ALP Seminar: Universal Dynamics in Quantum Gases: On Quantum Turbulence, Rogue Waves, and sine-Gordon

26 Jan 2026
Seminars and colloquia
Time
Venue
Simpkins Lee Seminar Room
Beecroft Building, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU
Speaker(s)

Professor Thomas Gasenzer, Kirchhoff-Institut fur Physik, University of Heidelberg

Seminar series
ALP seminar
For more information contact

Abstract

A quantum many-body system driven far from equilibrium via a parameter quench can show universal
dynamics, characterized by self-similar spatio-temporal scaling, associated with the approach to a non-thermal
fixed point [1–4]. Non-linear excitations such as solitons or vortices, rogue waves, and instantons play a key role
in the time evolution of such systems [5–8]. I will introduce to the concept of non-thermal fixed points and
discuss developing and decaying quantum turbulence, associated with an anomalous nonthermal fixed point,
exhibiting aspects equivalent as well as different from classical fluids [7]. A low-energy effective sine-Gordon
type represents a possible approach to the specific universality class of such anomalous fixed points,
characterized by sub-diffusive scaling [9,10].


[1] A. N. Mikheev, I. Siovitz, and T. Gasenzer, “Universal dynamics and non-thermal fixed points in quantum fluids far from
equilibrium,” Eur. Phys. J. Spec. Top. 232, 3393 (2023). Doi: https://dx.doi.org/10.1140/epjs/s11734-023-00974-7.
[2] M. Prüfer, P. Kunkel, H. Strobel, et al., “Observation of universal dynamics in a spinor Bose gas far from equilibrium,” Nature
563, 217 (2018). Doi: https://dx.doi.org/10.1038/s41586-018-0659-0.
[3] J. A. P. Glidden, C. Eigen, L. H. Dogra, T. A. Hilker, R. P. Smith, and Z. Hadzibabic, “Bidirectional dynamic scaling in an
isolated Bose gas far from equilibrium,” Nature Physics 17, 457 (2021). Doi: https://dx.doi.org/10.1038/s41567-020-01114-x.
[4] S. Erne, R. Bücker, T. Gasenzer, J. Berges and J. Schmiedmayer, Universal dynamics in an isolated one-dimensional Bose gas far
from equilibrium, Nature 563, 225 (2018). Doi: https://dx.doi.org/10.1038/s41586-018-0667-0.
[5] M. Karl and T. Gasenzer, „Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas“, New J. Phys.
19, 093014 (2017). Doi: http://dx.doi.org/10.1088/1367-2630/aa7eeb.
[6] N. Rasch, L. Chomaz, and T. Gasenzer, „Anomalous non-thermal fixed point in a quasi-two-dimensional dipolar Bose gas”, Phys.
Rev. A 112, 053310 (2025). Doi: https://dx.doi.org/10.1103/x2rj-ptgy.
[7] N. Rasch and T. Gasenzer, „Decaying superfluid turbulence near an anomalous non-thermal fixed point“, arXiv:2509.21285. Doi:
https://arxiv.org/abs/2509.21285.
[8] I. Siovitz, S. Lannig, Y. Deller, H. Strobel, M. K. Oberthaler, and T. Gasenzer, “Universal dynamics of rogue waves in a
quenched spinor bose condensate,” Phys. Rev. Lett. 131, 183402 (2023). Doi:
https://dx.doi.org/10.1103/PhysRevLett.131.183402.
[9] P. Heinen, A.N. Mikheev, T. Gasenzer, „Anomalous scaling at non-thermal fixed points of the sine-Gordon model“, Phys. Rev. A
107, 043303 (2023). Doi: https://dx.doi.org/10.1103/PhysRevA.107.043303.
[10] I. Siovitz, A.-M. Glück, Y. Deller, et al., “Double Sine-Gordon effective theory for universal dynamics of a spin-1 Bose gas”
Phys. Rev. A 112, 02304 (2025). Doi: http://dx.doi.org/10.1103/df5w-3yfd.