Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Stellar_flare_hits_HD_189733_b_(artist's_impression)

This artist's impression shows the hot Jupiter HD 189733b, as it passes in front of its parent star, as the latter is flaring, driving material away from the planet. The escaping atmosphere is seen silhouetted against the starlight. The surface of the star, which is around 80% the mass of the Sun, is based on observations of the Sun from NASA's Solar Dynamics Observatory.

Credit: NASA, ESA, L. Calçada, Solar Dynamics Observatory

Prof Suzanne Aigrain

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanets and Stellar Physics
Suzanne.Aigrain@physics.ox.ac.uk
Telephone: 01865 (2)73339
Denys Wilkinson Building, room 762
Stars & Planets @ Oxford research group website
  • About
  • Publications

HST hot-Jupiter transmission spectral survey: Clear skies for cool Saturn WASP-39b

(2016)

Authors:

Patrick D Fischer, Heather A Knutson, David K Sing, Gregory W Henry, Michael W Williamson, Jonathan J Fortney, Adam S Burrows, Tiffany Kataria, Nikolay Nikolov, Adam P Showman, Gilda E Ballester, Jean-Michel Désert, Suzanne Aigrain, Drake Deming, Alain Lecavelier des Etangs, Alfred Vidal-Madjar
More details from the publisher

Telling twins apart: Exo-Earths and Venuses with transit spectroscopy

Monthly Notices of the Royal Astronomical Society Oxford University Press 458:3 (2016) 2657-2666

Authors:

JK Barstow, Suzanne Aigrain, Patrick GJ Irwin, Sarah Kendrew, Leigh N Fletcher

Abstract:

The planned launch of the James Webb Space Telescope (JWST) in 2018 will herald a new era of exoplanet spectroscopy. JWST will be the first telescope sensitive enough to potentially characterize terrestrial planets from their transmission spectra. In this work, we explore the possibility that terrestrial planets with Venus-type and Earth-type atmospheres could be distinguished from each other using spectra obtained by JWST. If we find a terrestrial planet close to the liquid water habitable zone of an M5 star within a distance of 10 parsec, it would be possible to detect atmospheric ozone if present in large enough quantities, which would enable an oxygen-rich atmosphere to be identified. However, the cloudiness of a Venus-type atmosphere would inhibit our ability to draw firm conclusions about the atmospheric composition, making any result ambiguous. Observing small, temperate planets with JWST requires significant investment of resources, with single targets requiring of the order of 100 transits to achieve sufficient signal to noise. The possibility of detecting a crucial feature such as the ozone signature would need to be carefully weighed against the likelihood of clouds obscuring gas absorption in the spectrum.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The GTC exoplanet transit spectroscopy survey

Astronomy & Astrophysics EDP Sciences 585 (2016) a114

Authors:

H Parviainen, E Pallé, L Nortmann, G Nowak, N Iro, F Murgas, S Aigrain
More details from the publisher
More details
Details from ArXiV

III.1 Transit features detected by the CoRoT/Exoplanet Science Team

Chapter in The CoRoT Legacy Book, EDP Sciences (2016) 117

Authors:

M Deleuil, C Moutou, J Cabrera, S Aigrain, F Bouchy, H Deeg, P Bordé
More details from the publisher

Ghost in the time series: no planet for Alpha Cen B

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 456:1 (2015) l6-l10

Authors:

V Rajpaul, S Aigrain, S Roberts
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Current page 33
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet