Calibrating galaxy formation effects in galactic tests of fundamental physics
Abstract:
Galactic scale tests have proven to be powerful tools in constraining fundamental physics in previously under-explored regions of parameter space. The astrophysical regime which they probe is inherently complicated, and the inference methods used to make these constraints should be robust to baryonic effects. Previous analyses have assumed simple empirical models for astrophysical noise without detailed calibration or justification. We outline a framework for assessing the reliability of such methods by constructing and testing more advanced baryonic models using cosmological hydrodynamical simulations. As a case study, we use the Horizon-AGN simulation to investigate warping of stellar disks and offsets between gas and stars within galaxies, which are powerful probes of screened fifth forces. We show that the degree of `U'-shaped warping of galaxies is well modelled by Gaussian random noise, but that the magnitude of the gas-star offset is correlated with the virial radius of the host halo. By incorporating this correlation we confirm recent results ruling out astrophysically relevant Hu-Sawicki $f(R)$ gravity, and identify a $\sim 30\%$ systematic uncertainty due to baryonic physics. Such an analysis must be performed case-by-case for future galactic tests of fundamental physics.Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments
Abstract:
Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear. We present an end-to-end approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. Residual biases are propagated through a pipeline from galaxy properties (one end) through to cosmic shear power spectra and cosmological parameter estimates (the other end), to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters. We quantify the impact of an imperfect correction for charge transfer inefficiency (CTI) and modelling uncertainties of the point spread function (PSF) for Euclid, and find that the biases introduced can be corrected to acceptable levels.Modelling baryonic feedback for survey cosmology
Abstract:
Observational cosmology in the next decade will rely on probes of the distribution of matter in the redshift range between $0The speed of gravitational waves and black hole hair
Physical Review D, Particles and fields American Physical Society