Denys Wilkinson Building, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH
Pritha Paul, Queen Mary University of London
Adrien La Posta (adrien.laposta@physics.ox.ac.uk)
Matteo Zennaro (matteo.zennaro@physics.ox.ac.uk)
Abstract
Recently the galaxy matter density 4-point correlation function has been looked at to investigate parity violation in large scale structure surveys. The 4-point correlation function is the lowest order statistic which is sensitive to parity violation, since a tetrahedron is the simplest shape that cannot be superimposed on its mirror image by a rotation. If the parity violation is intrinsic in nature, this could give us a window into inflationary physics. However, we need to exhaust all other contaminations before we consider them to be intrinsic. Even though the standard Newtonian redshift-space distortions are parity symmetric, the full relativistic picture is not. Therefore, we expect a parity-odd trispectrum when observing in redshift space. We calculate the trispectrum with the leading-order relativistic effects and investigate in detail the parameter space of the trispectrum and the effects of these relativistic corrections for different parameter values and configurations. We also look at different surveys and how the evolution and magnification biases can be affected by different parameter choices.