Two physicists (a female and male) working on a lab experiment

ALP Seminar: Towards Universal Quantum Computation with Bosonic Qubits

Seminars and colloquia
Simpkins Lee
Beecroft Building

Yvonne Gao

CQT: Centre for Quantum Technologies, National University of Singapore

Seminar series
ALP seminar
Knowledge of physics?
Yes, knowledge of physics required
For more information contact


The realisation of robust universal quantum computation with any platform ultimately requires both the coherent storage of quantum information and (at least) one entangling operation between individual elements. The use of multiphoton states encoded in superconducting microwave cavities as logical qubits is a promising route to preserve the coherence of quantum information against naturally-occurring errors. However, operations between such encoded qubits can be challenging due to the lack of intrinsic coupling between them.

In this talk, I will discuss the recent experimental work on engineering a coherent and tunable bilinear coupling between two otherwise isolated microwave quantum memories in a three-dimensional circuit quantum electrodynamics architecture. Building upon this coupling, we also demonstrate programmable interference between stationary quantum modes and realise robust entangling operations between two encoded qubits. Our results provide a crucial primitive for universal quantum computation using bosonic modes.