly detect in all but the very local Universe. Here, we present results from the first search using the MeerKAT International Tiered Extragalactic Exploration (MIGHTEE) Survey for high-redshift ($z>0.25$) H i emission from individual galaxies. By searching for 21-cm emission centred on the position and redshift of optically selected emission-line galaxies we overcome difficulties that hinder untargeted searches. We detect 11 galaxies at $z>0.25$, forming the first sample of $z>0.25$ detections with an interferometer, with the highest redshift detection at $z = 0.3841$. We find they have much larger H i masses than their low-redshift H i-selected counterparts for a given stellar mass. This can be explained by the much larger cosmological volume probed at these high redshifts, and does not require any evolution of the H i mass function. We make the first-ever measurement of the baryonic Tully–Fisher relation (bTFr) with H i at $z>0.25$ and find consistency with the local bTFr, but with tentative evidence of a flattening in the relation at these redshifts for higher-mass objects. This may signify evolution, in line with predictions from hydrodynamic simulations, or that the molecular gas mass in these high-mass galaxies could be significant. This study paves the way for future studies of H i beyond the local Universe, using both searches targeted at known objects and via pure H i selection.

MIGHTEE-H  i : the direct detection of neutral hydrogen in galaxies at z > 0.25

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 544:1 (2025) 193-210

Authors:

Matt J Jarvis, Madalina N Tudorache, I Heywood, Anastasia A Ponomareva, M Baes, Natasha Maddox, Kristine Spekkens, Andreea Vărăşteanu, CL Hale, Mario G Santos, RG Varadaraj, Elizabeth AK Adams, Alessandro Bianchetti, Barbara Catinella, Jacinta Delhaize, M Maksymowicz-Maciata, Pavel E Mancera Piña, Hengxing Pan, Amélie Saintonge, Gauri Sharma, O Ivy Wong

Abstract:

ABSTRACT Atomic hydrogen constitutes the gas reservoir from which molecular gas and star formation in galaxies emerges. However, the weakness of the line means it has been difficult to directly detect in all but the very local Universe. Here, we present results from the first search using the MeerKAT International Tiered Extragalactic Exploration (MIGHTEE) Survey for high-redshift ($z>0.25$) H i emission from individual galaxies. By searching for 21-cm emission centred on the position and redshift of optically selected emission-line galaxies we overcome difficulties that hinder untargeted searches. We detect 11 galaxies at $z>0.25$, forming the first sample of $z>0.25$ detections with an interferometer, with the highest redshift detection at $z = 0.3841$. We find they have much larger H i masses than their low-redshift H i-selected counterparts for a given stellar mass. This can be explained by the much larger cosmological volume probed at these high redshifts, and does not require any evolution of the H i mass function. We make the first-ever measurement of the baryonic Tully–Fisher relation (bTFr) with H  i at $z>0.25$ and find consistency with the local bTFr, but with tentative evidence of a flattening in the relation at these redshifts for higher-mass objects. This may signify evolution, in line with predictions from hydrodynamic simulations, or that the molecular gas mass in these high-mass galaxies could be significant. This study paves the way for future studies of H i beyond the local Universe, using both searches targeted at known objects and via pure H i selection.

JADES-GS-z14-1: A Compact, Faint Galaxy at z ≈ 14 with Weak Metal Lines from Extremely Deep JWST MIRI, NIRCam, and NIRSpec Observations

The Astrophysical Journal American Astronomical Society 992:2 (2025) 212

Authors:

Zihao Wu, Daniel J Eisenstein, Benjamin D Johnson, Peter Jakobsen, Stacey Alberts, Santiago Arribas, William M Baker, Andrew J Bunker, Stefano Carniani, Stéphane Charlot, Jacopo Chevallard, Mirko Curti, Emma Curtis-Lake, Francesco D’Eugenio, Kevin Hainline, Jakob M Helton, Tiger Yu-Yang Hsiao, Xihan Ji, Zhiyuan Ji, Tobias J Looser, George Rieke, Pierluigi Rinaldi, Brant Robertson, Jan Scholtz, Fengwu Sun, Sandro Tacchella, James AA Trussler, Christina C Williams, Christopher NA Willmer, Chris Willott, Joris Witstok, Yongda Zhu

Abstract:

JWST has shed light on galaxy formation and metal enrichment within 300 Myr of the Big Bang. While luminous galaxies at z > 10 often show significant [O iii] λλ4959, 5007 emission lines, it remains unclear whether such features are prevalent among fainter, more typical galaxies due to observational limits. We present deep imaging and spectroscopy of JADES-GS-z14-1 at zspec=13.86−0.05+0.04 , currently the faintest spectroscopically confirmed galaxy at z ≈ 14. It serendipitously received 70.7 hr of MIRI/F770W imaging in the JWST Advanced Deep Extragalactic Survey (JADES), the deepest MIRI exposure for any high-redshift galaxy to date. Nonetheless, we detect only tentative F770W emission of 7.9 ± 2.8 nJy at 2.8σ significance, constraining the total equivalent width of [O iii] λλ4959, 5007 + Hβ to 520−380+400 Å, weaker than most z > 10 galaxies with MIRI detections. This source is unresolved across 16 NIRCam bands, implying a physical radius ≲50 pc. NIRSpec/PRISM spectroscopy totaling 56 hr reveals no rest-frame ultraviolet emission lines above 3σ. Stellar population synthesis suggests a stellar mass ∼4 × 107 M⊙ and a star formation rate ∼2 M⊙ yr−1. The absence of strong metal emission lines despite intense star formation suggests a gas-phase metallicity below 10% solar and potentially a high escape fraction of ionizing photons. These deep observations provide rare constraints on faint, early galaxies, tracing the onset of chemical enrichment and ionization in the early Universe.